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ergm-package Fit, Simulate and Diagnose Exponential-Family Models for Networks

Description

ergm is a collection of functions to plot, fit, diagnose, and simulate from exponential-family random
graph models (ERGMs). For a list of functions type: help(package='ergm')
For a complete list of the functions, use library(help="ergm") or read the rest of the manual. For
a simple demonstration, use demo(packages="ergm").
When publishing results obtained using this package, please cite the original authors as described
in citation(package="ergm").
All programs derived from this package must cite it.

Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical
study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a gen-
eralization of the Markov random network models introduced by Frank and Strauss (1986), which
in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the
complex dependencies within relational data structures. To date, the use of stochastic network mod-
els for networks has been limited by three interrelated factors: the complexity of realistic models,
the lack of simulation tools for inference and validation, and a poor understanding of the inferential
properties of nontrivial models.
This manual introduces software tools for the representation, visualization, and analysis of network
data that address each of these previous shortcomings. The package relies on the network package
which allows networks to be represented in R. The ergm package implements maximum likelihood
estimates of ERGMs to be calculated using Markov Chain Monte Carlo (via ergm). The package
also provides tools for simulating networks (via simulate.ergm) and assessing model goodness-
of-fit (see mcmc.diagnostics and gof.ergm).
A number of Statnet Project packages extend and enhance ergm. These include tergm (Temporal
ERGM), which provides extensions for modeling evolution of networks over time; ergm.count,
which facilitates exponential family modeling for networks whose dyadic measurements are counts;
and ergm.userterms, which allows users to implement their own ERGM terms.
For detailed information on how to download and install the software, go to the ergm website:
statnet.org. A tutorial, support newsgroup, references and links to further resources are provided
there.

Author(s)

Mark S. Handcock <handcock@stat.ucla.edu>,
David R. Hunter <dhunter@stat.psu.edu>,
Carter T. Butts <buttsc@uci.edu>,
Steven M. Goodreau <goodreau@u.washington.edu>,
Pavel N. Krivitsky <krivitsky@stat.psu.edu>, and
Martina Morris <morrism@u.washington.edu>
Maintainer: Pavel N. Krivitsky <krivitsky@stat.psu.edu>

statnet.org
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anova.ergm ANOVA for Linear Model Fits

Description

Compute an analysis of variance table for one or more linear model fits.

Usage

## S3 method for class 'ergm'
anova(object, ..., eval.loglik = FALSE)
## S3 method for class 'ergmlist'
anova(object, ..., eval.loglik = FALSE, scale = 0, test = "F")

Arguments

object, ... objects of class ergm, usually, a result of a call to ergm.
eval.loglik a logical specifying whether the log-likelihood will be evaluated if missing.
test a character string specifying the test statistic to be used. Can be one of "F",

"Chisq" or "Cp", with partial matching allowed, or NULL for no test.
scale numeric. An estimate of the noise variance σ2. If zero this will be estimated

from the largest model considered.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is, the
reductions in the residual sum of squares as each term of the formula is added in turn are given in
the rows of a table, plus the residual sum of squares.
The table will contain F statistics (and P values) comparing the mean square for the row to the
residual mean square.
If more than one object is specified, the table has a row for the residual degrees of freedom and sum
of squares for each model. For all but the first model, the change in degrees of freedom and sum of
squares is also given. (This only make statistical sense if the models are nested.) It is conventional
to list the models from smallest to largest, but this is up to the user.
Optionally the table can include test statistics. Normally the F statistic is most appropriate, which
compares the mean square for a row to the residual sum of squares for the largest model considered.
If scale is specified chi-squared tests can be used. Mallows’ Cp statistic is the residual sum of
squares plus twice the estimate of σ2 times the residual degrees of freedom.
If any of the objects do not have estimated log-likelihoods, produces an error, unless eval.loglik=TRUE.

http://dx.doi.org/10.1214/12-EJS696
http://www.jstatsoft.org/v24/i04/
http://www.jstatsoft.org/v24/i04/
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Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values and R’s default of na.action = na.omit is used,
and anova.ergmlist will detect this with an error.

See Also

The model fitting function ergm, anova, logLik.ergm for adding the log-likelihood to an existing
ergm object.

Examples

data(molecule)
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
fit0 <- ergm(molecule ~ edges)
anova(fit0)
fit1 <- ergm(molecule ~ edges + nodefactor("atomic type"))
anova(fit1)

fit2 <- ergm(molecule ~ edges + nodefactor("atomic type") + gwesp(0.5,
fixed=TRUE), eval.loglik=TRUE) # Note the eval.loglik argument.

anova(fit0, fit1)
anova(fit0, fit1, fit2)

as.network.numeric Create a Simple Random network of a Given Size

Description

as.network.numeric creates a random Bernoulli network of the given size as an object of class
network.

Usage

## S3 method for class 'numeric'
as.network(x, directed = TRUE,

hyper = FALSE, loops = FALSE, multiple = FALSE, bipartite = FALSE,
ignore.eval = TRUE, names.eval = NULL,
edge.check = FALSE,
density=NULL, init=NULL, numedges=NULL, ...)
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Arguments

x count; the number of nodes in the network. If bipartite=TRUE, it is the number
of events in the network.

directed logical; should edges be interpreted as directed?

hyper logical; are hyperedges allowed? Currently ignored.

loops logical; should loops be allowed? Currently ignored.

multiple logical; are multiplex edges allowed? Currently ignored.

bipartite count; should the network be interpreted as bipartite? If present (i.e., non-
NULL) it is the count of the number of actors in the bipartite network. In this
case, the number of nodes is equal to the number of actors plus the number of
events (with all actors preceding all events). The edges are then interpreted as
nondirected.

ignore.eval logical; ignore edge values? Currently ignored.

names.eval optionally, the name of the attribute in which edge values should be stored. Cur-
rently ignored.

edge.check logical; perform consistency checks on new edges?

density numeric; the probability of a tie for Bernoulli networks. If neither density nor
init is given, it defaults to the number of nodes divided by the number of dyads
(so the expected number of ties is the same as the number of nodes.)

init numeric; the log-odds of a tie for Bernoulli networks. It is only used if density
is not specified.

numedges count; if present, sample the Bernoulli network conditional on this number of
edges (rather than independently with the specified probability).

... additional arguments

Details

The network will have not have vertex, edge or network attributes. These can be added with opera-
tors such as %v%, %n%, %e%.

Value

An object of class network

References

Butts, C.T. 2002. “Memory Structures for Relational Data in R: Classes and Interfaces” Working
Paper.

See Also

network
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Examples

#Draw a random directed network with 25 nodes
g<-network(25)
#Draw a random undirected network with density 0.1
g<-network(25, directed=FALSE, density=0.1)
#Draw a random bipartite network with 10 events and 5 actors and density 0.1
g<-network(5, bipartite=10, density=0.1)

coef.ergm Extract Model Coefficients

Description

coef is a Method which extracts model coefficients from objects returned by the ergm function.
coefficients is an alias for it.

Usage

## S3 method for class 'ergm'
coef(object, ...)
## S3 method for class 'ergm'
coefficients(object, ...)

Arguments

object an object for which the extraction of model coefficients is meaningful.

... other arguments.

Value

Coefficients extracted from the model object object.

See Also

fitted.values and residuals for related methods; glm, lm for model fitting.

Examples

data(molecule)
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
fit <- ergm(molecule ~ edges + nodefactor("atomic type"))
coef(fit)
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control.ergm Auxiliary for Controlling ERGM Fitting

Description

Auxiliary function as user interface for fine-tuning ’ergm’ fitting.

Usage

control.ergm(drop=TRUE,

init=NULL,
init.method=NULL,

main.method=c("MCMLE","Robbins-Monro",
"Stochastic-Approximation","Stepping"),

force.main=FALSE,
main.hessian=TRUE,

MPLE.max.dyad.types=1e+6,
MPLE.samplesize=50000,
MPLE.type=c("glm", "penalized"),

MCMC.prop.weights="default",
MCMC.prop.args=list(),
MCMC.burnin=10000,
MCMC.interval=100,
MCMC.samplesize=10000,
MCMC.return.stats=TRUE,
MCMC.burnin.retries=0,
MCMC.burnin.check.last=1/2,
MCMC.burnin.check.alpha=0.01,
MCMC.runtime.traceplot=FALSE,
MCMC.init.maxedges=20000,
MCMC.max.maxedges=Inf,
MCMC.addto.se=TRUE,
MCMC.compress=FALSE,
MCMC.packagenames=c(),

SAN.maxit=10,
SAN.control=control.san(

coef=init,
SAN.prop.weights=MCMC.prop.weights,
SAN.prop.args=MCMC.prop.args,
SAN.init.maxedges=MCMC.init.maxedges,
SAN.burnin=MCMC.burnin*10,
SAN.interval=MCMC.interval,
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SAN.packagenames=MCMC.packagenames,
parallel=parallel,
parallel.type=parallel.type,
parallel.version.check=parallel.version.check),

MCMLE.maxit=20,
MCMLE.conv.min.pval=0.5,
MCMLE.NR.maxit=100,
MCMLE.NR.reltol=sqrt(.Machine$double.eps),
obs.MCMC.samplesize=MCMC.samplesize,
obs.MCMC.interval=MCMC.interval,
obs.MCMC.burnin=MCMC.burnin,
MCMLE.check.degeneracy=FALSE,
MCMLE.MCMC.precision=0.05,
MCMLE.metric=c("lognormal", "Median.Likelihood",
"EF.Likelihood", "naive"),

MCMLE.method=c("BFGS","Nelder-Mead"),
MCMLE.trustregion=20,
MCMLE.dampening=FALSE,
MCMLE.dampening.min.ess=20,
MCMLE.dampening.level=0.1,
MCMLE.steplength=0.5,
MCMLE.adaptive.trustregion=3,
MCMLE.adaptive.epsilon=0.01,
MCMLE.sequential=TRUE,
MCMLE.density.guard.min=10000,
MCMLE.density.guard=exp(3),

SA.phase1_n=NULL,
SA.initial_gain=NULL,
SA.nsubphases=MCMLE.maxit,
SA.niterations=NULL,
SA.phase3_n=NULL,
SA.trustregion=0.5,

RM.phase1n_base=7,
RM.phase2n_base=100,
RM.phase2sub=7,
RM.init_gain=0.5,
RM.phase3n=500,

Step.MCMC.samplesize=100,
Step.maxit=50,
Step.gridsize=100,

loglik.control=control.logLik.ergm(),
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seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,

...)

Arguments

drop Logical: If TRUE, terms whose observed statistic values are at the extremes of
their possible ranges are dropped from the fit and their corresponding parameter
estimates are set to plus or minus infinity, as appropriate. This is done because
maximum likelihood estimates cannot exist when the vector of observed statistic
lies on the boundary of the convex hull of possible statistic values.

init numeric or NA vector equal in length to the number of parameters in the model
or NULL (the default); the initial values for the estimation and coefficient offset
terms. If NULL is passed, all of the initial values are computed using the method
specified by control$init.method. If a numeric vector is given, the elements
of the vector are interpreted as follows:

• Elements corresponding to terms enclosed in offset() are used as the fixed
offset coefficients. Note that offset coefficients alone can be more conve-
niently specified using ergm argument offset.coef. If both offset.coef
and init arguments are given, values in offset.coef will take precedence.

• Elements that do not correspond to offset terms and are not NA are used as
starting values in the estimation.

• Initial values for the elements that are NA are fit using the method specified
by control$init.method.

Passing control.ergm(init=coef(prev.fit)) can be used to “resume” an
uncoverged ergm run, but see enformulate.curved.

init.method A chatacter vector or NULL. The default method for finding the starting coeffi-
cient values, if init is not specified, is maximum pseudo-likelihood estimation
(MPLE). Another valid value is "zeros" for a vector of 0 of appropriate length.

main.method One of "MCMLE","Robbins-Monro", "Stochastic-Approximation", or "Step-
ping". Chooses the estimation method used to find the MLE. MCMLE attempts
to maximize an approximation to the log-likelihood function. Robbins-Monro
and Stochastic-Approximation are both stochastic approximation algorithms
that try to solve the method of moments equation that yields the MLE in the case
of an exponential family model. Another alternative is a partial stepping algo-
rithm (Stepping) as in Hummel et al. (2012). The direct use of the likelihood
function has many theoretical advantages over stochastic approximation, but the
choice will depend on the model and data being fit. See Handcock (2000) and
Hunter and Handcock (2006) for details.

force.main Logical: If TRUE, then force MCMC-based estimation method, even if the exact
MLE can be computed via maximum pseudolikelihood estimation.

main.hessian Logical: If TRUE, then an approximate Hessian matrix is used in the MCMC-
based estimation method.
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MPLE.max.dyad.types

Maximum number of unique values of change statistic vectors, which are the
predictors in a logistic regression used to calculate the MPLE. This calculation
uses a compression algorithm that allocates space based on MPLE.max.dyad.types.

MPLE.samplesize

Not currently documented; used in conditional-on-degree version of MPLE.

MPLE.type One of "glm" or "penalized". Chooses method of calculating MPLE. "glm" is
the usual formal logistic regression, whereas "penalized" uses the bias-reduced
method of Firth (1993) as originally implemented by Meinhard Ploner, Daniela
Dunkler, Harry Southworth, and Georg Heinze in the "logistf" package.

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.
MCMC.samplesize

Number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

MCMC.return.stats

Logical: If TRUE, return the matrix of MCMC-sampled network statistics. This
matrix should have MCMC.samplesize rows. This matrix can be used directly
by the coda package to assess MCMC convergence.

MCMC.burnin.retries

Maximum number of times to rerun the burn-in phase if a failure to converge is
detected. Defaults to 0 for no checks.

MCMC.burnin.check.last

What fraction at the end of the burn-in phase to use for detecting non-convergence.
Defaults to one half.

MCMC.burnin.check.alpha

Maximum Bonferroni-adjusted P-value under the Geweke test for a statistic to
be considered unconverged. Defaults to 0.01.

MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC
MLE iteration.
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MCMC.init.maxedges, MCMC.max.maxedges

Maximum number of edges expected in network. Starting at MCMC.init.maxedges,
it will be incremented by a factor of 10 if exceeded during fitting, up to MCMC.max.maxedges,
at which point the process will stop with an error.

MCMC.addto.se Not yet documented.

MCMC.compress Logical: If TRUE, the matrix of sample statistics returned is compressed to the
set of unique statistics with a column of frequencies post-pended.

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

SAN.maxit When target.stats argument is passed to ergm, the maximum number of at-
tempts to use san to obtain a network with statistics close to those specified.

SAN.control Control arguments to san. See control.san for details.

MCMLE.maxit Maximum number of times the parameter for the MCMC should be updated by
maximizing the MCMC likelihood. At each step the parameter is changed to the
values that maximizes the MCMC likelihood based on the current sample.

MCMLE.conv.min.pval

After every MCMC sample, a Hotelling’s T^2 test for equality of MCMC-
simulated network statistics to observed is conducted, and if its P-value exceeds
this setting, the estimation is considered to have converged and finishes. To turn
this off and perform all control$MCMLE.maxit iterations, set MCMLE.conv.min.pval=1.

MCMLE.NR.maxit Maximum number of iterations in the Newton-Raphson optimization.
MCMLE.NR.reltol

Not yet documented.
obs.MCMC.samplesize,obs.MCMC.burnin,obs.MCMC.interval

Sample size, burnin, and interval parameters for the MCMC sampling used when
unobserved data are present in the estimation routine.

MCMLE.check.degeneracy

Logical: If TRUE, employ a check for model degeneracy.
MCMLE.MCMC.precision

Vector of upper bounds on the precisions of the standard errors induced by the
MCMC algorithm.

MCMLE.metric Method to calculate the loglikelihood approximation. See Hummel et al (2010)
for an explanation of "lognormal" and "naive".

MCMLE.method Name of the optimization method to use. See optim for the options. The default
method "BFGS" is a quasi-Newton method (also known as a variable metric al-
gorithm). It is attributed to Broyden, Fletcher, Goldfarb and Shanno. This uses
function values and gradients to build up a picture of the surface to be optimized.

MCMLE.trustregion

Maximum increase the algorithm will allow for the approximated likelihood at
a given iteration. See Snijders (2002) for details.

MCMLE.dampening

(logical) Should likelihood dampening be used?
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MCMLE.dampening.min.ess

The effective sample size below which dampening is used.
MCMLE.dampening.level

The proportional distance from boundary of the convex hull move.
MCMLE.steplength

Multiplier for step length, which may (for values less than one) make fitting
more stable at the cost of efficiency. Can be set to "adaptive"; see MCMLE.adaptive.trustregion
and MCMLE.adaptive.epsilon.

MCMLE.adaptive.trustregion

Maximum increase the algorithm will allow for the approximated loglikelihood
at a given iteration when MCMLE.steplength="adaptive".

MCMLE.adaptive.epsilon

convergence tolerance: If the change in loglikelihood value when MCMLE.steplength="adaptive"
is smaller than this tolerance (and the adaptive steplength equals 1), stop even if
we haven’t yet reached MCMLE.maxit iterations.

MCMLE.sequential

Logical: If TRUE, the next iteration of the fit uses the last network sampled as
the starting network. If FALSE, always use the initially passed network. The
results should be similar (stochastically), but the TRUE option may help if the
target.stats in the ergm function are far from the initial network.

MCMLE.density.guard.min, MCMLE.density.guard

A simple heuristic to stop optimization if it finds itself in an overly dense re-
gion, which usually indicates ERGM degeneracy: if the sampler encounters a
network configuration that has more than MCMLE.density.guard.min edges
and whose number of edges is exceeds the observed network by more than
MCMLE.density.guard, the optimization process will be stopped with an error.

SA.phase1_n Number of MCMC samples to draw in Phase 1 of the stochastic approximation
algorithm. Defaults to 7 plus 3 times the number of terms in the model. See
Snijders (2002) for details.

SA.initial_gain

Initial gain to Phase 2 of the stochastic approximation algorithm. See Snijders
(2002) for details.

SA.nsubphases Number of sub-phases in Phase 2 of the stochastic approximation algorithm.
Defaults to MCMLE.maxit. See Snijders (2002) for details.

SA.niterations Number of MCMC samples to draw in Phase 2 of the stochastic approximation
algorithm. Defaults to 7 plus the number of terms in the model. See Snijders
(2002) for details.

SA.phase3_n ample size for the MCMC sample in Phase 3 of the stochastic approximation
algorithm. See Snijders (2002) for details.

SA.trustregion Not yet documented.
RM.phase1n_base

The Robbins-Monro control parameters are not yet documented.
RM.phase2n_base

Not yet documented.

RM.phase2sub Not yet documented.
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RM.init_gain Not yet documented.
RM.phase3n Not yet documented.
Step.MCMC.samplesize

MCMC sample size for the preliminary steps of the "Stepping" method of opti-
mization. This is usually chosen to be smaller than the final MCMC sample size
(which equals MCMC.samplesize). See Hummel et al. (2012) for details.

Step.maxit Maximum number of iterations (steps) allowed by the "Stepping" method.
Step.gridsize Integer N such that the "Stepping" style of optimization chooses a step length

equal to the largest possible multiple of 1/N . See Hummel et al. (2012) for
details.

loglik.control See control.ergm.bridge

seed Seed value (integer) for the random number generator. See set.seed

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "SOCK".
Defaults to using the snow package default.

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

... Additional arguments, passed to other functions This argument is helpful be-
cause it collects any control parameters that have been deprecated; a warning
message is printed in case of deprecated arguments.

Details

This function is only used within a call to the ergm function. See the usage section in ergm for
details.

Value

A list with arguments as components.

References

• Snijders, T.A.B. (2002), Markov Chain Monte Carlo Estimation of Exponential Random
Graph Models. Journal of Social Structure. Available from http://www.cmu.edu/joss/
content/articles/volume3/Snijders.pdf.

• Firth (1993), Bias Reduction in Maximum Likelihood Estimates. Biometrika, 80: 27-38.
• Hunter, D. R. and M. S. Handcock (2006), Inference in curved exponential family models for

networks. Journal of Computational and Graphical Statistics, 15: 565-583.
• Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2012), Improving Simulation-Based

Algorithms for Fitting ERGMs, Journal of Computational and Graphical Statistics, to appear.

See Also

ergm. The control.simulate function performs a similar function for simulate.ergm; control.gof
performs a similar function for gof.

http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
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control.ergm.bridge Auxiliary for Controlling ergm.bridge

Description

Auxiliary function as user interface for fine-tuning ergm.bridge algorithm, which approximates log
likelihood ratios using bridge sampling.

Usage

control.ergm.bridge(nsteps=20,
MCMC.burnin=10000,
MCMC.interval=100,
MCMC.samplesize=10000,
obs.MCMC.samplesize=MCMC.samplesize,
obs.MCMC.interval=MCMC.interval,
obs.MCMC.burnin=MCMC.burnin,

MCMC.prop.weights="default",
MCMC.prop.args=list(),

MCMC.init.maxedges=20000,
MCMC.packagenames=c(),

seed=NULL)

Arguments

nsteps Number of geometric bridges to use.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.
MCMC.samplesize

Number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.samplesize

The obs versions of these arguments are for the unobserved data simulation
algorithm.

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
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may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC.init.maxedges

Maximum number of edges expected in network.
MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

seed Seed value (integer) for the random number generator. See set.seed

Details

This function is only used within a call to the ergm.bridge.llr or ergm.bridge.dindstart.llk
functions.

Value

A list with arguments as components.

See Also

ergm.bridge.llr, ergm.bridge.dindstart.llk

control.gof Auxiliary for Controlling ERGM Goodness-of-Fit Evaluation

Description

Auxiliary function as user interface for fine-tuning ERGM Goodness-of-Fit Evaluation.

Usage

control.gof.formula(nsim=100,
MCMC.burnin=1000,
MCMC.interval=1000,
MCMC.prop.weights="default",
MCMC.prop.args=list(),

MCMC.init.maxedges=20000,
MCMC.packagenames=c(),

MCMC.runtime.traceplot=FALSE,
network.output="network",
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seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE)

control.gof.ergm(nsim=100,
MCMC.burnin=NULL,
MCMC.interval=NULL,
MCMC.prop.weights=NULL,
MCMC.prop.args=NULL,

MCMC.init.maxedges=NULL,
MCMC.packagenames=NULL,

MCMC.runtime.traceplot=FALSE,
network.output="network",

seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE)

Arguments

nsim Number of networks to be randomly drawn using Markov chain Monte Carlo.
This sample of networks provides the basis for comparing the model to the ob-
served network.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.
MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC.init.maxedges

Maximum number of edges expected in network.
MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
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those autodetected. This argument should not be needed outside of very strange
setups.

MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC
MLE iteration.

network.output R class with which to output networks. The options are "network" (default) and
"edgelist.compressed" (which saves space but only supports networks without
vertex attributes)

seed Seed value (integer) for the random number generator. See set.seed

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "SOCK".
Defaults to using the snow package default.

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

Details

This function is only used within a call to the gof function. See the usage section in gof for details.

Value

A list with arguments as components.

See Also

gof. The control.simulate function performs a similar function for simulate.ergm; control.ergm
performs a similar function for ergm.

control.logLik.ergm Auxiliary for Controlling logLik.ergm

Description

Auxiliary function as user interface for fine-tuning logLik.ergm algorithm, which approximates log
likelihood values.

Usage

control.logLik.ergm(nsteps=20,
MCMC.burnin=NULL,
MCMC.interval=NULL,
MCMC.samplesize=NULL,
obs.MCMC.samplesize=MCMC.samplesize,
obs.MCMC.interval=MCMC.interval,
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obs.MCMC.burnin=MCMC.burnin,

MCMC.prop.weights=NULL,
MCMC.prop.args=NULL,
warn.dyads=TRUE,

MCMC.init.maxedges=NULL,
MCMC.packagenames=NULL,

seed=NULL)

Arguments

nsteps Number of geometric bridges to use.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.
MCMC.samplesize

Number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.samplesize

The obs versions of these arguments are for the unobserved data simulation
algorithm.

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.

warn.dyads Whether or not a warning should be issued when sample space constraints render
the observed number of dyads ill-defined.

MCMC.init.maxedges

Maximum number of edges expected in network.
MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

seed Seed value (integer) for the random number generator. See set.seed
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Details

This function is only used within a call to the logLik.ergm function.

Value

A list with arguments as components.

See Also

logLik.ergm

control.san Auxiliary for Controlling SAN

Description

Auxiliary function as user interface for fine-tuning simulated annealing algorithm.

Usage

control.san(coef=NULL,

SAN.tau=1,
SAN.invcov=NULL,
SAN.burnin=100000,
SAN.interval=10000,
SAN.init.maxedges=20000,

SAN.prop.weights="default",
SAN.prop.args=list(),
SAN.packagenames=c(),
MPLE.samplesize = 50000,
network.output="network",

seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE)

Arguments

coef Vector of model coefficients used for MCMC simulations, one for each model
term.

SAN.tau Currently unused.
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SAN.invcov Initial inverse covariance matrix used to calculate Mahalanobis distance in de-
termining how far a proposed MCMC move is from the target.stats vector.
If NULL, taken to be the covariance matrix returned when fitting the MPLE if
coef==NULL, or the identity matrix otherwise.

SAN.burnin Number of MCMC proposals before any sampling is done.

SAN.interval Number of proposals between sampled statistics.
SAN.init.maxedges

Maximum number of edges expected in network.
SAN.prop.weights

Specifies the method to allocate probabilities of being proposed to dyads. De-
faults to "default", which picks a reasonable default for the specified con-
straint. Other possible values are "TNT", "random", and "nonobserved", though
not all values may be used with all possible constraints.

SAN.prop.args An alternative, direct way of specifying additional arguments to proposal.
SAN.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

MPLE.samplesize

Not currently documented; used in conditional-on-degree version of MPLE.

network.output R class with which to output networks. The options are "network" (default) and
"edgelist.compressed" (which saves space but only supports networks without
vertex attributes)

seed Seed value (integer) for the random number generator. See set.seed

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "SOCK".
Defaults to using the snow package default.

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

Details

This function is only used within a call to the san function. See the usage section in san for details.

Value

A list with arguments as components.

See Also

san
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control.simulate Auxiliary for Controlling ERGM Simulation

Description

Auxiliary function as user interface for fine-tuning ERGM simulation.

Usage

control.simulate(MCMC.burnin=1000,
MCMC.interval=1000,
MCMC.prop.weights="default",
MCMC.prop.args=list(),
MCMC.init.maxedges=20000,
MCMC.packagenames=c(),
MCMC.runtime.traceplot=FALSE,

network.output="network",

parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...)

control.simulate.formula(MCMC.burnin=1000,
MCMC.interval=1000,
MCMC.prop.weights="default",
MCMC.prop.args=list(),
MCMC.init.maxedges=20000,
MCMC.packagenames=c(),
MCMC.runtime.traceplot=FALSE,

network.output="network",

parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...)

control.simulate.formula.ergm(MCMC.burnin=1000,
MCMC.interval=1000,
MCMC.prop.weights="default",
MCMC.prop.args=list(),
MCMC.init.maxedges=20000,
MCMC.packagenames=c(),
MCMC.runtime.traceplot=FALSE,
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network.output="network",

parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...)

control.simulate.ergm(MCMC.burnin=NULL,
MCMC.interval=NULL,
MCMC.prop.weights=NULL,
MCMC.prop.args=NULL,
MCMC.init.maxedges=NULL,
MCMC.packagenames=NULL,
MCMC.runtime.traceplot=FALSE,

network.output="network",

parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...)

Arguments

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.

MCMC.init.maxedges

Maximum number of edges expected in network.

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.
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MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC
MLE iteration.

network.output R class with which to output networks. The options are "network" (default) and
"edgelist.compressed" (which saves space but only supports networks without
vertex attributes)

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "SOCK".
Defaults to using the snow package default.

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

... Additional arguments, passed to other functions This argument is helpful be-
cause it collects any control parameters that have been deprecated; a warning
message is printed in case of deprecated arguments.

Details

This function is only used within a call to the simulate function. See the usage section in
simulate.ergm for details.

Value

A list with arguments as components.

See Also

simulate.ergm, simulate.formula. control.ergm performs a similar function for ergm; control.gof
performs a similar function for gof.

ecoli Two versions of an E. Coli network dataset

Description

This network data set comprises two versions of a biological network in which the nodes are operons
in Escherichia Coli and a directed edge from one node to another indicates that the first encodes the
transcription factor that regulates the second.

Usage

data(ecoli)
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Details

The network object ecoli1 is directed, with 423 nodes and 519 arcs. The object ecoli2 is an
undirected version of the same network, in which all arcs are treated as edges and the five isolated
nodes (which exhibit only self-regulation in ecoli1) are removed, leaving 418 nodes.

Licenses and Citation

When publishing results obtained using this data set, the original authors (Salgado et al, 2001;
Shen-Orr et al, 2002) should be cited, along with this R package.

Source

The data set is based on the RegulonDB network (Salgado et al, 2001) and was modified by Shen-
Orr et al (2002).

References

Salgado et al (2001), Regulondb (version 3.2): Transcriptional Regulation and Operon Organization
in Escherichia Coli K-12, Nucleic Acids Research, 29(1): 72-74.

Shen-Orr et al (2002), Network Motifs in the Transcriptional Regulation Network of Escerichia
Coli, Nature Genetics, 31(1): 64-68.

enformulate.curved Convert a curved ERGM into a form suitable as initial values for the
same ergm.

Description

The generic enformulate.curved converts an ergm object or formula of a model with curved terms
to the variant in which the curved parameters embedded into the formula and are removed from the
parameter vector. This is the form required by ergm calls.

Usage

## S3 method for class 'ergm'
enformulate.curved(object, ...)
## S3 method for class 'formula'
enformulate.curved(object, theta, response=NULL, ...)

Arguments

object An ergm object or an ERGM formula. The curved terms of the given formula
(or the formula used in the fit) must have all of their arguments passed by name.

theta Curved model parameter configuration.

response Not for release.

... Unused at this time.
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Details

Because of a current kludge in ergm, output from one run cannot be directly passed as initial values
(control.ergm(init=)) for the next run if any of the terms are curved. One workaround is to
embed the curved parameters into the formula (while keeping fixed=FALSE) and remove them
from control.ergm(init=).

This function automates this process for curved ERGM terms included with the ergm package. It
does not work with curved terms not included in ergm.

Value

A list with the following components:

formula The formula with curved parameter estimates incorporated.

theta The coefficient vector with curved parameter estimates removed.

See Also

ergm, simulate.ergm

Examples

data(sampson)
gest<-ergm(samplike~edges+gwesp(alpha=.5, fixed=FALSE),

control=control.ergm(MCMLE.maxit=1))
# Error:
gest2<-try(ergm(gest$formula, control=control.ergm(init=coef(gest), MCMLE.maxit=2)))
print(gest2)

# Works:
tmp<-enformulate.curved(gest)
tmp
gest2<-try(ergm(tmp$formula, control=control.ergm(init=tmp$theta, MCMLE.maxit=2)))
summary(gest2)

ergm Exponential Family Random Graph Models

Description

ergm is used to fit linear exponential random graph models (ERGMs), in which the probability of
a given network, y, on a set of nodes is h(y) exp{η(θ) · g(y)}/c(θ), where h(y) is the reference
measure (usually h(y) = 1), g(y) is a vector of network statistics for y, η(θ) is a natural parameter
vector of the same length (with η(θ) = θ for most terms), and c(θ) is the normalizing constant for
the distribution. ergm can return either a maximum pseudo-likelihood estimate or an approximate
maximum likelihood estimator based on a Monte Carlo scheme.
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Usage

ergm (formula,
response=NULL,
reference=~Bernoulli,
constraints=~.,
offset.coef=NULL,
target.stats=NULL,
eval.loglik=TRUE,
estimate=c("MLE", "MPLE"),
control=control.ergm(),
verbose=FALSE,
...)

Arguments

formula An R formula object, of the form y ~ <model terms>, where y is a network
object or a matrix that can be coerced to a network object. For the details
on the possible <model terms>, see ergm-terms and Morris, Handcock and
Hunter (2008) for binary ERGM terms and Krivitsky (2012) for valued ERGM
terms (terms for weighted edges). To create a network object in R, use the
network() function, then add nodal attributes to it using the %v% operator if
necessary. Enclosing a model term in offset() fixes its value to one specified
in offset.coef.

response EXPERIMENTAL. Name of the edge attribute whose value is to be modeled.
Defaults to NULL for simple presence or absence, modeled via binary ERGM
terms. Passing anything but NULL uses valued ERGM terms.

reference EXPERIMENTAL. A one-sided formula specifying the reference measure (h(y))
to be used. (Defaults to ~Bernoulli.) See help for ERGM reference measures
implemented in the ergm package.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being modeled, using syntax similar to the formula
argument. Multiple constraints may be given, separated by “+” operators. To-
gether with the model terms in the formula and the reference measure, the con-
straints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly by passing a string with
the function’s name. In that case, arguments to the proposal should be specified
through the prop.args argument to control.ergm.
The default is ~., for an unconstrained model.
See the ERGM constraints documentation for the constraints implemented in
the ergm package. Other packages may add their own constraints.
Note that not all possible combinations of constraints and reference measures
are supported.

offset.coef A vector of coefficients for the offset terms.

target.stats vector of "observed network statistics," if these statistics are for some reason dif-
ferent than the actual statistics of the network on the left-hand side of formula.
Equivalently, this vector is the mean-value parameter values for the model. If
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this is given, the algorithm finds the natural parameter values corresponding to
these mean-value parameters. If NULL, the mean-value parameters used are the
observed statistics of the network in the formula.

eval.loglik Logical: For dyad-dependent models, if TRUE, use bridge sampling to evaluate
the log-likelihoood associated with the fit. Has no effect for dyad-independent
models. Since bridge sampling takes additional time, setting to FALSE may
speed performance if likelihood values (and likelihood-based values like AIC
and BIC) are not needed.

estimate If "MPLE," then the maximum pseudolikelihood estimator is returned. If "MLE"
(the default), then an approximate maximum likelihood estimator is returned.
For certain models, the MPLE and MLE are equivalent, in which case this ar-
gument is ignored. (To force MCMC-based approximate likelihood calculation
even when the MLE and MPLE are the same, see the force.main argument of
control.ergm.)

control A list of control parameters for algorithm tuning. Constructed using control.ergm.

verbose logical; if this is TRUE, the program will print out additional information, includ-
ing goodness of fit statistics.

... Additional arguments, to be passed to lower-level functions.

Value

ergm returns an object of class ergm that is a list consisting of the following elements:

coef The Monte Carlo maximum likelihood estimate of θ, the vector of coefficients
for the model parameters.

sample The n × p matrix of network statistics, where n is the sample size and p is the
number of network statistics specified in the model, that is used in the maximum
likelihood estimation routine.

sample.obs As sample, but for the constrained sample.

iterations The number of Newton-Raphson iterations required before convergence.

MCMCtheta The value of θ used to produce the Markov chain Monte Carlo sample. As
long as the Markov chain mixes sufficiently well, sample is roughly a random
sample from the distribution of network statistics specified by the model with the
parameter equal to MCMCtheta. If estimate="MPLE" then MCMCtheta equals the
MPLE.

loglikelihood The approximate change in log-likelihood in the last iteration. The value is only
approximate because it is estimated based on the MCMC random sample.

gradient The value of the gradient vector of the approximated loglikelihood function,
evaluated at the maximizer. This vector should be very close to zero.

covar Approximate covariance matrix for the MLE, based on the inverse Hessian of
the approximated loglikelihood evaluated at the maximizer.

failure Logical: Did the MCMC estimation fail?

mc.se MCMC standard error estimates

newnetwork The final network at the end of the MCMC simulation
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network Original network

coef.init The initial value of θ.

initial The MPLE fit as a glm object.

null.deviance Deviance of the null model. Valid only for unconstrained models.

mle.lik The approximate log-likelihood for the MLE. The value is only approximate
because it is estimated based on the MCMC random sample.

etamap The set of functions mapping the true parameter theta to the canonical parameter
eta (irrelevant except in a curved exponential family model)

degeneracy.value

Score calculated to assess the degree of degeneracy in the model.
degeneracy.type

Supporting output for degeneracy.value. Mainly for internal use.

formula The original formula entered into the ergm function.

constraints Constraints used by original ergm call

control The control list passed to the call.

offset vector of logical telling which model parameters are to be set at a fixed value
(i.e., not estimated).

drop If control$drop=TRUE, a numeric vector indicating which terms were dropped
due to to extreme values of the corresponding statistics on the observed network,
and how:

0 The term was not dropped.
-1 The term was at its minimum and the coefficient was fixed at -Inf.
+1 The term was at its maximum and the coefficient was fixed at +Inf.

coef.hist, stats.hist, stats.obs.hist

For the MCMLE method, the history of coefficients and resulting average statis-
tics.

estimable A logical vector indicating which terms could not be estimated due to a constraints
constraint fixing that term at a constant value.

See the method print.ergm for details on how an ergm object is printed. Note that the method
summary.ergm returns a summary of the relevant parts of the ergm object in concise summary
format.

Notes on model specification

Although each of the statistics in a given model is a summary statistic for the entire network, it is
rarely necessary to calculate statistics for an entire network in a proposed Metropolis-Hastings step.

Thus, for example, if the triangle term is included in the model, a census of all triangles in the
observed network is never taken; instead, only the change in the number of triangles is recorded for
each edge toggle.

In the implementation of ergm, the model is initialized in R, then all the model information is passed
to a C program that generates the sample of network statistics using MCMC. This sample is then
returned to R, which implements a simple Newton-Raphson algorithm to approximate the MLE. An
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alternative style of maximum likelihood estimation is to use a stochastic approximation algorithm.
This can be chosen with the control.ergm(style="Robbins-Monro") option.

The mechanism for proposing new networks for the MCMC sampling scheme, which is a Metropolis-
Hastings algorithm, depends on two things: The constraints, which define the set of possible
networks that could be proposed in a particular Markov chain step, and the weights placed on these
possible steps by the proposal distribution. The former may be controlled using the constraints
argument described above. The latter may be controlled using the prop.weights argument to the
control.ergm function.

The package is designed so that the user could conceivably add additional proposal types.
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See Also

network, %v%, %n%, ergm-terms, ergmMPLE, summary.ergm, print.ergm

Examples

#
# load the Florentine marriage data matrix
#
data(flo)
#
# attach the sociomatrix for the Florentine marriage data
# This is not yet a network object.
#
flo
#
# Create a network object out of the adjacency matrix
#
flomarriage <- network(flo,directed=FALSE)
flomarriage
#
# print out the sociomatrix for the Florentine marriage data
#
flomarriage[,]
#
# create a vector indicating the wealth of each family (in thousands of lira)
# and add it as a covariate to the network object
#
flomarriage %v% "wealth" <- c(10,36,27,146,55,44,20,8,42,103,48,49,10,48,32,3)
flomarriage
#
# create a plot of the social network
#
plot(flomarriage)
#
# now make the vertex size proportional to their wealth
#
plot(flomarriage, vertex.cex=flomarriage %v% "wealth" / 20, main="Marriage Ties")
#
# Use 'data(package = "ergm")' to list the data sets in a
#

http://dx.doi.org/10.1214/12-EJS696
http://www.jstatsoft.org/v24/i04/
http://www.jstatsoft.org/v24/i04/
http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
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data(package="ergm")
#
# Load a network object of the Florentine data
#
data(florentine)
#
# Fit a model where the propensity to form ties between
# families depends on the absolute difference in wealth
#
gest <- ergm(flomarriage ~ edges + absdiff("wealth"))
summary(gest)
#
# add terms for the propensity to form 2-stars and triangles
# of families
#
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)
summary(gest)

# import synthetic network that looks like a molecule
data(molecule)
# Add a attribute to it to mimic the atomic type
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
#
# create a plot of the social network
# colored by atomic type
#
plot(molecule, vertex.col="atomic type",vertex.cex=3)

# measure tendency to match within each atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle + nodematch("atomic type"),

control=control.ergm(MCMC.samplesize=10000))
summary(gest)

# compare it to differential homophily by atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle

+ nodematch("atomic type",diff=TRUE),
control=control.ergm(MCMC.samplesize=10000))

summary(gest)

ergm-constraints Sample Space Constraints for Exponential Family Random Graph
Models

Description

ergm is used to fit linear exponential random graph models (ERGMs), in which the probability of
a given network, y, on a set of nodes is h(y) exp{η(θ) · g(y)}/c(θ), where h(y) is the reference
measure (usually h(y) = 1), g(y) is a vector of network statistics for y, η(θ) is a natural parameter
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vector of the same length (with η(θ) = θ for most terms), and c(θ) is the normalizing constant for
the distribution.

This page describes the constraints (the networks y for which h(y) > 0) that are included with the
ergm package. Other packages may add new constraints.

Constraints implemented in the ergm package

. or NULL A placeholder for no constraints: all networks of a particular size and type have non-zero
probability. Cannot be combined with other constraints.

bd(attribs,maxout,maxin,minout,minin) Constrain maximum and minimum vertex degree.
See “Placing Bounds on Degrees” section for more information.

blockdiag(attrname) Force a block-diagonal structure on the network. Only dyads (i, j) for
which attrname(i)==attrname(j) can have edges.

degrees and nodedegrees Preserve the degree of each vertex of the given network: only networks
whose vertex degrees are the same as those in the network passed in the model formula have
non-zero probability. If the network is directed, both indegree and outdegree are preserved.

odegrees, idegrees, b1degrees, b2degrees For directed networks, odegrees preserves the out-
degree of each vertex of the given network, while allowing indegree to vary, and conversely
for idegrees. b1degrees and b2degrees perform a similar function for bipartite networks.

degreedist Preserve the degree distribution of the given network: only networks whose degree
distributions are the same as those in the network passed in the model formula have non-zero
probability.

idegreedist and odegreedist Preserve the (respectively) indegree or outdegree distribution of
the given network.

edges Preserve the edge count of the given network: only networks having the same number of
edges as the network passed in the model formula have non-zero probability.

observed Preserve the observed dyads of the given network.

Not all combinations of the above are supported.

Placing Bounds on Degrees:

There are many times when one may wish to condition on the number of inedges or outedges
possessed by a node, either as a consequence of some intrinsic property of that node (e.g., to control
for activity or popularity processes), to account for known outliers of some kind, and thus we wish
to limit its indegree, an intrinsic property of the sampling scheme whence came our data (e.g., the
survey asked everyone to name only three friends total) or as a function of the attributes of the nodes
to which a node has edges (e.g., we specify that nodes designated “male” have a maximum number
of outdegrees to nodes designated “female”). To accomplish this we use the constraints term bd.

Let’s consider the simple cases first. Suppose you want to condition on the total number of degrees
regardless of attributes. That is, if you had a survey that asked respondents to name three alters and
no more, then you might want to limit your maximal outdegree to three without regard to any of the
alters’ attributes. The argument is then:

constraints=~bd(maxout=3)

Similar calls are used to restrict the number of indegrees (maxin), the minimum number of outde-
grees (minout), and the minimum number of indegrees (minin).
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You can also set ego specific limits. For example:

constraints=bd(maxout=rep(c(3,4),c(36,35)))

limits the first 36 to 3 and the other 35 to 4 outdegrees.

Multiple restrictions can be combined. bd is very flexible. In general, the bd term can contain up to
five arguments:

bd(attribs=attribs,
maxout=maxout,
maxin=maxin,
minout=minout,
minin=minin)

Omitted arguments are unrestricted, and arguments of length 1 are replicated out to all nodes (as
above). If an individual entry in maxout,..., minin is NA then no restriction of that kind is applied to
that actor.

In general, attribs is a matrix of the attributes on which we are conditioning. The dimensions
of attribs are n_nodes rows by attrcount columns, where attrcount is the number of distinct
attribute values on which we want to condition (i.e., a separate column is required for “male” and
“female” if we want to condition on the number of ties to both “male” and “female” partners). The
value of attribs[n, i], therefore, is TRUE if node n has attribute value i, and FALSE otherwise.
(Note that, since each column represents only a single value of a single attribute, the values of this
matrix are all Boolean (TRUE or FALSE).) It is important to note that attribs is a matrix of nodal
attributes, not alter attributes.

So, for instance, if we wanted to construct an attribs matrix with two columns, one each for male
and female attribute values (we are conditioning on these values of the attribute “sex”), and the
attribute sex is represented in ads.sex as an n_node-long vector of 0s and 1s (men and women), then
our code would look as follows:

# male column: bit vector, TRUE for males
attrsex1 <- (ads.sex == 0)
# female column: bit vector, TRUE for females
attrsex2 <- (ads.sex == 1)
# now create attribs matrix
attribs <- matrix(ncol=2,nrow=71, data=c(attrsex1,attrsex2))

maxout is a matrix of alter attributes, with the same dimensions as the attribs matrix. maxout
is n_nodes rows by attrcount columns. The value of maxout[n,i], therefore, is the maximum
number of outdegrees permitted from node n to nodes with the attribute i (where a NA means there
is no maximum).

For example: if we wanted to create a maxout matrix to work with our attribs matrix above, with
a maximum from every node of five outedges to males and five outedges to females, our code would
look like this:

# every node has maximum of 5 outdegrees to male alters
maxoutsex1 <- c(rep(5,71))
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# every node has maximum of 5 outdegrees to female alters
maxoutsex2 <- c(rep(5,71))
# now create maxout matrix
maxout <- cbind(maxoutsex1,maxoutsex2)

The maxin, minout, and minin matrices are constructed exactly like the maxout matrix, except
for the maximum allowed indegree, the minimum allowed outdegree, and the minimum allowed
indegree, respectively. Note that in an undirected network, we only look at the outdegree matrices;
maxin and minin will both be ignored in this case.
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ergm-parallel Parallel Processing in the ergm Package

Description

ergm can take advantage of multiple CPUs or CPU cores on the system on which it runs, as well
as computing clusters. It uses package snow to facilitate this, and supports all cluster types that it
does.

The parallel API and the number of nodes used are controlled using the parallel and parallel.type
arguments passed to the control functions, such as control.ergm.

This entry describes common problems and workarounds associated with particular parallel pro-
cessing APIs.

MPI

To use MPI to accellerate ERGM sampling, pass the control parameter parallel.type="MPI".
ergm and snow use Rmpi package to communicate with an MPI cluster. ergm will check if an MPI
cluster already exists and will create one if one doesn’t.

On some installations, the function stopCluster does not work properly for MPI clusters. Because
ergm creates a cluster every time it needs an MCMC sample and disbands it once it finishes, using

http://www.jstatsoft.org/v24/i08/
http://www.jstatsoft.org/v24/i03/
http://dx.doi.org/10.1214/12-EJS696
http://www.jstatsoft.org/v24/i04/
http://www.jstatsoft.org/v24/i04/
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MPI on these installations may fail. A workaround is to start the cluster outside of ergm (e.g.,
dummy <- makeCluster(nnodes, type="MPI")). ergm will notice the preexisting cluster and
make use of it, but it will not stop it.

Examples

# See help(ergm) for a description of this model.
data(florentine)
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangles,

eval.loglik=FALSE,
control=control.ergm(parallel=2, parallel.type="SOCK"))

summary(gest)
# Note the combined MCMC diagnostics:
mcmc.diagnostics(gest)

ergm-references Reference Measures for Exponential-Family Random Graph Models

Description

This page describes the possible reference measures (baseline distributions) for found in the ergm
package, particularly the default (Bernoulli) reference measure for binary ERGMs.

The reference measure is specified on the RHS of a one-sided formula passed as the reference ar-
gument to ergm. See the ergm documentation for a complete description of how reference measures
are specified.

Possible reference measures to represent baseline distributions

Reference measures currently available are:

Bernoulli Bernoulli-reference ERGM: Specifies each dyad’s baseline distribution to be Bernoulli
with probability of the tie being 0.5. This is the only reference measure used in binary mode.

DiscUnif(a,b) Discrete-Uniform-reference ERGM: Specifies each dyad’s baseline distribution to
be discrete uniform between a and b (both inclusive): h(y) = 1, with the support being
a, a + 1, . . . , b− 1, b. At this time, both a and b must be finite.

Unif(a,b) Coninuous-Uniform-reference ERGM: Specifies each dyad’s baseline distribution to be
continuous uniform between a and b (both inclusive): h(y) = 1, with the support being [a, b].
At this time, both a and b must be finite.
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See Also

ergm, network, %v%, %n%, sna, summary.ergm, print.ergm

ergm-terms Terms used in Exponential Family Random Graph Models

Description

The function ergm is used to fit exponential random graph models, in which the probability of a
given network, y, on a set of nodes is h(y) exp{η(θ) · g(y)}/c(θ), where h(y) is the reference
measure (for valued network models), g(y) is a vector of network statistics for y, η(θ) is a natural
parameter vector of the same length (with η(θ) = θ for most terms), and c(θ) is the normalizing
constant for the distribution.

The network statistics g(y) are entered as terms in the function call to ergm.

This page describes the possible terms (and hence network statistics) included in ergm package.
Other packages may add their own terms, and package ergm.userterms provides tools for imple-
menting them.

The current recommendation for any package implementing additional terms is to create a help file
with a name or alias ergm-terms, so that help("ergm-terms") will list ERGM terms available
from all loaded packages.

Specifying models

Terms to ergm are specified by a formula to represent the network and network statistics. This is
done via a formula, that is, an R formula object, of the form y ~ <term 1> + <term 2> ...,
where y is a network object or a matrix that can be coerced to a network object, and <term 1>,
<term 2>, etc, are each terms chosen from the list given below. To create a network object in R,
use the network function, then add nodal attributes to it using the %v% operator if necessary.

Binary and valued ERGM terms

ergm functions such as ergm and simulate (for ERGMs) may operate in two modes: binary and
weighted/valued, with the latter activated by passing a non-NULL value as the response argument,
giving the edge attribute name to be modeled/simulated.

Binary ERGM statistics cannot be used in valued mode and vice versa. However, a substantial
number of binary ERGM statistics — particularly the ones with dyadic indepenence — have simple
generalizations to valued ERGMs, and have been adapted in ergm. They have the same form as
their binary ERGM counterparts, with an additional argument: form, which, at this time, has two
possible values: "sum" (the default) and "nonzero". The former creates a statistic of the form∑

i,j xi,jyi,j , where yi,j is the value of dyad (i, j) and xi,j is the term’s covariate associated with
it. The latter computes the binary version, with the edge considered to be present if its value is not
0.

Valued version of some binary ERGM terms have an argument threshold, which sets the value
above which a dyad is conidered to have a tie. (Value less than or equal to threshold is considered
a nontie.)
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Terms to represent network statistics included in the ergm pacakge

absdiff(attrname, pow=1) (binary), absdiff(attrname, pow=1, form ="sum") (valued) Absolute
difference: The attrname argument is a character string giving the name of a quantitative at-
tribute in the network’s vertex attribute list. This term adds one network statistic to the model
equaling the sum of abs(attrname[i]-attrname[j])^pow for all edges (i,j) in the network.

absdiffcat(attrname, base=NULL) (binary), absdiffcat(attrname, base=NULL, form="sum") (valued)
Categorical absolute difference: The attrname argument is a character string giving the name
of a quantitative attribute in the network’s vertex attribute list. This term adds one statistic for
every possible nonzero distinct value of abs(attrname[i]-attrname[j]) in the network;
the value of each such statistic is the number of edges in the network with the corresponding
absolute difference. The optional base argument is a vector indicating which nonzero differ-
ences, in order from smallest to largest, should be omitted from the model (i.e., treated like the
zero-difference category). The base argument, if used, should contain indices, not differences
themselves. For instance, if the possible values of abs(attrname[i]-attrname[j]) are 0,
0.5, 3, 3.5, and 10, then to omit 0.5 and 10 one should set base=c(1, 4). Note that this term
should generally be used only when the quantitative attribute has a limited number of possible
values; an example is the "Grade" attribute of the faux.mesa.high or faux.magnolia.high
datasets.

altkstar(lambda, fixed=FALSE) (binary) Alternating k-star: This term adds one network statis-
tic to the model equal to a weighted alternating sequence of k-star statistics with weight pa-
rameter lambda. This is the version given in Snijders et al. (2006). The gwdegree and
altkstar produce mathematically equivalent models, as long as they are used together with
the edges (or kstar(1)) term, yet the interpretation of the gwdegree parameters is slightly
more straightforward than the interpretation of the altkstar parameters. For this reason,
we recommend the use of the gwdegree instead of altkstar. See Section 3 and especially
equation (13) of Hunter (2007) for details. The optional argument fixed indicates whether
the scale parameter lambda is to be fit as a curved exponential family model (see Hunter and
Handcock, 2006). The default is FALSE, which means the scale parameter is not fixed and thus
the model is a CEF model. This term can only be used with undirected networks.

asymmetric(attrname=NULL, diff=FALSE, keep=NULL) (binary) Asymmetric dyads: This term
adds one network statistic to the model equal to the number of pairs of actors for which ex-
actly one of (i→j) or (j→i) exists. This term can only be used with directed networks. If the
optional attrname argument is used, only asymmetric pairs that match on the named vertex
attribute are counted. The optional modifiers diff and keep are used in the same way as for
the nodematch term; refer to this term for details and an example.

atleast(threshold=0) (valued) Number of ties with values greater than or equal to a threshold
Adds one statistic equaling to the number of ties whose values equal or exceed threshold.

b1concurrent(by=NULL) (binary) Concurrent node count for the first mode in a bipartite (aka
two-mode) network: This term adds one network statistic to the model, equal to the number
of nodes in the first mode of the network with degree 2 or higher. The first mode of a bipartite
network object is sometimes known as the "actor" mode. The optional argument by is a
character string giving the name of an attribute in the network’s vertex attribute list; it functions
just like the by argument of the b1degree term. This term can only be used with undirected
bipartite networks.

b1degrange(from, to=+Inf, by=NULL, homophily=FALSE) (binary) Degree range for the first
mode in a bipartite (a.k.a. two-mode) network: The from and to arguments are vectors of dis-
tinct integers (or +Inf, for to (its default)). If one of the vectors has length 1, it is recycled
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to the length of the other. Otherwise, they must have the same length. This term adds one
network statistic to the model for each element of from (or to); the ith such statistic equals
the number of nodes of the first mode ("actors") in the network of degree greater than or equal
to from[i] but strictly less than to[i], i.e. with edge count in semiopen interval [from,to).
The optional argument by is a character string giving the name of an attribute in the network’s
vertex attribute list. If this is specified and homophily is TRUE, then degrees are calculated
using the subnetwork consisting of only edges whose endpoints have the same value of the by
attribute. If by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with bipartite networks; for directed networks see idegrange and
odegrange. For undirected networks, see degrange, and see b2degrange for degrees of the
second mode ("events").

b1degree(d, by=NULL) (binary) Degree for the first mode in a bipartite (aka two-mode) network:
The d argument is a vector of distinct integers. This term adds one network statistic to the
model for each element in d; the ith such statistic equals the number of nodes of degree d[i]
in the first mode of a bipartite network, i.e. with exactly d[i] edges. The first mode of a
bipartite network object is sometimes known as the "actor" mode. The optional argument by
is a character string giving the name of an attribute in the network’s vertex attribute list. If this
is specified then each node’s degree is tabulated only with other nodes having the same value
of the by attribute. This term can only be used with undirected bipartite networks.

b1factor(attrname, base=1) (binary) Factor attribute effect for the first mode in a bipartite
(aka two-mode) network : The attrname argument is a character string giving the name of
a categorical attribute in the network’s vertex attribute list. This term adds multiple network
statistics to the model, one for each of (a subset of) the unique values of the attrname at-
tribute. Each of these statistics gives the number of times a node with that attribute in the first
mode of the network appears in an edge. The first mode of a bipartite network object is some-
times known as the "actor" mode. To include all attribute values is usually not a good idea,
because the sum of all such statistics equals the number of edges and hence a linear depen-
dency would arise in any model also including edges. Thus, the base argument tells which
value(s) (numbered in order according to the sort function) should be omitted. The default
value, base=1, means that the smallest (i.e., first in sorted order) attribute value is omitted.
For example, if the “fruit” factor has levels “orange”, “apple”, “banana”, and “pear”, then to
add just two terms, one for “apple” and one for “pear”, then set “banana” and “orange” to the
base (remember to sort the values first) by using nodefactor("fruit", base=2:3). This
term can only be used with undirected bipartite networks.

b1star(k, attrname=NULL) (binary) k-Stars for the first mode in a bipartite (aka two-mode)
network: The k argument is a vector of distinct integers. This term adds one network statistic
to the model for each element in k. The ith such statistic counts the number of distinct k[i]-
stars whose center node is in the first mode of the network. The first mode of a bipartite
network object is sometimes known as the "actor" mode. A k-star is defined to be a center
node N and a set of k different nodes {O1, . . . , Ok} such that the ties {N,Oi} exist for
i = 1, . . . , k. The optional argument attrname is a character string giving the name of an
attribute in the network’s vertex attribute list. If this is specified then the count is over the
number of k-stars (with center node in the first mode) where all nodes have the same value
of the attribute. This term can only be used for undirected bipartite networks. Note that
b1star(1) is equal to b2star(1) and to edges.

b1starmix(k, attrname, base=NULL, diff=TRUE) (binary) Mixing matrix for k-stars centered
on the first mode of a bipartite network: Only a single value of k is allowed. This term counts
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all k-stars in which the b2 nodes (called events in some contexts) are homophilous in the sense
that they all share the same value of attrname. However, the b1 node (in some contexts, the
actor) at the center of the k-star does NOT have to have the same value as the b2 nodes; indeed,
the values taken by the b1 nodes may be completely distinct from those of the b2 nodes, which
allows for the use of this term in cases where there are two separate nodal attributes, one for
the b1 nodes and another for the b2 nodes (in this case, however, these two attributes should
be combined to form a single nodal attribute called attrname. A different statistic is created
for each value of attrname seen in a b1 node, even if no k-stars are observed with this value.
Whether a different statistic is created for each value seen in a b2 node depends on the value
of the diff argument: When diff=TRUE, the default, a different statistic is created for each
value and thus the behavior of this term is reminiscent of the nodemix term, from which it
takes its name; when diff=FALSE, all homophilous k-stars are counted together, though these
k-stars are still categorized according to the value of the central b1 node. The base term may
be used to control which of the possible terms are left out of the model: By default, all terms
are included, but if base is set to a vector of indices then the corresponding terms (in the order
they would be created when base=NULL) are left out.

b1twostar(b1attrname, b2attrname, base=NULL) (binary) Two-star census for central nodes
centered on the first mode of a bipartite network: This term takes two nodal attribute names,
one for b1 nodes (actors in some contexts) and one for b2 nodes (events in some contexts).
Only b1attrname is required; if b2attrname is not passed, it is assumed to be the same as
b1attrname. Assuming that there are n1 values of b1attrname among the b1 nodes and n2
values of b2attrname among the b2 nodes, then the total number of distinct categories of two
stars according to these two attributes is n1(n2)(n2 + 1)/2. This model term creates a distinct
statistic counting each of these categories. The base term may be used to leave some of these
categories out; when passed as a vector of integer indices (in the order the statistics would be
created when base=NULL), the corresponding terms will be left out.

b2concurrent(by=NULL) (binary) Concurrent node count for the second mode in a bipartite (aka
two-mode) network: This term adds one network statistic to the model, equal to the number
of nodes in the second mode of the network with degree 2 or higher. The second mode of
a bipartite network object is sometimes known as the "event" mode. The optional argument
by is a character string giving the name of an attribute in the network’s vertex attribute list; it
functions just like the by argument of the b2degree term. This term can only be used with
undirected bipartite networks.

b2degrange(from, to=+Inf, by=NULL, homophily=FALSE) (binary) Degree range for the sec-
ond mode in a bipartite (a.k.a. two-mode) network: The from and to arguments are vectors of
distinct integers (or +Inf, for to (its default)). If one of the vectors has length 1, it is recycled
to the length of the other. Otherwise, they must have the same length. This term adds one net-
work statistic to the model for each element of from (or to); the ith such statistic equals the
number of nodes of the second mode ("events") in the network of degree greater than or equal
to from[i] but strictly less than to[i], i.e. with edge count in semiopen interval [from,to).
The optional argument by is a character string giving the name of an attribute in the network’s
vertex attribute list. If this is specified and homophily is TRUE, then degrees are calculated
using the subnetwork consisting of only edges whose endpoints have the same value of the by
attribute. If by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with bipartite networks; for directed networks see idegrange and
odegrange. For undirected networks, see degrange, and see b1degrange for degrees of the
first mode ("actors").



42 ergm-terms

b2degree(d, by=NULL) (binary) Degree for the second mode in a bipartite (aka two-mode) net-
work: The d argument is a vector of distinct integers. This term adds one network statistic to
the model for each element in d; the ith such statistic equals the number of nodes of degree
d[i] in the second mode of a bipartite network, i.e. with exactly d[i] edges. The second
mode of a bipartite network object is sometimes known as the "event" mode. The optional
term by is a character string giving the name of an attribute in the network’s vertex attribute
list. If this is specified then each node’s degree is tabulated only with other nodes having the
same value of the by attribute. This term can only be used with undirected bipartite networks.

b2factor(attrname, base=1) (binary) Factor attribute effect for the second mode in a bipartite
(aka two-mode) network : The attrname argument is a character string giving the name of
a categorical attribute in the network’s vertex attribute list. This term adds multiple network
statistics to the model, one for each of (a subset of) the unique values of the attrname attribute.
Each of these statistics gives the number of times a node with that attribute in the second
mode of the network appears in an edge. The second mode of a bipartite network object is
sometimes known as the "event" mode. To include all attribute values is usually not a good
idea, because the sum of all such statistics equals the number of edges and hence a linear
dependency would arise in any model also including edges. Thus, the base argument tells
which value(s) (numbered in order according to the sort function) should be omitted. The
default value, base=1, means that the smallest (i.e., first in sorted order) attribute value is
omitted. For example, if the “fruit” factor has levels “orange”, “apple”, “banana”, and “pear”,
then to add just two terms, one for “apple” and one for “pear”, then set “banana” and “orange”
to the base (remember to sort the values first) by using nodefactor("fruit", base=2:3).
This term can only be used with undirected bipartite networks.

b2star(k, attrname=NULL) (binary) k-Stars for the second mode in a bipartite (aka two-mode)
network: The k argument is a vector of distinct integers. This term adds one network statistic
to the model for each element in k. The ith such statistic counts the number of distinct k[i]-
stars whose center node is in the second mode of the network. The second mode of a bipartite
network object is sometimes known as the "event" mode. A k-star is defined to be a center
node N and a set of k different nodes {O1, . . . , Ok} such that the ties {N,Oi} exist for
i = 1, . . . , k. The optional argument attrname is a character string giving the name of an
attribute in the network’s vertex attribute list. If this is specified then the count is over the
number of k-stars (with center node in the second mode) where all nodes have the same value
of the attribute. This term can only be used for undirected bipartite networks. Note that
b2star(1) is equal to b1star(1) and to edges.

b2starmix(k, attrname, base=NULL, diff=TRUE) (binary) Mixing matrix for k-stars centered
on the second mode of a bipartite network: This term is exactly the same as b1starmix except
that the roles of b1 and b2 are reversed.

b2twostar(b1attrname, b2attrname, base=NULL) (binary) Two-star census for central nodes
centered on the second mode of a bipartite network: This term is exactly the same as b1twostar
except that the roles of b1 and b2 are reversed.

balance (binary) Balanced triads: This term adds one network statistic to the model equal to the
number of triads in the network that are balanced. The balanced triads are those of type 102 or
300 in the categorization of Davis and Leinhardt (1972). For details on the 16 possible triad
types, see ?triad.classify in the {sna} package. For an undirected network, the balanced
triads are those with an even number of ties (i.e., 0 and 2).

coincidence(d=NULL,active=0) (binary) Coincident node count for the second mode in a bi-
partite (aka two-mode) network: By default this term adds one network statistic to the model
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for each pair of nodes of mode two. It is equal to the number of (first mode) mutual partners of
that pair. The first mode of a bipartite network object is sometimes known as the "actor" mode
and the seconds as the "event" mode. So this is the number of actors going to both events in
the pair. The optional argument d is a two-column matrix of (row-wise) pairs indices where
the first row is less than the second row. The second optional argument, active, selects pairs
for which the observed count is at least active. This term can only be used with undirected
bipartite networks.

concurrent(by=NULL) (binary) Concurrent node count: This term adds one network statistic to
the model, equal to the number of nodes in the network with degree 2 or higher. The optional
argument by is a character string giving the name of an attribute in the network’s vertex at-
tribute list; it functions just like the by argument of the degree term. This term can only be
used with undirected networks.

concurrentties(by=NULL) (binary) Concurrent tie count: This term adds one network statistic
to the model, equal to the number of ties incident on each actor beyond the first. The optional
argument by is a character string giving the name of an attribute in the network’s vertex at-
tribute list; it functions just like the by argument of the degree term. This term can only be
used with undirected networks.

ctriple(attrname=NULL) (binary), a.k.a. ctriad Cyclic triples: This term adds one statistic to
the model, equal to the number of cyclic triples in the network, defined as a set of edges of
the form {(i→j), (j→k), (k→i)}. Note that for all directed networks, triangle is equal
to ttriple+ctriple, so at most two of these three terms can be in a model. The optional
argument attrname is a character string giving the name of an attribute in the network’s vertex
attribute list. If this is specified then the count is over the number of cyclic triples where all
three nodes have the same value of the attribute. This term can only be used with directed
networks.

cycle(k) (binary) Cycles: The k argument is a vector of distinct integers. This term adds one
network statistic to the model for each element in k; the ith such statistic equals the number of
cycles in the network with length exactly k[i]. The cycle statistic applies to both directed and
undirected networks. For directed networks, it counts directed cycles of length k, as opposed
to undirected cycles in the undirected case. The directed cycle terms of lengths 2 and 3 are
equivalent to mutual and ctriple (respectively). The undirected cycle term of length 3 is
equivalent to triangle, and there is no undirected cycle term of length 2.

cyclicalties(attrname=NULL) (binary), cyclicalties(threshold=0) (valued) Cyclical ties:
This term adds one statistic, equal to the number of ties i → j such that there exists a two-
path from i to j. (Related to the ttriple term.) The binary version takes a nodal attribute
attrname, and, if given, all three nodes involved (i, j, and the node on the two-path) must
match on this attribute in order for i → j to be counted. The binary version of this term can
only be used with directed networks. The valued version can be used with both directed and
undirected.

cyclicalweights(twopath="min",combine="max",affect="min") (valued) Cyclical weights:
This statistic implements the cyclical weights statistic, like that defined by Krivitsky (2012),
Equation 13, but with the focus dyad being yj,i rather than yi,j . The currently implemented
options for twopath is the minimum of the constituent dyads ("min") or their geometric mean
("geomean"); for combine, the maximum of the 2-path strengths ("max") or their sum ("sum");
and for affect, the minimum of the focus dyad and the combined strength of the two paths
("min") or their geometric mean ("geomean"). For each of these options, the first (and the de-
fault) is more stable but also more conservative, while the second is more sensitive but more
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likely to induce a multimodal distribution of networks.
degrange(from, to=+Inf, by=NULL, homophily=FALSE) (binary) Degree range: The from and

to arguments are vectors of distinct integers (or +Inf, for to (its default)). If one of the vec-
tors has length 1, it is recycled to the length of the other. Otherwise, they must have the same
length. This term adds one network statistic to the model for each element of from (or to);
the ith such statistic equals the number of nodes in the network of degree greater than or equal
to from[i] but strictly less than to[i], i.e. with edges in semiopen interval [from,to). The
optional argument by is a character string giving the name of an attribute in the network’s
vertex attribute list. If this is specified and homophily is TRUE, then degrees are calculated
using the subnetwork consisting of only edges whose endpoints have the same value of the by
attribute. If by is specified and homophily is FALSE (the default), then separate degree range
statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with undirected networks; for directed networks see idegrange
and odegrange. This term can be used with bipartite networks, and will count nodes of
both first and second mode in the specified degree range. To count only nodes of the first
mode ("actors"), use b1degrange and to count only those fo the second mode ("events"), use
b2degrange.

degree(d, by=NULL, homophily=FALSE) (binary) Degree: The d argument is a vector of dis-
tinct integers. This term adds one network statistic to the model for each element in d; the
ith such statistic equals the number of nodes in the network of degree d[i], i.e. with exactly
d[i] edges. The optional argument by is a character string giving the name of an attribute
in the network’s vertex attribute list. If this is specified and homophily is TRUE, then degrees
are calculated using the subnetwork consisting of only edges whose endpoints have the same
value of the by attribute. If by is specified and homophily is FALSE (the default), then separate
degree statistics are calculated for nodes having each separate value of the attribute. This term
can only be used with undirected networks; for directed networks see idegree and odegree.

degreepopularity (binary) Degree popularity: This term adds one network statistic to the model
equaling the sum over the actors of each actor’s degree taken to the 3/2 power (or, equivalently,
multiplied by its square root). This term is an undirected analog to the terms of Snijders et al.
(2010), equations (11) and (12). This term can only be used with undirected networks.

degcrossprod (binary) Degree Cross-Product: This term adds one network statistic equal to the
mean of the cross-products of the degrees of all pairs of nodes in the network which are tied.
Only coded for undirected networks.

degcor (binary) Degree Correlation: This term adds one network statistic equal to the correlation
of the degrees of all pairs of nodes in the network which are tied. Only coded for undirected
networks.

density (binary) Density: This term adds one network statistic equal to the density of the net-
work. For undirected networks, density equals kstar(1) or edges divided by n(n − 1)/2;
for directed networks, density equals edges or istar(1) or ostar(1) divided by n(n− 1).

dsp(d) (binary) Dyadwise shared partners: The d argument is a vector of distinct integers. This
term adds one network statistic to the model for each element in d; the ith such statistic equals
the number of dyads in the network with exactly d[i] shared partners. This term can be used
with directed and undirected networks. For directed networks the count is over homogeneous
shared partners only (i.e., only partners on a directed two-path connecting the nodes in the
dyad).

dyadcov(x, attrname=NULL) (binary) Dyadic covariate: If the network is directed, x is either a
(symmetric) matrix of covariates, one for each possible dyad (i, j), or an undirected network;
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if the latter, optional argument attrname provides the name of the quantitative edge attribute
to use for covariate values (in this case, missing edges in x are assigned a covariate value
of zero). This term adds three statistics to the model, each equal to the sum of the covariate
values for all dyads occupying one of the three possible non-empty dyad states (mutual, upper-
triangular asymmetric, and lower-triangular asymmetric dyads, respectively), with the empty
or null state serving as a reference category. If the network is undirected, x is either a matrix
of edgewise covariates, or a network; if the latter, optional argument attrname provides the
name of the edge attribute to use for edge values. This term adds one statistic to the model,
equal to the sum of the covariate values for each edge appearing in the network. The edgecov
and dyadcov terms are equivalent for undirected networks.

edgecov(x, attrname=NULL) (binary), edgecov(x, attrname=NULL, form="sum") (valued) Edge
covariate: The x argument is either a square matrix of covariates, one for each possible edge in
the network, the name of a network attribute of covariates, or a network; if the latter, optional
argument attrname provides the name of the quantitative edge attribute to use for covariate
values (in this case, missing edges in x are assigned a covariate value of zero). This term adds
one statistic to the model, equal to the sum of the covariate values for each edge appearing in
the network. The edgecov term applies to both directed and undirected networks. For undi-
rected networks the covariates are also assumed to be undirected. The edgecov and dyadcov
terms are equivalent for undirected networks.

edges (binary or valued), a.k.a nonzero (valued) Edges: This term adds one network statistic
equal to the number of edges (i.e. nonzero values) in the network. For undirected networks,
edges is equal to kstar(1); for directed networks, edges is equal to both ostar(1) and
istar(1).

esp(d) (binary) Edgewise shared partners: This is just like the dsp term, except this term adds
one network statistic to the model for each element in d where the ith such statistic equals the
number of edges (rather than dyads) in the network with exactly d[i] shared partners. This
term can be used with directed and undirected networks. For directed networks the count is
over homogeneous shared partners only (i.e., only partners on a directed two-path connecting
the nodes in the edge and in the same direction).

greaterthan(threshold=0) (valued) Number of dyads with values strictly greater than a thresh-
old: Adds one statistic equaling to the number of ties whose values exceed threshold.

gwb1degree(decay, fixed=FALSE, cutoff=30) (binary) Geometrically weighted degree dis-
tribution for the first mode in a bipartite (aka two-mode) network: This term adds one network
statistic to the model equal to the weighted degree distribution with decay controlled by the
decay parameter, for nodes in the first mode of a bipartite network. The first mode of a bi-
partite network object is sometimes known as the "actor" mode. The decay parameter is the
same as theta_s in equation (14) in Hunter (2007). The value supplied for this parameter may
be fixed (if fixed=TRUE), or it may be used as merely the starting value for the estimation in
a curved exponential family model (the default). The optional argument cutoff is only rele-
vant if fixed=FALSE. In that case it only uses this number of terms in computing the statistics
to reduce the computational burden. This term can only be used with undirected bipartite
networks.

gwb2degree(decay, fixed=FALSE, cutoff=30) (binary) Geometrically weighted degree dis-
tribution for the second mode in a bipartite (aka two-mode) network: This term adds one
network statistic to the model equal to the weighted degree distribution with decay controlled
by the decay parameter, for nodes in the second mode of a bipartite network. The second
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mode of a bipartite network object is sometimes known as the "event" mode. The decay pa-
rameter is the same as theta_s in equation (14) in Hunter (2007). The value supplied for this
parameter may be fixed (if fixed=TRUE), or it may be used as merely the starting value for the
estimation in a curved exponential family model (the default). The optional argument cutoff
is only relevant if fixed=FALSE. In that case it only uses this number of terms in computing
the statistics to reduce the computational burden. This term can only be used with undirected
bipartite networks.

gwdegree(decay, fixed=FALSE, cutoff=30) (binary) Geometrically weighted degree distribu-
tion: This term adds one network statistic to the model equal to the weighted degree distri-
bution with decay controlled by the decay parameter. The decay parameter is the same as
theta_s in equation (14) in Hunter (2007). The value supplied for this parameter may be fixed
(if fixed=TRUE), or it may be used as merely the starting value for the estimation in a curved
exponential family model (the default). The optional argument cutoff is only relevant if
fixed=FALSE. In that case it only uses this number of terms in computing the statistics to
reduce the computational burden. This term can only be used with undirected networks.

gwdsp(alpha=0, fixed=FALSE, cutoff=30) (binary) Geometrically weighted dyadwise shared
partner distribution: This term adds one network statistic to the model equal to the geomet-
rically weighted dyadwise shared partner distribution with weight parameter alpha > 0. The
optional argument fixed indicates whether the scale parameter lambda is to be fit as a curved
exponential family model (see Hunter and Handcock, 2006). The default is FALSE, which
means the scale parameter is not fixed and thus the model is a CEF model. This term can be
used with directed and undirected networks. For directed networks the count is over homoge-
neous shared partners only (i.e., only partners on a directed two-path connecting the nodes in
the dyad). The optional argument cutoff is only relevant if fixed=FALSE. In that case it only
uses this number of terms in computing the statistics to reduce the computational burden.

gwesp(alpha=0, fixed=FALSE, cutoff=30) (binary) Geometrically weighted edgewise shared
partner distribution: This term is just like gwdsp except it adds a statistic equal to the geomet-
rically weighted edgewise (not dyadwise) shared partner distribution with weight parameter
alpha. The optional argument fixed indicates whether the scale parameter lambda is to be
fit as a curved exponential-family model (see Hunter and Handcock, 2006). The default is
FALSE, which means the scale parameter is not fixed and thus the model is a CEF model. This
term can be used with directed and undirected networks. For directed networks the geometric
weighting is over homogeneous shared partners only (i.e., only partners on a directed two-path
connecting the nodes in the edge and in the same direction). The optional argument cutoff is
only relevant if fixed=FALSE. In that case it only uses this number of terms in computing the
statistics to reduce the computational burden.

gwidegree(decay, fixed=FALSE, cutoff=30) (binary) Geometrically weighted in-degree dis-
tribution: This term adds one network statistic to the model equal to the weighted in-degree
distribution with weight parameter decay. The optional argument fixed indicates whether
the scale parameter lambda is to be fit as a curved exponential family model (see Hunter and
Handcock, 2006). The default is FALSE, which means the scale parameter is not fixed and thus
the model is a CEF model. This term can only be used with directed networks. The optional
argument cutoff is only relevant if fixed=FALSE. In that case it only uses this number of
terms in computing the statistics to reduce the computational burden.

gwnsp(alpha=0, fixed=FALSE, cutoff=30) (binary) Geometrically weighted nonedgewise shared
partner distribution: This term is just like gwesp and gwdsp except it adds a statistic equal to
the geometrically weighted nonedgewise (that is, over dyads that do not have an edge) shared
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partner distribution with weight parameter alpha. The optional argument fixed indicates
whether the scale parameter lambda is to be fit as a curved exponential-family model (see
Hunter and Handcock, 2006). The default is FALSE, which means the scale parameter is not
fixed and thus the model is a CEF model. This term can be used with directed and undirected
networks. For directed networks the geometric weighting is over homogeneous shared part-
ners only (i.e., only partners on a directed two-path connecting the nodes in the non-edge and
in the same direction). The optional argument cutoff is only relevant if fixed=FALSE. In that
case it only uses this number of terms in computing the statistics to reduce the computational
burden.

gwodegree(decay, fixed=FALSE, cutoff=30) (binary) Geometrically weighted out-degree dis-
tribution: This term adds one network statistic to the model equal to the weighted out-degree
distribution with weight parameter decay. The optional argument fixed indicates whether
the scale parameter lambda is to be fit as a curved exponential family model (see Hunter and
Handcock, 2006). The default is FALSE, which means the scale parameter is not fixed and thus
the model is a CEF model. This term can only be used with directed networks. The optional
argument cutoff is only relevant if fixed=FALSE. In that case it only uses this number of
terms in computing the statistics to reduce the computational burden.

hamming(x, cov, attrname=NULL) (binary) Hamming distance: This term adds one statistic to
the model equal to the weighted or unweighted Hamming distance of the network from the
network specified by x. (If no argument is given, x is taken to be the observed network, i.e.,
the network on the left side of the ∼ in the formula that defines the ERGM.) Unweighted
Hamming distance is defined as the total number of pairs (i, j) (ordered or unordered, de-
pending on whether the network is directed or undirected) on which the two networks differ.
If the optional argument cov is specified, then the weighted Hamming distance is computed
instead, where each pair (i, j) contributes a pre-specified weight toward the distance when the
two networks differ on that pair. The argument cov is either a matrix of edgewise weights or a
network; if the latter, the optional argument attrname provides the name of the edge attribute
to use for weight values.

hammingmix(attrname, x, base=0) (binary) Hamming distance within mixing: This term adds
one statistic to the model for every possible pairing of attribute values of the network. Each
such statistic is the Hamming distance (i.e., the number of differences) between the appropriate
subset of dyads in the network and the corresponding subset in x. The ordering of the attribute
values is alphabetical. The option base gives the index of statistics to be omitted from the
tabulation. For example base=2 will omit the second statistic, making it the de facto reference
category. This term can only be used with directed networks.

idegrange(from, to=+Inf, by=NULL, homophily=FALSE) (binary) In-degree range: The from
and to arguments are vectors of distinct integers (or +Inf, for to (its default)). If one of the
vectors has length 1, it is recycled to the length of the other. Otherwise, they must have the
same length. This term adds one network statistic to the model for each element of from (or
to); the ith such statistic equals the number of nodes in the network of in-degree greater than
or equal to from[i] but strictly less than to[i], i.e. with in-edge count in semiopen interval
[from,to). The optional argument by is a character string giving the name of an attribute
in the network’s vertex attribute list. If this is specified and homophily is TRUE, then degrees
are calculated using the subnetwork consisting of only edges whose endpoints have the same
value of the by attribute. If by is specified and homophily is FALSE (the default), then separate
degree range statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with directed networks; for undirected networks (bipartite and
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not) see degrange. For degrees of specific modes of bipartite networks, see b1degrange and
b2degrange. For in-degrees, see idegrange.

idegree(d, by=NULL, homophily=FALSE) (binary) In-degree: The d argument is a vector of
distinct integers. This term adds one network statistic to the model for each element in d; the
ith such statistic equals the number of nodes in the network of in-degree d[i], i.e. the number
of nodes with exactly d[i] in-edges. The optional term by is a character string giving the
name of an attribute in the network’s vertex attribute list. If this is specified and homophily
is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose
endpoints have the same value of the by attribute. If by is specified and homophily is FALSE
(the default), then separate degree statistics are calculated for nodes having each separate value
of the attribute. This term can only be used with directed networks; for undirected networks
see degree.

idegreepopularity (binary) In-degree popularity: This term adds one network statistic to the
model equaling the sum over the actors of each actor’s in-degree taken to the 3/2 power (or,
equivalently, multiplied by its square root). This term is analogous to the term of Snijders et
al. (2010), equation (11). This term can only be used with directed networks.

ininterval(lower=-Inf, upper=+Inf, open=c(TRUE,TRUE)) (valued) Number of ties whose
values are in an interval Adds one statistic equaling to the number of ties whose values are
between lower and upper. Argument open is a logical vector of length 2 that controls
whether the interval is open (exclusive) on the lower and on the upper end, respectively.

intransitive (binary) Intransitive triads: This term adds one statistic to the model, equal to the
number of triads in the network that are intransitive. The intransitive triads are those of type
111D, 201, 111U, 021C, or 030C in the categorization of Davis and Leinhardt (1972). For
details on the 16 possible triad types, see triad.classify in the sna package. Note the
distinction from the ctriple term. This term can only be used with directed networks.

isolates (binary) Isolates: This term adds one statistic to the model equal to the number of
isolates in the network. For an undirected network, an isolate is defined to be any node with
degree zero. For a directed network, an isolate is any node with both in-degree and out-degree
equal to zero.

istar(k, attrname=NULL) (binary) In-stars: The k argument is a vector of distinct integers.
This term adds one network statistic to the model for each element in k. The ith such statistic
counts the number of distinct k[i]-instars in the network, where a k-instar is defined to be
a node N and a set of k different nodes {O1, . . . , Ok} such that the ties (Oj→N) exist for
j = 1, . . . , k. The optional argument attrname is a character string giving the name of an
attribute in the network’s vertex attribute list. If this is specified then the count is over the
number of k-instars where all nodes have the same value of the attribute. This term can only
be used for directed networks; for undirected networks see kstar. Note that istar(1) is
equal to both ostar(1) and edges.

kstar(k, attrname=NULL) (binary) k-Stars: The k argument is a vector of distinct integers.
This term adds one network statistic to the model for each element in k. The ith such statistic
counts the number of distinct k[i]-stars in the network, where a k-star is defined to be a
node N and a set of k different nodes {O1, . . . , Ok} such that the ties {N,Oi} exist for
i = 1, . . . , k. The optional argument attrname is a character string giving the name of an
attribute in the network’s vertex attribute list. If this is specified then the count is over the
number of k-stars where all nodes have the same value of the attribute. This term can only be
used for undirected networks; for directed networks, see istar, ostar, twopath and m2star.
Note that kstar(1) is equal to edges.



ergm-terms 49

localtriangle(x) (binary) Triangles within neighborhoods: This term adds one statistic to the
model equal to the number of triangles in the network between nodes “close to” each other.
For an undirected network, a local triangle is defined to be any set of three edges between
nodal pairs {(i, j), (j, k), (k, i)} that are in the same neighborhood. For a directed network,
a triangle is defined as any set of three edges (i→j), (j→k) and either (k→i) or (k←i)
where again all nodes are within the same neighborhood. The argument x is an undirected
network or an symmetric adjacency matrix that specifies whether the two nodes are in the
same neighborhood. Note that triangle, with or without an argument, is a special case of
localtriangle.

m2star (binary) Mixed 2-stars, a.k.a 2-paths: This term adds one statistic to the model, equal to
the number of mixed 2-stars in the network, where a mixed 2-star is a pair of distinct edges
(i→j), (j→k). A mixed 2-star is sometimes called a 2-path because it is a directed path of
length 2 from i to k via j. However, in the case of a 2-path the focus is usually on the endpoints
i and k, whereas for a mixed 2-star the focus is usually on the midpoint j. This term can only
be used with directed networks; for undirected networks see kstar(2). See also twopath.

meandeg (binary) Mean vertex degree: This term adds one network statistic to the model equal to
the average degree of a node. Note that this term is a constant multiple of both edges and
density.

mutual(same=NULL, diff=FALSE, by=NULL, keep=NULL) (binary), mutual(form="min",threshold=0) (valued)
Mutuality: In binary ERGMs, equal to the number of pairs of actors i and j for which (i→j)
and (j→i) both exist. For valued ERGMs, equal to

∑
i<j m(yi,j , yj,i), where m is deter-

mined by form argument: "min" for min(yi,j , yj,i), "nabsdiff" for −|yi,j , yj,i|, "product"
for yi,jyj,i, and "geometric" for √yi,j

√
yj,i. See Krivitsky (2012) for a discussion of these

statistics. form="threshold" simply computes the binary mutuality after thresholding at
threshold.

This term can only be used with directed networks. The binary version also has the following
capabilities: if the optional same argument is passed the name of a vertex attribute, only mutual
pairs that match on the attribute are counted; separate counts for each unique matching value
can be obtained by using diff=TRUE with same; and if by is passed the name of a vertex
attribute, then each node is counted separately for each mutual pair in which it occurs and
the counts are tabulated by unique values of the attribute. This means that the sum of the
mutual statistics when by is used will equal twice the standard mutual statistic. Only one of
same or by may be used, and only the former is affected by diff; if both same and by are
passed, by is ignored. Finally, if keep is passed a numerical vector, this vector of integers tells
which statistics should be kept whenever the mutual term would ordinarily result in multiple
statistics.

nearsimmelian (binary) Near simmelian triads: This term adds one statistic to the model equal
to the number of near Simmelian triads, as defined by Krackhardt and Handcock (2007). This
is a sub-graph of size three which is exactly one tie short of being complete. This term can
only be used with directed networks.

nodecov(attrname) (binary), nodecov(attrname, form="sum") (valued), a.k.a. nodemain Main
effect of a covariate: The attrname argument is a character string giving the name of a nu-
meric (not categorical) attribute in the network’s vertex attribute list. This term adds a single
network statistic to the model equaling the sum of attrname(i) and attrname(j) for all
edges (i, j) in the network. For categorical attributes, see nodefactor. Note that for directed
networks, nodecov equals nodeicov plus nodeocov.
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nodecovar (valued) Uncentered covariance of dyad values incident on each actor: This term adds
one statistic equal to

∑
i,j,k(yi,jyi,k + yk,jyk,j). This can be viewed as a valued analog of the

kstar(2) statistic.
nodefactor(attrname, base=1) (binary), nodefactor(attrname, base=1, form="sum") (valued)

Factor attribute effect: The attrname argument is a character vector giving one or more names
of categorical attributes in the network’s vertex attribute list. This term adds multiple network
statistics to the model, one for each of (a subset of) the unique values of the attrname at-
tribute (or each combination of the attributes given). Each of these statistics gives the number
of times a node with that attribute or those attributes appears in an edge in the network. In par-
ticular, for edges whose endpoints both have the same attribute values, this value is counted
twice. To include all attribute values is usually not a good idea – though this may be ac-
complished if desired by setting base=0 – because the sum of all such statistics equals twice
the number of edges and hence a linear dependency would arise in any model also including
edges. Thus, the base argument tells which value(s) (numbered in order according to the
sort function) should be omitted. The default value, base=1, means that the smallest (i.e.,
first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels
“orange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one
for “pear”, then set “banana” and “orange” to the base (remember to sort the values first) by
using nodefactor("fruit", base=2:3). For an analogous term for quantitative vertex
attributes, see nodecov.

nodeicov(attrname) (binary), nodeicov(attrname, form="sum") (valued) Main effect of a co-
variate for in-edges: The attrname argument is a character string giving the name of a nu-
meric (not categorical) attribute in the network’s vertex attribute list. This term adds a single
network statistic to the model equaling the total value of attrname(j) for all edges (i, j) in
the network. This term may only be used with directed networks. For categorical attributes,
see nodeifactor.

nodeicovar (valued) Uncentered covariance of in-dyad values incident on each actor: This term
adds one statistic equal to

∑
i,j,k yk,jyk,j . This can be viewed as a valued analog of the

istar(2) statistic.
nodeifactor(attrname, base=1) (binary), nodeifactor(attrname, base=1, form="sum") (valued)

Factor attribute effect for in-edges: The attrname argument is a character vector giving one
or more names of a categorical attribute in the network’s vertex attribute list. This term adds
multiple network statistics to the model, one for each of (a subset of) the unique values of the
attrname attribute (or each combination of the attributes given). Each of these statistics gives
the number of times a node with that attribute or those attributes appears as the terminal node
of a directed tie. To include all attribute values is usually not a good idea – though this may
be accomplished if desired by setting base=0 – because the sum of all such statistics equals
the number of edges and hence a linear dependency would arise in any model also including
edges. Thus, the base argument tells which value(s) (numbered in order according to the
sort function) should be omitted. The default value, base=1, means that the smallest (i.e.,
first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels “or-
ange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one for
“pear”, then set “banana” and “orange” to the base (remember to sort the values first) by using
nodefactor("fruit", base=2:3). For an analogous term for quantitative vertex attributes,
see nodeicov.

nodeisqrtcovar (valued) Uncentered covariance of square roots of in-dyad values incident on
each actor: This term adds one statistic equal to

∑
i,j,k

√
yi,j
√
yk,j . This can be viewed as a

valued analog of the istar(2) statistic.
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nodematch(attrname, diff=FALSE, keep=NULL) (binary), nodematch(attrname, diff=FALSE, keep=NULL, form="sum") (valued) a.k.a. match
Uniform homophily and differential homophily: The attrname argument is a character vector
giving one or more names of attributes in the network’s vertex attribute list. When diff=FALSE,
this term adds one network statistic to the model, which counts the number of edges (i, j) for
which attrname(i)==attrname(j). (When multiple names are given, the statistic counts
only those on which all the named attributes match.) When diff=TRUE, p network statis-
tics are added to the model, where p is the number of unique values of the attrname at-
tribute. The kth such statistic counts the number of edges (i, j) for which attrname(i) ==
attrname(j) == value(k), where value(k) is the kth smallest unique value of the attrname
attribute. If set to non-NULL, the optional keep argument should be a vector of integers giving
the values of k that should be considered for matches; other values are ignored (this works for
both diff=FALSE and diff=TRUE). For instance, to add two statistics, counting the matches
for just the 2nd and 4th categories, use nodematch with diff=TRUE and keep=c(2,4).

nodemix(attrname, base=NULL) (binary), nodemix(attrname, base=NULL, form="sum") (valued)
Nodal attribute mixing: The attrname argument is a character vector giving the names of cat-
egorical attributes in the network’s vertex attribute list. By default, this term adds one network
statistic to the model for each possible pairing of attribute values. The statistic equals the num-
ber of edges in the network in which the nodes have that pairing of values. (When multiple
names are given, a statistic is added for each combination of attribute values for those names.)
In other words, this term produces one statistic for every entry in the mixing matrix for the
attribute(s). The ordering of the attribute values is alphabetical (for nominal categories) or
numerical (for ordered categories). The optional base argument is a vector of integers corre-
sponding to the pairings that should not be included. If base contains only negative integers,
then these integers correspond to the only pairings that should be included. By default (i.e.,
with base=NULL or base=0), all pairings are included.

nodeocov(attrname) (binary), nodeocov(attrname, form="sum") (valued) Main effect of a co-
variate for out-edges: The attrname argument is a character string giving the name of a nu-
meric (not categorical) attribute in the network’s vertex attribute list. This term adds a single
network statistic to the model equaling the total value of attrname(i) for all edges (i, j) in
the network. This term may only be used with directed networks. For categorical attributes,
see nodeofactor.

nodeocovar (valued) Uncentered covariance of out-dyad values incident on each actor: This term
adds one statistic equal to

∑
i,j,k yi,jyi,k. This can be viewed as a valued analog of the

ostar(2) statistic.
nodeofactor(attrname, base=1) (binary), nodeofactor(attrname, base=1, form="sum") (valued)

Factor attribute effect for out-edges: The attrname argument is a character string giving one
or more names of categorical attributes in the network’s vertex attribute list. This term adds
multiple network statistics to the model, one for each of (a subset of) the unique values of the
attrname attribute (or each combination of the attributes given). Each of these statistics gives
the number of times a node with that attribute or those attributes appears as the node of origin
of a directed tie. To include all attribute values is usually not a good idea – though this may
be accomplished if desired by setting base=0 – because the sum of all such statistics equals
the number of edges and hence a linear dependency would arise in any model also including
edges. Thus, the base argument tells which value(s) (numbered in order according to the
sort function) should be omitted. The default value, base=1, means that the smallest (i.e.,
first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels “or-
ange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one for
“pear”, then set “banana” and “orange” to the base (remember to sort the values first) by using
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nodefactor("fruit", base=2:3). For an analogous term for quantitative vertex attributes,
see nodeocov.

nodeosqrtcovar (valued) Uncentered covariance of square roots of out-dyad values incident on
each actor: This term adds one statistic equal to

∑
i,j,k

√
yi,j
√
yi,k. This can be viewed as a

valued analog of the ostar(2) statistic.
nodesqrtcovar(center=TRUE) (valued) Covariance of square roots of dyad values incident on

each actor: This term adds one statistic equal to
∑

i,j,k(
√
yi,j
√
yi,k+

√
yk,j
√
yk,j) if center=FALSE.

This can be viewed as a valued analog of the kstar(2) statistic. If center=FALSE (the de-
fault), the statistic is instead

∑
i,j,k((

√
yi,j−

√̄
y)(
√
yi,k−

√̄
y)+(

√
yk,j−

√̄
y)(
√
yk,j−

√̄
y)),

where
√̄
y is the mean of the square root of dyad values.

nsp(d) (binary) Nonedgewise shared partners: This is just like the dsp and esp terms, except this
term adds one network statistic to the model for each element in d where the ith such statistic
equals the number of non-edges (that is, dyads that do not have an edge) in the network with
exactly d[i] shared partners. This term can be used with directed and undirected networks.
For directed networks the count is over homogeneous shared partners only (i.e., only partners
on a directed two-path connecting the nodes in the non-edge and in the same direction).

odegrange(from, to=+Inf, by=NULL, homophily=FALSE) (binary) Out-degree range: The from
and to arguments are vectors of distinct integers (or +Inf, for to (its default)). If one of the
vectors has length 1, it is recycled to the length of the other. Otherwise, they must have the
same length. This term adds one network statistic to the model for each element of from (or
to); the ith such statistic equals the number of nodes in the network of out-degree greater than
or equal to from[i] but strictly less than to[i], i.e. with out-edge count in semiopen interval
[from,to). The optional argument by is a character string giving the name of an attribute
in the network’s vertex attribute list. If this is specified and homophily is TRUE, then degrees
are calculated using the subnetwork consisting of only edges whose endpoints have the same
value of the by attribute. If by is specified and homophily is FALSE (the default), then separate
degree range statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with directed networks; for undirected networks (bipartite and
not) see degrange. For degrees of specific modes of bipartite networks, see b1degrange and
b2degrange. For in-degrees, see idegrange.

odegree(d, by=NULL, homophily=FALSE) (binary) Out-degree: The d argument is a vector of
distinct integers. This term adds one network statistic to the model for each element in d; the
ith such statistic equals the number of nodes in the network of out-degree d[i], i.e. the number
of nodes with exactly d[i] out-edges. The optional argument by is a character string giving the
name of an attribute in the network’s vertex attribute list. If this is specified and homophily
is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose
endpoints have the same value of the by attribute. If by is specified and homophily is FALSE
(the default), then separate degree statistics are calculated for nodes having each separate value
of the attribute. This term can only be used with directed networks; for undirected networks
see degree.

odegreepopularity (binary) Out-degree popularity: This term adds one network statistic to the
model equaling the sum over the actors of each actor’s outdegree taken to the 3/2 power (or,
equivalently, multiplied by its square root). This term is analogous to the term of Snijders et
al. (2010), equation (12). This term can only be used with directed networks.

opentriad (binary) “Open triads”: This term adds one statistic to the model equal to the num-
ber of 2-stars minus three times the number of triangles in the network. It is currently only
implemented for undirected networks.
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ostar(k, attrname=NULL) (binary) k-Outstars: The k argument is a vector of distinct integers.
This term adds one network statistic to the model for each element in k. The ith such statistic
counts the number of distinct k[i]-outstars in the network, where a k-outstar is defined to be
a node N and a set of k different nodes {O1, . . . , Ok} such that the ties (N→Oj) exist for
j = 1, . . . , k. The optional argument attrname is a character string giving the name of an
attribute in the network’s vertex attribute list. If this is specified then the count is the number
of k-outstars where all nodes have the same value of the attribute. This term can only be used
with directed networks; for undirected networks see kstar. Note that ostar(1) is equal to
both istar(1) and edges.

receiver(base=1) (binary) Receiver effect: This term adds one network statistic for each node
equal to the number of in-ties for that node. This measures the popularity of the node. The
term for the first node is omitted by default because of linear dependence that arises if this term
is used together with edges, but its coefficient can be computed as the negative of the sum of
the coefficients of all the other actors. That is, the average coefficient is zero, following the
Holland-Leinhardt parametrization of the $p_1$ model (Holland and Leinhardt, 1981). The
base argument allows the user to determine which nodes’ statistics should be omitted. The
base argument can also be a vector of negative indices, to specify which should be added
instead of deleted, and base=0 specifies that all statistics should be included. This term can
only be used with directed networks. For undirected networks, see sociality.

sender(base=1) (binary) Sender effect: This term adds one network statistic for each node equal
to the number of out-ties for that node. This measures the activity of the node. The term
for the first node is omitted by default because of linear dependence that arises if this term is
used together with edges, but its coefficient can be computed as the negative of the sum of
the coefficients of all the other actors. That is, the average coefficient is zero, following the
Holland-Leinhardt parametrization of the $p_1$ model (Holland and Leinhardt, 1981). The
base argument allows the user to determine which nodes’ statistics should be omitted. The
base argument can also be a vector of negative indices, to specify which should be added
instead of deleted, and base=0 specifies that all statistics should be included. This term can
only be used with directed networks. For undirected networks, see sociality.

simmelian (binary) Simmelian triads: This term adds one statistic to the model equal to the num-
ber of Simmelian triads, as defined by Krackhardt and Handcock (2007). This is a complete
sub-graph of size three. This term can only be used with directed networks.

simmelianties (binary) Ties in simmelian triads: This term adds one statistic to the model equal
to the number of ties in the network that are associated with Simmelian triads, as defined by
Krackhardt and Handcock (2007). Each Simmelian has six ties in it but, because Simmelians
can overlap in terms of nodes (and associated ties), the total number of ties in these Simmelians
is less than six times the number of Simmelians. Hence this is a measure of the clustering of
Simmelians (given the number of Simmelians). This term can only be used with directed
networks.

smalldiff(attrname, cutoff) (binary) Number of ties between actors with similar (but not
necessarily identical) attribute values: The attrname argument is a character string giving
the name of a quantitative attribute in the network’s vertex attribute list. This term adds one
statistic, having as its value the number of edges in the network for which the incident actors’
attribute values differ less than cotoff; that is, number of edges between i to j such that
abs(attrname[i]-attrname[j])<cutoff.

sociality(attrname=NULL, base=1) (binary) Undirected degree: This term adds one network
statistic for each node equal to the number of ties of that node. The optional attrname argu-
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ment is a character string giving the name of an attribute in the network’s vertex attribute list
that takes categorical values. If provided, this term only counts ties between nodes with the
same value of the attribute (an actor-specific version of the nodematch term). This term can
only be used with undirected networks. For directed networks, see sender and receiver. By
default, base=1 means that the statistic for the first node will be omitted, but this argument
may be changed to control which statistics are included just as for the sender and receiver
terms.

sum(pow=1) (valued) Sum of dyad values (optionally taken to a power): This term adds one statis-
tic equal to the sum of dyad values taken to the power pow, which defaults to 1.

threepath(keep=1:4) (binary) Three-paths: For an undirected network, this term adds one
statistic equal to the number of threepaths, where a threepath is defined as a path of length
three that traverses three distinct edges. Note that a threepath need not include four distinct
nodes; in particular, a triangle counts as three threepaths. For a directed network, this term
adds four statistics (or some subset of these four specified by the keep argument), one for each
of the four distinct types of directed three-paths. If the nodes of the path are written from left
to right such that the middle edge points to the right (R), then the four types are RRR, RRL,
LRR, and LRL. That is, an RRR threepath is of the form i→ j → k → l, and RRL threepath
is of the form i → j → k ← l, etc. Like in the undirected case, there is no requirement that
the nodes be distinct in a directed threepath. However, the three edges must all be distinct.
Thus, a mutual tie i↔ j does not count as a threepath of the form i→ j → i← j; however,
in the subnetwork i↔ j → k, there are two directed threepaths, one LRR (k ← j → i← j)
and one RRR (j → i→ j ← k).

transitive (binary) Transitive triads: This term adds one statistic to the model, equal to the
number of triads in the network that are transitive. The transitive triads are those of type 120D,
030T, 120U, or 300 in the categorization of Davis and Leinhardt (1972). For details on the 16
possible triad types, see triad.classify in the sna package. Note the distinction from the
ttriple term. This term can only be used with directed networks.

transitiveties(attrname=NULL) (binary), transitiveties(threshold=0) (valued) Transitive
ties: This term adds one statistic, equal to the number of ties i → j such that there exists a
two-path from i to j. (Related to the ttriple term.) The binary version takes a nodal attribute
attrname, and, if given, all three nodes involved (i, j, and the node on the two-path) must
match on this attribute in order for i → j to be counted. The binary version of this term can
only be used with directed networks. The valued version can be used with both directed and
undirected.

transitiveweights(twopath="min",combine="max",affect="min") (valued) Transitive weights:
This statistic implements the transitive weights statistic defined by Krivitsky (2012), Equa-
tion 13. The currently implemented options for twopath is the minimum of the constituent
dyads ("min") or their geometric mean ("geomean"); for combine, the maximum of the 2-
path strengths ("max") or their sum ("sum"); and for affect, the minimum of the focus dyad
and the combined strength of the two paths ("min") or their geometric mean ("geomean").
For each of these options, the first (and the default) is more stable but also more conserva-
tive, while the second is more sensitive but more likely to induce a multimodal distribution of
networks.

triadcensus(d) (binary) Triad census: For a directed network, this term adds one network statis-
tic for each of an arbitrary subset of the 16 possible types of triads categorized by Davis and
Leinhardt (1972) as 003, 012, 102, 021D, 021U, 021C, 111D, 111U, 030T, 030C, 201, 120D, 120U, 120C, 210,
and 300. Note that at least one category should be dropped; otherwise a linear dependency



ergm-terms 55

will exist among the 16 statistics, since they must sum to the total number of three-node sets.
By default, the category 003, which is the category of completely empty three-node sets, is
dropped. This is considered category zero, and the others are numbered 1 through 15 in the
order given above. By specifying a numeric vector of integers from 0 to 15 as the d argument,
the user may specify a set of terms to add other than the default value of 1:15. Each statistic
is the count of the corresponding triad type in the network. For details on the 16 types, see
?triad.classify in the {sna} package, on which this code is based. For an undirected net-
work, the triad census is over the four types defined by the number of ties (i.e., 0, 1, 2, and 3),
and the default is to add 1:3, which is to say that the 0 is dropped; however, this too may be
controlled by changing the d argument to a numeric vector giving a subset of {0, 1, 2, 3}.

triangle(attrname=NULL) (binary) Triangles: This term adds one statistic to the model equal
to the number of triangles in the network. For an undirected network, a triangle is defined to
be any set {(i, j), (j, k), (k, i)} of three edges. For a directed network, a triangle is defined
as any set of three edges (i→j) and (j→k) and either (k→i) or (k←i). The former case is
called a “transitive triple” and the latter is called a “cyclic triple”, so in the case of a directed
network, triangle equals ttriple plus ctriple — thus at most two of these three terms can
be in a model. The optional argument attrname restricts the count to those triples of nodes
with equal values of the vertex attribute specified by attrname.

tripercent(attrname=NULL) (binary) Triangle percentage: This term adds one statistic to the
model equal to 100 times the ratio of the number of triangles in the network to the sum of
the number of triangles and the number of 2-stars not in triangles (the latter is considered a
potential but incomplete triangle). In case the denominator equals zero, the statistic is defined
to be zero. For the definition of triangle, see triangle. The optional argument attrname
restricts the counts (both numerator and denominator) to those triples of nodes with equal
values of the vertex attribute specified by attrname. This is often called the mean correlation
coefficient. This term can only be used with undirected networks; for directed networks, it is
difficult to define the numerator and denominator in a consistent and meaningful way.

ttriple(attrname=NULL) (binary), a.k.a. ttriad Transitive triples: This term adds one statistic
to the model, equal to the number of transitive triples in the network, defined as a set of
edges {(i→j), (j→k), (i→k)}. Note that triangle equals ttriple+ctriple for a directed
network, so at most two of the three terms can be in a model. The optional argument attrname
is a character string giving the name of an attribute in the network’s vertex attribute list. If this
is specified then the count is over the number of transitive triples where all three nodes have
the same value of the attribute. This term can only be used with directed networks.

twopath (binary) 2-Paths: This term adds one statistic to the model, equal to the number of 2-
paths in the network. For a directed network this is defined as a pair of edges (i→j), (j→k),
where i and j must be distinct. That is, it is a directed path of length 2 from i to k via j. For
directed networks a 2-path is also a mixed 2-star but the interpretation is usually different; see
m2star. For undirected networks a twopath is defined as a pair of edges {i, j}, {j, k}. That
is, it is an undirected path of length 2 from i to k via j, also known as a 2-star.

References

• Davis, J.A. and Leinhardt, S. (1972). The Structure of Positive Interpersonal Relations in
Small Groups. In J. Berger (Ed.), Sociological Theories in Progress, Volume 2, 218–251.
Boston: Houghton Mifflin.

• Holland, P. W. and S. Leinhardt (1981). An exponential family of probability distributions for
directed graphs. Journal of the American Statistical Association, 76: 33–50.
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See Also

ergm package, ergm, network, %v%, %n%

Examples

## Not run:
ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)

ergm(molecule ~ edges + kstar(2:3) + triangle
+ nodematch("atomic type",diff=TRUE)
+ triangle + absdiff("atomic type"))

## End(Not run)

ergm.allstats Calculate all possible vectors of statistics on a network for an ERGM

Description

ergm.allstats produces a matrix of network statistics for an arbitrary statnet exponential-family
random graph model. One possible use for this function is to calculate the exact loglikelihood
function for a small network via the ergm.exact function.

Usage

ergm.allstats (formula, zeroobs = TRUE, force = FALSE,
maxNumChangeStatVectors = 2^16, ...)

http://dx.doi.org/10.1214/12-EJS696
http://dx.doi.org/10.1016/j.socnet.2009.02.004
http://www.jstatsoft.org/v24/i04
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Arguments

formula an R formula object of the form y ~ <model terms>, where y is a network
object or a matrix that can be coerced to a network object. For the details on the
possible <model terms>, see ergm-terms. To create a network object in R, use
the network() function, then add nodal attributes to it using the %v% operator if
necessary.

zeroobs Logical: Should the vectors be centered so that the network passed in the formula
has the zero vector as its statistics?

force Logical: Should the algorithm be run even if it is determined that the problem
may be very large, thus bypassing the warning message that normally terminates
the function in such cases?

maxNumChangeStatVectors

Maximum possible number of distinct values of the vector of statistics. It’s good
to use a power of 2 for this.

... further arguments; not currently used.

Details

The mechanism for doing this is a recursive algorithm, where the number of levels of recursion
is equal to the number of possible dyads that can be changed from 0 to 1 and back again. The
algorithm starts with the network passed in formula, then recursively toggles each edge twice so
that every possible network is visited.

ergm.allstats should only be used for small networks, since the number of possible networks
grows extremely fast with the number of nodes. An error results if it is used on a directed network
of more than 6 nodes or an undirected network of more than 8 nodes; use force=TRUE to override
this error.

Value

Returns a list object with these two elements:

weights integer of counts, one for each row of statmat telling how many networks share
the corresponding vector of statistics.

statmat matrix in which each row is a unique vector of statistics.

See Also

ergm.exact

Examples

# Count by brute force all the edge statistics possible for a 7-node
# undirected network
mynw <- network(matrix(0,7,7),dir=FALSE)
unix.time(a <- ergm.allstats(mynw~edges))

# Summarize results
rbind(t(a$statmat),a$weights)
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# Each value of a$weights is equal to 21-choose-k,
# where k is the corresponding statistic (and 21 is
# the number of dyads in an 7-node undirected network).
# Here's a check of that fact:
as.vector(a$weights - choose(21, t(a$statmat)))

# Simple ergm.exact outpuf for this network.
# We know that the loglikelihood for my empty 7-node network
# should simply be -21*log(1+exp(eta)), so we may check that
# the following two values agree:
-21*log(1+exp(.1234))
ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)

ergm.bridge.dindstart.llk

Bridge sampling to estiamte log-likelihood of an ERGM, using a dyad-
independent ERGM as a staring point.

Description

This function is a wrapper around ergm.bridge.llr that uses a dyad-independent ERGM as a
starting point for bridge sampling to estimate the log-likelihood for a given dyad-dependent model
and parameter configuration. The dyad-independent model may be specified or can be chosen
adaptively.

Usage

ergm.bridge.dindstart.llk(object,
response=NULL,
constraints=~.,
coef,
dind=NULL,
coef.dind=NULL,
basis=NULL,
...,
llkonly=TRUE,
control=control.ergm.bridge())

Arguments

object A model formula. See ergm for details.

response The name of the edge attribute that is the response. Note that it’s included solely
for consistency, since ergm.bridge.dindstart.llk can only handle binary
ERGMs.

constraints A model constraints formula. See ergm for details. Note that only constraints
that do not induce dyadic dependence can be handled by ergm.bridge.dindstart.llk.
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coef A vector of coefficients for the configuration of interest.

dind A one-sided formula with the dyad-independent model to use as a starting point.
Defaults to the dyad-independent terms found in the formula object with an
overal density term (edges) added if not redundant.

coef.dind Parameter configuration for the dyad-independent starting point. Defaults to the
MLE of dind.

basis An optional network object to start the Markov chain. If omitted, the default is
the left-hand-side of the object.

... Further arguments to ergm.bridge.llr and simulate.formula.ergm.

llkonly Whether only the estiamted log-likelihood should be returned. (Defaults to
TRUE.)

control Control parameters. See control.ergm.bridge.

Value

If llkonly=TRUE, returns the scalar log-likelihood. Otherwise, returns a copy of the list returned by
ergm.bridge.llr in addition to the following components:

llk.dind The log-likelihood of the dyad-independence model.

llk The estimated log-likelihood.

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

See Also

ergm.bridge.llr, simulate.formula.ergm

ergm.bridge.llr A simple implementation of bridge sampling to evaluate log-
likelihood-ratio between two ERGM configurations

Description

This function uses bridge sampling with geometric spacing to estimate the difference between the
log-likelihoods of two parameter vectors for an ERGM via repeated calls to simulate.formula.ergm.
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Usage

ergm.bridge.llr(object,
response=NULL,
constraints=~.,
from,
to,
basis=NULL,
verbose=FALSE,
...,
llronly=FALSE,
control=control.ergm.bridge())

Arguments

object A model formula. See ergm for details.

response Not for release.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a sim-
ilar argument for ergm for more information. For simulate.formula, defaults
to no constraints. For simulate.ergm, defaults to using the same constraints as
those with which object was fitted.

from, to The initial and final parameter vectors.

basis An optional network object to start the Markov chain. If omitted, the default is
the left-hand-side of the object.

verbose Logical: If TRUE, print detailed information.

... Further arguments to simulate.formula.ergm.

llronly Logical: If TRUE, only the estiamted log-ratio will be returned.)

control Control arguments. See control.ergm.bridge for details.

Value

If llronly=TRUE, returns the scalar log-likelihood-ratio. Otherwise, returns a list with the following
components:

llr The estimated log-ratio.

llrs The estimated log-ratios for each of the nsteps bridges.

path A numeric matrix with nsteps rows, with each row being the respective bridge’s
parameter configuration.

stats A numeric matrix with nsteps rows, with each row being the respective bridge’s
vector of simulated statistics.

Dtheta.Du The gradient vector of the parameter values with respect to position of the
bridge.
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References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

See Also

simulate.formula.ergm

ergm.exact Calculate the exact loglikelihood for an ERGM

Description

ergm.exact calculates the exact loglikelihood, evaluated at eta, for the statnet exponential-
family random graph model represented by formula.

Usage

ergm.exact (eta, formula, statmat=NULL, weights=NULL, ...)

Arguments

eta vector of canonical parameter values at which the loglikelihood should be eval-
uated.

formula an R link{formula} object of the form y ~ <model terms>, where y is a
network object or a matrix that can be coerced to a network object. For the
details on the possible <model terms>, see ergm-terms. To create a network
object in R, use the network() function, then add nodal attributes to it using the
%v% operator if necessary.

statmat if NULL, call ergm.allstats to generate all possible graph statistics for the
networks in this model.

weights In case statmat is not NULL, this should be the vector of counts corresponding
to the rows of statmat. If statmat is NULL, this is generated by the call to
ergm.allstats.

... further arguments; not currently used.

Details

ergm.exact should only be used for small networks, since the number of possible networks grows
extremely fast with the number of nodes. An error results if it is used on a directed network of more
than 6 nodes or an undirected network of more than 8 nodes; use force=TRUE to override this error.

In case this function is to be called repeatedly, for instance by an optimization routine, it is prefer-
able to call ergm.allstats first, then pass statmat and weights explicitly to avoid repeatedly
calculating these objects.
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Value

Returns the value of the exact loglikelihood, evaluated at eta, for the statnet exponential-family
random graph model represented by formula.

See Also

ergm.allstats

Examples

# Count by brute force all the edge statistics possible for a 7-node
# undirected network
mynw <- network(matrix(0,7,7),dir=FALSE)
unix.time(a <- ergm.allstats(mynw~edges))

# Summarize results
rbind(t(a$statmat),a$weights)

# Each value of a$weights is equal to 21-choose-k,
# where k is the corresponding statistic (and 21 is
# the number of dyads in an 7-node undirected network).
# Here's a check of that fact:
as.vector(a$weights - choose(21, t(a$statmat)))

# Simple ergm.exact outpuf for this network.
# We know that the loglikelihood for my empty 7-node network
# should simply be -21*log(1+exp(eta)), so we may check that
# the following two values agree:
-21*log(1+exp(.1234))
ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)

ergmMPLE ERGM Predictors and response for logistic regression calculation of
MPLE

Description

Return the predictor matrix, response vector, and vector of weights that can be used to calculate the
MPLE for an ERGM.

Usage

ergmMPLE(formula, fitmodel=FALSE, output=c("matrix","array", "fit"),
as.initialfit = TRUE, control=control.ergm(),
verbose=FALSE, ...)
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Arguments

formula An ERGM formula. See ergm.

fitmodel Deprecated. Use output="fit" instead.

output Character, partially matched. See Value.

as.initialfit Logical. Specifies whether terms are initialized with argument initialfit==TRUE
(the default). Generally, if TRUE, all curved ERGM terms will be treated as hav-
ing their curved parameters fixed. See Example.

control A list of control parameters for tuning the fitting of an ERGM. Most of these
parameters are irrelevant in this context. See control.ergm for details about all
of the control parameters.

verbose Logical; if TRUE, the program will print out some additional information.

... Additional arguments, to be passed to lower-level functions.

Details

The MPLE for an ERGM is calculated by first finding the matrix of change statistics. Each row
of this matrix is associated with a particular pair (ordered or unordered, depending on whether the
network is directed or undirected) of nodes, and the row equals the change in the vector of network
statistics (as defined in formula) when that pair is toggled from a 0 (no edge) to a 1 (edge), holding
all the rest of the network fixed. The MPLE results if we perform a logistic regression in which the
predictor matrix is the matrix of change statistics and the response vector is the observed network
(i.e., each entry is either 0 or 1, depending on whether the corresponding edge exists or not).

Using output="matrix", note that the result of the fit may be obtained from the glm function, as
shown in the examples below.

When output="array", the MPLE.max.dyad.types control parameter must be greater than network.dyadcount(.)
of the response network, or not all elements of the array that ought to be filled in will be.

Value

If output=="matrix" (the default), then only the response, predictor, and weights are returned;
thus, the MPLE may be found by hand or the vector of change statistics may be used in some
other way. To save space, the algorithm will automatically search for any duplicated rows in the
predictor matrix (and corresponding response values). ergmMPLE function will return a list with
three elements, response, predictor, and weights, respectively the response vector, the predictor
matrix, and a vector of weights, which are really counts that tell how many times each corresponding
response, predictor pair is repeated.

If output=="array", a list with similarly named three elements is returned, but response is for-
matted into a sociomatrix; predictor is a 3-dimensional array of with cell predictor[t,h,k]
containing the change score of term k for dyad (t,h); and weights is also formatted into a socioma-
trix, with an element being 1 if it is to be added into the pseudolikelihood and 0 if it is not.

In particular, for a unipartite network, cells corresponding to self-loops, i.e., predictor[i,i,k]
will be NA and weights[i,i] will be 0; and for a unipartite undirected network, lower triangle of
each predictor[,,k] matrix will be set to NA, with the lower triangle of weights being set to 0.

If output=="fit", then ergmMPLE simply calls the ergm function with the estimate="MPLE" op-
tion set, returning an object of class ergm that gives the fitted pseudolikelihood model.
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See Also

ergm, glm

Examples

data(faux.mesa.high)
formula <- faux.mesa.high ~ edges + nodematch("Sex") + nodefactor("Grade")
mplesetup <- ergmMPLE(formula)

# Obtain MPLE coefficients "by hand":
glm(mplesetup$response ~ . - 1, data = data.frame(mplesetup$predictor),

weights = mplesetup$weights, family="binomial")$coefficients

# Check that the coefficients agree with the output of the ergm function:
ergmMPLE(formula, output="fit")$coef

# We can also format the predictor matrix into an array:
mplearray <- ergmMPLE(formula, output="array")

# The resulting matrices are big, so only print the first 5 actors:
mplearray$response[1:5,1:5]
mplearray$predictor[1:5,1:5,]
mplearray$weights[1:5,1:5]

formula2 <- faux.mesa.high ~ gwesp(0.5,fix=FALSE)

# The term is treated as fixed: only the gwesp term is returned:
colnames(ergmMPLE(formula2, as.initialfit=TRUE)$predictor)

# The term is treated as curved: individual esp# terms are returned:
colnames(ergmMPLE(formula2, as.initialfit=FALSE)$predictor)

eut-upgrade Updating ergm.userterms prior to 3.1

Description

Explanation and instructions for updating custom ERGM terms developed prior to the release of
ergm version 3.1 (including 3.0–999 preview release) to be used with versions 3.1 or later.

Explanation

ergm.userterms — Statnet’s mechanism enabling users to write their own ERGM terms — comes
in a form of an R package containing files for the user to put their own statistics into (i.e., changestats.user.h,
changestats.user.c, and InitErgmTerm.user.R), as well as some boilerplate to support them
(e.g., edgetree.h, edgetree.c, changestat.h, changestat.c, etc.).

Although the ergm.userterms API is stable, recent developments in ergm have necessitated the
boilerplate files in ergm.userterms to be updated. To reiterate, the user-written statistic source code
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(changestats.user.h, changestats.user.c, and InitErgmTerm.user.R) can be used without
modification, but other files that came with the package need to be changed.

To make things easier in the future, we have implemented a mechanism (using R’s LinkingTo API,
in case you are wondering) that will keep things in sync in releases after the upcoming one. How-
ever, for the upcoming release, we need to transition to this new mechanism.

Instructions

The transition entails the following steps. They only need to be done once for a package. Future
releases will keep up to date automatically.

1. Download the up-to-date ergm.userterms source from CRAN using, e.g., download.packages
and unpack it.

2. Copy the R and C files defining the user-written terms (usually changestats.user.h, changestats.user.c,
and InitErgmTerm.user.R) and only those files from the old ergm.userterms source code
to the new. Do not copy the boilerplate files that you did not modify.

3. If you have customized the package DESCRIPTION file (e.g., to change the package name) or
zzz.R (e.g., to change the startup message), modify them as needed in the updated ergm.userterms,
but do not simply overwrite them with their old versions.

4. Make sure that your ergm installation is up to date, and rebuild ergm.userterms.

faux.magnolia.high Goodreau’s Faux Magnolia High School as a network object

Description

This data set represents a simulation of an in-school friendship network. The network is named
faux.magnolia.high because the school commnunities on which it is based are large and located in
the southern US.

Usage

data(faux.magnolia.high)

Format

faux.magnolia.high is a network object with 1461 vertices (students, in this case) and 974
undirected edges (mutual friendships). To obtain additional summary information about it, type
summary(faux.magnolia.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)
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Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License http://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
statnet.org.

Source

The data set is based upon a model fit to data from two school communities from the AddHealth
Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The two schools in question (a junior and senior high school in the same community) were com-
bined into a single network dataset. Students who did not take the AddHealth survey or who were
not listed on the schools’ student rosters were eliminated, then an undirected link was established
between any two individuals who both named each other as a friend. All missing race, grade, and
sex values were replaced by a random draw with weights determined by the size of the attribute
classes in the school.

The following ergm model was fit to the original data:

magnolia.fit <- ergm (magnolia ~ edges + nodematch("Grade",diff=T)
+ nodematch("Race",diff=T) + nodematch("Sex",diff=F)
+ absdiff("Grade") + gwesp(0.25,fixed=T), burnin=10000,
interval=1000, MCMCsamplesize=2500, maxit=25,
control=control.ergm(steplength=0.25))

Then the faux.magnolia.high dataset was created by simulating a single network from the above
model fit:

faux.magnolia.high <- simulate (magnolia.fit, nsim=1, burnin=100000000,
constraint = "edges")

References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.mesa.high

http://creativecommons.org/licenses/by-nc-nd/2.5/
statnet.org
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faux.mesa.high Goodreau’s Faux Mesa High School as a network object

Description

This data set (formerly called “fauxhigh”) represents a simulation of an in-school friendship net-
work. The network is named faux.mesa.high because the school commnunity on which it is based
is in the rural western US, with a student body that is largely Hispanic and Native American.

Usage

data(faux.mesa.high)

Format

faux.mesa.high is a network object with 205 vertices (students, in this case) and 203 undirected
edges (mutual friendships). To obtain additional summary information about it, type summary(faux.mesa.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License http://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
statnet.org.

Source

The data set is based upon a model fit to data from one school community from the AddHealth
Study, Wave I (Resnick et al., 1997). It was constructed as follows:

A vector representing the sex of each student in the school was randomly re-ordered. The same was
done with the students’ response to questions on race and grade. These three attribute vectors were
permuted independently. Missing values for each were randomly assigned with weights determined
by the size of the attribute classes in the school.

The following ergm formula was used to fit a model to the original data:

~ edges + nodefactor("Grade") + nodefactor("Race") + nodefactor("Sex")
+ nodematch("Grade",diff=T) + nodematch("Race",diff=T)
+ nodematch("Sex",diff=F) + gwdegree(1.0,fixed=T)
+ gwesp(1.0,fixed=T) + gwdsp(1.0,fixed=T)

http://creativecommons.org/licenses/by-nc-nd/2.5/
statnet.org
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The resulting model fit was then applied to a network with actors possessing the permuted attributes
and with the same number of edges as in the original data.

The processes for handling missing data and defining the race attribute are described in Hunter,
Goodreau \& Handcock (2008).

References

Hunter D.R., Goodreau S.M. and Handcock M.S. (2008). Goodness of Fit of Social Network Mod-
els, Journal of the American Statistical Association.

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.magnolia.high

fix.curved Convert a curved ERGM into a corresponding “fixed” ERGM.

Description

The generic fix.curved converts an ergm object or formula of a model with curved terms to the
variant in which the curved parameters are fixed. Note that each term has to be treated as a special
case.

Usage

## S3 method for class 'ergm'
fix.curved(object, ...)
## S3 method for class 'formula'
fix.curved(object, theta, response = NULL, ...)

Arguments

object An ergm object or an ERGM formula. The curved terms of the given formula
(or the formula used in the fit) must have all of their arguments passed by name.

theta Curved model parameter configuration.

response For valued ERGM, an edge attribute used as the response variable.

... Unused at this time.
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Details

Some ERGM terms such as gwesp and gwdegree have two forms: a curved form, for which their de-
cay or similar parameters are to be estimated, and whose canonical statistics is a vector of the term’s
components (esp(1), esp(2), . . . and degree(1), degree(2), . . . , respectively) and a "fixed" form
where the decay or similar parameters are fixed, and whose canonical statistic is just the term itself.
It is often desirable to fit a model estimating the curved parameters but simulate the "fixed" statistic.

This function thus takes in a fit or a formula and performs this mapping, returning a “fixed” model
and parameter specification. It only works for curved ERGM terms included with the ergm package.
It does not work with curved terms not included in ergm.

Value

A list with the following components:

formula The “fixed” formula.

theta The “fixed” parameter vector.

See Also

ergm, simulate.ergm

Examples

data(sampson)
gest<-ergm(samplike~edges+gwesp(alpha=.5,fixed=FALSE),

control=control.ergm(MCMLE.maxit=3))
summary(gest)
# A statistic for esp(1),...,esp(16)
simulate(gest,statsonly=TRUE)

tmp<-fix.curved(gest)
tmp
# A gwesp() statistic only
simulate(tmp$formula, coef=tmp$theta, statsonly=TRUE)

flobusiness Florentine Family Business Ties Data as a “network" object

Description

This is a data set of business ties among Renaissance Florentine families. The data is originally
from Padgett (1994) via UCINET and stored as a network object.

Breiger \& Pattison (1986), in their discussion of local role analysis, use a subset of data on the so-
cial relations among Renaissance Florentine families (person aggregates) collected by John Padgett
from historical documents. The relations are business ties (flobusiness - specifically, recorded
financial ties such as loans, credits and joint partnerships).
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As Breiger \& Pattison point out, the original data are symmetrically coded. This is acceptable
perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed).
To remedy this, the financial ties can be recoded as directed relations using some external measure
of power - for instance, a measure of wealth. Vertex information is provided (1) wealth each
family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats
on the civic council) held between 1282- 1344; and (3) totalties the total number of business or
marriage ties in the total dataset of 116 families (see Breiger \& Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the
city of Florence around 1430. Two factions were dominant in this struggle: one revolved around
the infamous Medicis (9), the other around the powerful Strozzis (15).

Usage

data(florentine)

Source

Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper
delivered to the Social Science History Association.

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their alge-
bras, Social Networks, 8, 215-256.

See Also

flo, network, plot.network, ergm, flomarriage

flomarriage Florentine Family Marriage Ties Data as a “network" object

Description

This is a data set of marriage ties among Renaissance Florentine families. The data is originally
from Padgett (1994) via UCINET and stored as a network object.

Breiger \& Pattison (1986), in their discussion of local role analysis, use a subset of data on the
social relations among Renaissance Florentine families (person aggregates) collected by John Pad-
gett from historical documents. The relations are marriage alliances (flomarriage betwween the
families.

As Breiger \& Pattison point out, the original data are symmetrically coded. This is perhaps accept-
able perhaps for marital ties. Vertex information is provided on (1) wealth each family’s net wealth
in 1427 (in thousands of lira); (2) priorates the number of priorates (seats on the civic council)
held between 1282- 1344; and (3) totalties the total number of business or marriage ties in the
total dataset of 116 families (see Breiger \& Pattison (1986), p 239).
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Substantively, the data include families who were locked in a struggle for political control of the
city of Florence around 1430. Two factions were dominant in this struggle: one revolved around
the infamous Medicis (9), the other around the powerful Strozzis (15).

Usage

data(florentine)

Source

Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper
delivered to the Social Science History Association.

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their alge-
bras, Social Networks, 8, 215-256.

See Also

flobusiness, flo, network, plot.network, ergm

florentine Florentine Family Marriage and Business Ties Data as a “network"
object

Description

This is a data set of marriage and business ties among Renaissance Florentine families. The data is
originally from Padgett (1994) via UCINET and stored as a network object.

Breiger \& Pattison (1986), in their discussion of local role analysis, use a subset of data on the so-
cial relations among Renaissance Florentine families (person aggregates) collected by John Padgett
from historical documents. The two relations are business ties (flobusiness - specifically, recorded
financial ties such as loans, credits and joint partnerships) and marriage alliances (flomarriage).

As Breiger \& Pattison point out, the original data are symmetrically coded. This is acceptable
perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed).
To remedy this, the financial ties can be recoded as directed relations using some external measure
of power - for instance, a measure of wealth. Both graphs provide vertex information on (1) wealth
each family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats
on the civic council) held between 1282- 1344; and (3) totalties the total number of business or
marriage ties in the total dataset of 116 families (see Breiger \& Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the
city of Florence around 1430. Two factions were dominant in this struggle: one revolved around
the infamous Medicis (9), the other around the powerful Strozzis (15).
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Usage

data(florentine)

Source

Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper
delivered to the Social Science History Association.

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their alge-
bras, Social Networks, 8, 215-256.

See Also

flo, network, plot.network, ergm

g4 Goodreau’s four node network as a “network" object

Description

This is an example thought of by Steve Goodreau. It is a directed network of four nodes and five
ties stored as a network object.

It is interesting because the maximum likelihood estimator of the model with out degree 3 in it
exists, but the maximum psuedolikelihood estimator does not.

Usage

data(g4)

Source

Steve Goodreau

See Also

florentine, network, plot.network, ergm

Examples

data(g4)
summary(ergm(g4 ~ odegree(3), estimate="MPLE"))
summary(ergm(g4 ~ odegree(3), control=control.ergm(init=0)))
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Getting.Started Getting Started with "ergm": Fit, simulate and diagnose exponential-
family models for networks

Description

ergm is a collection of functions to plot, fit, diagnose, and simulate from random graph models. For
a list of functions type: help(package=’ergm’)

For a complete list of the functions, use library(help="ergm") or read the rest of the manual. For
a simple demonstration, use demo(packages="ergm").

When publishing results obtained using this package the original authors are to be cited as given in
citation("ergm"):

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 ergm: Fit, simulate and diagnose exponential-family models for networks
statnet.org.

All published work derived from this package must cite it. For complete citation information, use
citation(package="ergm").

Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical
study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a gen-
eralization of the Markov random network models introduced by Frank and Strauss (1986), which
in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the
complex dependencies within relational data structures. To date, the use of stochastic network mod-
els for networks has been limited by three interrelated factors: the complexity of realistic models,
the lack of simulation tools for inference and validation, and a poor understanding of the inferential
properties of nontrivial models.

This manual introduces software tools for the representation, visualization, and analysis of network
data that address each of these previous shortcomings. The package relies on the network package
which allows networks to be represented in R. The ergm package allows maximum likelihood es-
timates of exponential random network models to be calculated using Markov Chain Monte Carlo.
The package also provides tools for plotting networks, simulating networks and assessing model
goodness-of-fit.

For detailed information on how to download and install the software, go to the ergm website:
statnet.org. A tutorial, support newsgroup, references and links to further resources are provided
there.

Author(s)

Mark S. Handcock <handcock@stat.ucla.edu>,
David R. Hunter <dhunter@stat.psu.edu>,
Carter T. Butts <buttsc@uci.edu>,
Steven M. Goodreau <goodreau@u.washington.edu>,

statnet.org
statnet.org
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Pavel N. Krivitsky <krivitsky@stat.psu.edu>, and
Martina Morris <morrism@u.washington.edu>

Maintainer: David R. Hunter <dhunter@stat.psu.edu>

References

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals
through sequential importance sampling. Statnet Project, Seattle, WA. Version 1, statnet.org.

Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating
Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7).
http://www.jstatsoft.org/v24/i07/.

Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems (with discussion),
Journal of the Royal Statistical Society, B, 36, 192-236.

Boer P, Huisman M, Snijders T, Zeggelink E (2003). StOCNET: an open software system for the
advanced statistical analysis of social networks. Groningen: ProGAMMA / ICS, version 1.4 edition.

Butts CT (2006). netperm: Permutation Models for Relational Data. Version 0.2, http://erzuli.
ss.uci.edu/R.stuff.

Butts CT (2007). sna: Tools for Social Network Analysis. Version 1.5, http://erzuli.ss.uci.
edu/R.stuff.

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical
Software, 24(2). http://www.jstatsoft.org/v24/i02/.

Butts CT, with help~from David~Hunter, Handcock MS (2007). network: Classes for Relational
Data. Version 1.2, http://erzuli.ss.uci.edu/R.stuff.

Frank, O., and Strauss, D.(1986). Markov graphs. Journal of the American Statistical Association,
81, 832-842.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). http://www.jstatsoft.org/v24/i08/.

Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Ex-
ponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in
press.

Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working
Paper \#39, Center for Statistics and the Social Sciences, University of Washington. www.csss.
washington.edu/Papers/wp39.pdf

Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks.
Statnet Project, Seattle, WA. Version 1.0, statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA.
Version 2, statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools for
the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 2, statnet.org.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics, 15: 565-583.
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Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). http://www.jstatsoft.org/v24/i03/.

Krivitsky PN, Handcock MS (2007). latentnet: Latent position and cluster models for statistical
networks. Seattle, WA. Version 2, statnet.org.

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). http://www.
jstatsoft.org/v24/i04/.

Strauss, D., and Ikeda, M.(1990). Pseudolikelihood estimation for social networks. Journal of the
American Statistical Association, 85, 204-212.

gof Conduct Goodness-of-Fit Diagnostics on a Exponential Family Ran-
dom Graph Model

Description

gof calculates p-values for geodesic distance, degree, and reachability summaries to diagnose the
goodness-of-fit of exponential family random graph models. See ergm for more information on
these models.

Usage

## Default S3 method:
gof(object,...)
## S3 method for class 'formula'
gof(object,

...,
coef=NULL,
GOF=NULL,
constraints=~.,
control=control.gof.formula(),
verbose=FALSE)

## S3 method for class 'ergm'
gof(object,

...,
coef=NULL,
GOF=NULL,
constraints=NULL,
control=control.gof.ergm(),
verbose=FALSE)

Arguments

object an R object. Either a formula or an ergm object. See documentation for ergm.

... Additional arguments, to be passed to lower-level functions in the future.

http://www.jstatsoft.org/v24/i03/
statnet.org
http://www.jstatsoft.org/v24/i04/
http://www.jstatsoft.org/v24/i04/


76 gof

coef When given either a formula or an object of class ergm, coef are the parameters
from which the sample is drawn. By default set to a vector of 0.

GOF formula; an R formula object, of the form ~ <model terms> specifying the
statistics to use to diagnosis the goodness-of-fit of the model. They do not need
to be in the model formula specified in formula, and typically are not. Currently
supported terms are the degree distribution (“degree” for undirected graphs,
or “idegree” and/or “odegree” for directed graphs), geodesic distances (“dis-
tance”), shared partner distributions (“espartners” and “dspartners”), the triad
census (“triadcensus”), and the terms of the original model (“model”). The de-
fault formula for undirected networks is ~ degree + espartners + distance,
and the default formula for directed networks is ~ idegree + odegree + espartners + distance.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being modeled. See the help for similarly-named
argument in ergm for more information. For gof.formula, defaults to uncon-
strained. For gof.ergm, defaults to the constraints with which object was fit-
ted.

control A list to control parameters, constructed using control.gof.formula or control.gof.ergm
(which have different defaults).

verbose Provide verbose information on the progress of the simulation.

Details

A sample of graphs is randomly drawn from the specified model. The first argument is typically the
output of a call to ergm and the model used for that call is the one fit.

A plot of the summary measures is plotted. More information can be found by looking at the
documentation of ergm.

For gof.ergm and gof.formula, default behavior depends on the directedness of the network in-
volved; if undirected then degree, espartners, and distance are used as default properties to examine.
If the network in question is directed, “degree” in the above is replaced by idegree and odegree.

Value

gof, gof.ergm, and gof.formula return an object of class gofobject. This is a list of the tables
of statistics and p-values. This is typically plotted using plot.gofobject.

See Also

ergm, network, simulate.ergm, summary.ergm, plot.gofobject

Examples

data(florentine)
gest <- ergm(flomarriage ~ edges + kstar(2))
gest
summary(gest)

# test the gof.ergm function
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gofflo <- gof(gest)
gofflo
summary(gofflo)

# Plot all three on the same page
# with nice margins
par(mfrow=c(1,3))
par(oma=c(0.5,2,1,0.5))
plot(gofflo)

# And now the log-odds
plot(gofflo, plotlogodds=TRUE)

# Use the formula version of gof
gofflo2 <-gof(flomarriage ~ edges + kstar(2), coef=c(-1.6339, 0.0049))
plot(gofflo2)

is.dyad.independent Testing for dyad-independence

Description

These functions test whether an ERGM fit or formula is dyad-independent.

Usage

## S3 method for class 'ergm'
is.dyad.independent(object, ...)
## S3 method for class 'formula'
is.dyad.independent(object,

response=NULL,
basis=NULL,
...)

Arguments

object An ergm object or an ERGM formula.
response, basis

See ergm.

... Unused at this time.

Value

TRUE if the model fit or one implied by the formula is dyad-independent; FALSE otherwise.
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is.inCH Determine whether a vector is in the closure of the convex hull of some
sample of vectors

Description

is.inCH returns TRUE if and only if p is contained in the convex hull of the points given as the rows
of M.

Usage

is.inCH(p, M)

Arguments

p A d-dimensional vector

M An r by d matrix. Each row of M is a d-dimensional vector.

Details

This function depends on the package Rglpk to solve a constrained linear optimization problem
in order to determine an answer. The question of whether p is in a closed convex set S may be
formulated as the question of whether there exists a separating hyperplane between p and S, which
may in turn be formulated as the question of whether the maximum possible value of a linear
function, subject to constraints, has a strictly positive solution.

Note that the answer given could be incorrect simply due to rounding error if the true maximum is
close to zero. For this reason, the package rcdd, which produces exact rational-number solutions
to linear programs, could be used instead of Rglpk. However, this approach would require more
computing and would therefore be slower.

Value

Logical, telling whether p is in the closed convex hull of the points in M.

References

http://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node22.html

http://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node22.html
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kapferer Kapferer’s tailor shop data

Description

This well-known social network dataset, collected by Bruce Kapferer in Zambia from June 1965 to
August 1965, involves interactions among workers in a tailor shop as observed by Kapferer himself.
Here, an interaction is defined by Kapferer as "continuous uninterrupted social activity involving the
participation of at least two persons"; only transactions that were relatively frequent are recorded.
All of the interactions in this particular dataset are "sociational", as opposed to "instrumental".
Kapferer explains the difference (p. 164) as follows:

"I have classed as transactions which were sociational in content those where the activity was
markedly convivial such as general conversation, the sharing of gossip and the enjoyment of a drink
together. Examples of instrumental transactions are the lending or giving of money, assistance at
times of personal crisis and help at work."

Kapferer also observed and recorded instrumental transactions, many of which are unilateral (di-
rected) rather than reciprocal (undirected), though those transactions are not recorded here. In
addition, there was a second period of data collection, from September 1965 to January 1966, but
these data are also not recorded here. All data are given in Kapferer’s 1972 book on pp. 176-179.

During the first time period, there were 43 individuals working in this particular tailor shop; how-
ever, the better-known dataset includes only those 39 individuals who were present during both time
collection periods. (Missing are the workers named Lenard, Peter, Lazarus, and Laurent.) Thus,
we give two separate network datasets here: kapferer is the well-known 39-individual dataset,
whereas kapferer2 is the full 43-individual dataset.

Usage

data(kapferer)

Format

Two network objects, kapferer and kapferer2. The kapferer dataset contains only the 39 indi-
viduals who were present at both data-collection time periods. However, these data only reflect data
collected during the first period. The individuals’ names are included as a nodal covariate called
names.

Source

Original source: Kapferer, Bruce (1972), Strategy and Transaction in an African Factory, Manch-
ester University Press.
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lasttoggle Storing last toggle information in a network

Description

An informal extension to network objects allowing some limited temporal information to be stored.

Details

WARNING: THIS DOCUMENTATION IS PROVIDED AS A COURTESY, AND THE API DE-
SCRIBED IS SUBJECT TO CHANGE WITHOUT NOTICE, DOWN TO COMPLETE REMOVAL.
NOT ALL FUNCTIONS THAT COULD SUPPORT IT DO. USE AT YOUR OWN RISK.

While networkDynamic provides a flexible, consistent method for storing dynamic networks, the C
routines of ergm and tergm required a simpler and more lightweight representation.

This representation consisted of a single integer representing the time stamp and an integer vector
of length to network.dyadcount(nw) — the number of potential ties in the network, giving the
last time point during which each of the dyads in the network had changed.

Though this is an API intended for internal use, some functions, like stergm (for EGMME),
simulate, and summary can be passed networks with this information using the following network
(i.e., %n%) attributes:

time the time stamp associated with the network

lasttoggle a vector of length network.dyadcount(nw), giving the last change time associated
with each dyad. See the source code of ergm internal functions to.matrix.lasttoggle,
ergm.el.lasttoggle, and to.lasttoggle.matrix for how they are serialized.

For technical reasons, the tergm routines treat the lasttoggle time points as shifted by −1.

Again, this API is subject to change without notice.

logLik.ergm A logLik method for ergm.

Description

A function to return the log-likelihood associated with an ergm fit, evaluating it if necessary.
logLikNull computes, when possible (see Value), the log-probability of observing the observed,
unconstrained dyads of the network observed under the null model.
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Usage

## S3 method for class 'ergm'
logLik(object,

add=FALSE,
force.reeval=FALSE,
eval.loglik=add || force.reeval,
control=control.logLik.ergm(),
...)

logLikNull(object, ...)

## S3 method for class 'ergm'
logLikNull(object,

control=control.logLik.ergm(),
...)

Arguments

object An ergm fit, returned by ergm.

add Logical: If TRUE, instead of returning the log-likelihood, return object with
log-likelihood value set.

force.reeval Logical: If TRUE, reestimate the log-likelihood even if object already has an
estiamte.

eval.loglik Logical: If TRUE, evaluate the log-likelihood if not set on object.

control A list of control parameters for algorithm tuning. Constructed using control.logLik.ergm.

... Other arguments to the likelihood functions.

Details

If the log-likelihood was not computed for object, produces an error unless eval.loglik=TRUE

Value

The form of the output of logLik.ergm depends on add: add=FALSE (the default), a logLik object.
If add=TRUE (the default), an ergm object with the log-likelihood set.

logLikNull returns an object of type logLik if it is able to compute the null model probability, and
NA otherwise.

As of version 3.1, all likelihoods for which logLikNull is not implemented are computed relative
to the reference measure. (I.e., a null model, with no terms, is defined to have likelihood of 0, and
all other models are defined relative to that.)

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.
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See Also

logLik, ergm.bridge.llr, ergm.bridge.dindstart.llk

Examples

# See help(ergm) for a description of this model. The likelihood will
# not be evaluated.
data(florentine)
## Not run:
# The default maximum number of iterations is currently 20. We'll only
# use 2 here for speed's sake.
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE)

## End(Not run)
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE,

control=control.ergm(MCMLE.maxit=2))
# Log-likelihood is not evaluated, so no deviance, AIC, or BIC:
summary(gest)
# Evaluate the log-likelihood and attach it to the object.
## Not run:
# The default number of bridges is currently 20. We'll only use 3 here
# for speed's sake.
gest <- logLik(gest, add=TRUE)

## End(Not run)
gest <- logLik(gest, add=TRUE, control=control.logLik.ergm(nsteps=3))
# Deviances, AIC, and BIC are now shown:
summary(gest)
# Null model likelihood can also be evaluated, but not for all constraints:
logLikNull(gest) # == network.dyadcount(flomarriage)*log(1/2)

mcmc.diagnostics Conduct MCMC diagnostics on an ergm fit

Description

This function prints diagnistic information and creates simple diagnostic plots for the MCMC sam-
pled statistics produced from a fit.

Usage

## S3 method for class 'ergm'
mcmc.diagnostics(object,

center=TRUE,
curved=TRUE,
vars.per.page=3,
...)
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Arguments

object An ergm object. See documentation for ergm.

center Logical: If TRUE, ; center the samples on the observed statistics.

curved Logical: If TRUE, summarize the curved statistics (evaluated at the MLE of any
non-linear parameters), rather than the raw components of the curved statistics.

vars.per.page Number of rows (one variable per row) per plotting page. Ignored if latticeExtra
package is not installed.

... Additional arguments, to be passed to plotting functions.

Details

The plots produced are a trace of the sampled output and a density estimate for each variable in the
chain. The diagnostics printed include correlations and convergence diagnostics.

In fact, an object contains the matrix of statistics from the MCMC run as component $sample.
This matrix is actually an object of class mcmc and can be used directly in the coda package to
assess MCMC convergence. Hence all MCMC diagnostic methods available in coda are avail-
able directly. See the examples and http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/
readme.shtml.

More information can be found by looking at the documentation of ergm.

Value

mcmc.diagnostics.ergm returns some degeneracy information, if it is included in the original
object. The function is mainly used for its side effect, which is to produce plots and summary
output based on those plots.

References

Raftery, A.E. and Lewis, S.M. (1992). One long run with diagnostics: Implementation strategies
for Markov chain Monte Carlo. Statistical Science, 7, 493-497.

Raftery, A.E. and Lewis, S.M. (1995). The number of iterations, convergence diagnostics and
generic Metropolis algorithms. In Practical Markov Chain Monte Carlo (W.R. Gilks, D.J. Spiegel-
halter and S. Richardson, eds.). London, U.K.: Chapman and Hall.

This function is based on the coda package It is based on the the R function raftery.diag in
coda. raftery.diag, in turn, is based on the FORTRAN program gibbsit written by Steven
Lewis which is available from the Statlib archive.

See Also

ergm, network package, coda package, summary.ergm

Examples

#
data(florentine)
#
# test the mcmc.diagnostics function

http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml
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#
gest <- ergm(flomarriage ~ edges + kstar(2))
summary(gest)

#
# Plot the probabilities first
#
mcmc.diagnostics(gest)
#
# Use coda directly
#
library(coda)
#
plot(gest$sample, ask=FALSE)
#
# A full range of diagnostics is available
# using codamenu()
#

molecule Synthetic network with 20 nodes and 28 edges

Description

This is a synthetic network of 20 nodes that is used as an example within the ergm documentation.
It has an interesting elongated shape - reminencent of a chemical molecule. It is stored as a network
object.

Usage

data(molecule)

See Also

florentine, sampson, network, plot.network, ergm

network.update Replaces the sociomatrix in a network object

Description

Replaces the sociomatrix in a network object with the sociomatrix specified by newmatrix. See
ergm for more information.

Usage

network.update(nw, newmatrix, matrix.type=NULL, output="network")
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Arguments

nw a network object. See documentation for the network package.

newmatrix Either an adjacency matrix (a matrix of zeros and ones indicating the presence of
a tie from i to j) or an edgelist (a two-column matrix listing origin and destination
node numbers for each edge; note that in an undirected matrix, the first column
should be the smaller of the two numbers).

matrix.type One of "adjacency" or "edgelist" telling which type of matrix newmatrix is.
Default is to use the which.matrix.type function.

output Currently unused.

Value

network.update returns a network object.

See Also

ergm, network

Examples

#
data(florentine)
#
# test the network.update function
#
# Create a Bernoulli network
rand.net <- network(network.size(flomarriage))
# store the sociomatrix
rand.mat <- rand.net[,]
# Update the network
network.update(flomarriage, rand.mat, matrix.type="adjacency")
# Try this with an edgelist
rand.mat <- as.matrix.network.edgelist(flomarriage)[1:5,]
network.update(flomarriage, rand.mat, matrix.type="edgelist")

plot.ergm Plotting Method for class ergm

Description

plot.ergm is the plotting method for ergm objects.

It plots the MCMC diagnostics via the mcmc.diagnostics function.

See ergm for more information on how to fit these models.
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Usage

## S3 method for class 'ergm'
plot(x, ..., mle=FALSE, comp.mat = NULL,

label = NULL, label.col = "black",
xlab, ylab, main, label.cex = 0.8, edge.lwd = 1,
edge.col=1, al = 0.1,
contours=0, density=FALSE, only.subdens = FALSE,
drawarrows=FALSE,
contour.color=1, plotnetwork=FALSE, pie = FALSE, piesize=0.07,
vertex.col=1, vertex.pch=19, vertex.cex=2,
mycol=c("black","red","green","blue","cyan",

"magenta","orange","yellow","purple"),
mypch=15:19, mycex=2:10)

Arguments

x an R object of class ergm. See documentation for ergm.

mle Plots the network using the MLE of the positions for latent models.

pie For latent clustering models, each node is drawn as a pie chart representing the
probabilities of cluster membership.

piesize The size of the pie charts.

contours For latent models, plots a contours by contours array of the network with one
contour per network corresponding to the posterior distribution of each of the
nodes.

contour.color Color of the contour lines.

density If density=TRUE, plots the density of the posterior position of the nodes. If
density=c(nr,nc), plots a nr by nc array of density estimates for each cluster.

only.subdens If density=c(nr,nc), only plots the densities of the clusters, not the overall den-
sity.

drawarrows If density=TRUE, draws the ties on the density plot.

plotnetwork If density=c(nr,nc), a plot of the network is also shown.

comp.mat For latent models, the positions are Procrustes transformed to look like comp.mat.

label A vector of the same length as the number of nodes containing the labels of the
nodes.

label.col The color to be used for plotting the labels.

label.cex The size of the node labels.

xlab Title for the x axis.

ylab Title for the y axis.

main The main title for the network.

edge.lwd The line width for the arrows between nodes.

edge.col The color of the arrows between nodes.
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al The length of the arrow heads.

vertex.col The color of the nodes as defined by mycol. Can be specified as an attribute of
the network used in the model.

vertex.pch The plotting character of the nodes as defined by mypch. Can be specified as an
attribute of the network used in the model. By default it is 15 - a red square.

vertex.cex The size of the nodes as defined by mycex. Can be specified as an attribute of
the network used in the model.

mycol Vector of colors to be used. Defaults to: c("black","red","green","blue","cyan",
"magenta","orange","yellow","purple")

mypch Vector of plotting characters to be used. Defaults to:

mycex Vector of character expansion values.

... Other optional arguments to be used by the plot function.

Details

Plots the results of an ergm fit.

More information can be found by looking at the documentation of ergm.

Value

NULL

See Also

ergm, network, plot.network, plot, add.contours

Examples

## Not run:
#
# The example assumes you have the 'latentnet' package installed.
#
# Using Sampson's Monk data, lets fit a
# simple latent position model
#
data(sampson)
#
# Get the group labels
#
samp.labs <- substr(get.vertex.attribute(samplike,"group"),1,1)
#
samp.fit <- ergm(samplike ~ latent(k=2), burnin=10000,

MCMCsamplesize=2000, interval=30)
#
# See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit)
#
# Plot the fit
#
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plot(samp.fit,label=samp.labs, vertex.col="group")
#
# Using Sampson's Monk data, lets fit a latent clustering model
#
samp.fit <- ergm(samplike ~ latentcluster(k=2, ngroups=3), burnin=10000,

MCMCsamplesize=2000, interval=30)
#
# See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit)
#
# Lets look at the goodness of fit:
#
plot(samp.fit,label=samp.labs, vertex.col="group")
plot(samp.fit,pie=TRUE,label=samp.labs)
plot(samp.fit,density=c(2,2))
plot(samp.fit,contours=5,contour.color="red")
plot(samp.fit,density=TRUE,drawarrows=TRUE)
add.contours(samp.fit,nlevels=8,lwd=2)
points(samp.fit$Z.mkl,pch=19,col=samp.fit$class)

## End(Not run)

plot.gofobject Plot Goodness-of-Fit Diagnostics on a Exponential Family Random
Graph Model

Description

plot.gofobject plots diagnostics such as the degree distribution, geodesic distances, shared part-
ner distributions, and reachability for the goodness-of-fit of exponential family random graph mod-
els. See ergm for more information on these models.

Usage

## S3 method for class 'gofobject'
plot(x, ...,

cex.axis=0.7, plotlogodds=FALSE,
main = "Goodness-of-fit diagnostics",
normalize.reachability=FALSE,
verbose=FALSE)

Arguments

x an object of class gofobject, typically produced by the gof.ergm or gof.formula
functions. See the documentation for these.

cex.axis Character expansion of the axis labels relative to that for the plot.

plotlogodds Plot the odds of a dyad having given characteristics (e.g., reachability, minimum
geodesic distance, shared partners). This is an alternative to the probability of a
dyad having the same property.
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main Title for the goodness-of-fit plots.
normalize.reachability

Should the reachability proportion be normalized to make it more comparable
with the other geodesic distance proportions.

verbose Provide verbose information on the progress of the plotting.

... Additional arguments, to be passed to the plot function.

Details

gof.ergm produces a sample of networks randomly drawn from the specified model. This function
produces a plot of the summary measures.

Value

none

See Also

gof.ergm, gof.formula, ergm, network, simulate.ergm

Examples

## Not run:
#
data(florentine)
#
# test the gof.ergm function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
gest
summary(gest)

#
# Plot the probabilities first
#
gofflo <- gof(gest)
gofflo
plot(gofflo)
#
# And now the odds
#
plot(gofflo, plotlogodds=TRUE)
#
# Use the formula version
#
gof(flomarriage ~ edges + kstar(2), coef=c(-1.6339, 0.0049))

## End(Not run)
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plot.network.ergm Two-Dimensional Visualization of Networks

Description

plot.network.ergm produces a simple two-dimensional plot of the network object x. A variety of
options are available to control vertex placement, display details, color, etc. The function is based on
the plotting capabilities of the network package with additional pre-processing of arguments. Some
of the capabilites require the latentnet package. See plot.network in the network package for
details.

Usage

## S3 method for class 'ergm'
plot.network(x,

attrname=NULL,
label=network.vertex.names(x),
coord=NULL,
jitter=TRUE,
thresh=0,
usearrows=TRUE,
mode="fruchtermanreingold",
displayisolates=TRUE,
interactive=FALSE,
xlab=NULL,
ylab=NULL,
xlim=NULL,
ylim=NULL,
pad=0.2,
label.pad=0.5,
displaylabels=FALSE,
boxed.labels=TRUE,
label.pos=0,
label.bg="white",
vertex.sides=8,
vertex.rot=0,
arrowhead.cex=1,
label.cex=1,
loop.cex=1,
vertex.cex=1,
edge.col=1,
label.col=1,
vertex.col=2,
label.border=1,
vertex.border=1,
edge.lty=1,
label.lty=NULL,
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vertex.lty=1,
edge.lwd=0,
label.lwd=par("lwd"),
edge.len=0.5,
edge.curve=0.1,
edge.steps=50,
loop.steps=20,
object.scale=0.01,
uselen=FALSE,
usecurve=FALSE,
suppress.axes=TRUE,
vertices.last=TRUE,
new=TRUE,
layout.par=NULL,
cex.main=par("cex.main"),
cex.sub=par("cex.sub"),
seed=NULL,
latent.control=list(maxit=500,

trace=0,
dyadsample=10000,
penalty.sigma=c(5,0.5),
nsubsample=200),

colornames="rainbow",
verbose=FALSE,
latent=FALSE,
...)

Arguments

x an object of class network.

attrname an optional edge attribute, to be used to set edge values.

label a vector of vertex labels, if desired; defaults to the vertex labels returned by
network.vertex.names.

coord user-specified vertex coordinates, in an NCOL(dat)x2 matrix. Where this is
specified, it will override the mode setting.

jitter boolean; should the output be jittered?

thresh real number indicating the lower threshold for tie values. Only ties of value
>thresh are displayed. By default, thresh=0.

usearrows boolean; should arrows (rather than line segments) be used to indicate edges?

mode the vertex placement algorithm; this must correspond to a network.layout
function. These include "latent", "latentPrior", and "fruchtermanreingold".

displayisolates

boolean; should isolates be displayed?

interactive boolean; should interactive adjustment of vertex placement be attempted?

xlab x axis label.

ylab y axis label.
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xlim the x limits (min, max) of the plot.

ylim the y limits of the plot.

pad amount to pad the plotting range; useful if labels are being clipped.

label.pad amount to pad label boxes (if boxed.labels==TRUE), in character size units.

displaylabels boolean; should vertex labels be displayed?

boxed.labels boolean; place vertex labels within boxes?

label.pos position at which labels should be placed, relative to vertices. 0 results in labels
which are placed away from the center of the plotting region; 1, 2, 3, and 4
result in labels being placed below, to the left of, above, and to the right of
vertices (respectively); and label.pos>=5 results in labels which are plotted
with no offset (i.e., at the vertex positions).

label.bg background color for label boxes (if boxed.labels==TRUE); may be a vector, if
boxes are to be of different colors.

vertex.sides number of polygon sides for vertices; may be given as a vector or a vertex at-
tribute name, if vertices are to be of different types.

vertex.rot angle of rotation for vertices (in degrees); may be given as a vector or a vertex
attribute name, if vertices are to be rotated differently.

arrowhead.cex expansion factor for edge arrowheads.

label.cex character expansion factor for label text.

loop.cex expansion factor for loops; may be given as a vector or a vertex attribute name,
if loops are to be of different sizes.

vertex.cex expansion factor for vertices; may be given as a vector or a vertex attribute name,
if vertices are to be of different sizes.

edge.col color for edges; may be given as a vector, adjacency matrix, or edge attribute
name, if edges are to be of different colors.

label.col color for vertex labels; may be given as a vector or a vertex attribute name, if
labels are to be of different colors.

vertex.col color for vertices; may be given as a vector or a vertex attribute name, if vertices
are to be of different colors.

label.border label border colors (if boxed.labels==TRUE); may be given as a vector, if label
boxes are to have different colors.

vertex.border border color for vertices; may be given as a vector or a vertex attribute name, if
vertex borders are to be of different colors.

edge.lty line type for edge borders; may be given as a vector, adjacency matrix, or edge
attribute name, if edge borders are to have different line types.

label.lty line type for label boxes (if boxed.labels==TRUE); may be given as a vector, if
label boxes are to have different line types.

vertex.lty line type for vertex borders; may be given as a vector or a vertex attribute name,
if vertex borders are to have different line types.

edge.lwd line width scale for edges; if set greater than 0, edge widths are scaled by
edge.lwd*dat. May be given as a vector, adjacency matrix, or edge attribute
name, if edges are to have different line widths.
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label.lwd line width for label boxes (if boxed.labels==TRUE); may be given as a vector,
if label boxes are to have different line widths.

edge.len if uselen==TRUE, curved edge lengths are scaled by edge.len.

edge.curve if usecurve==TRUE, the extent of edge curvature is controlled by edge.curv.
May be given as a fixed value, vector, adjacency matrix, or edge attribute name,
if edges are to have different levels of curvature.

edge.steps for curved edges (excluding loops), the number of line segments to use for the
curve approximation.

loop.steps for loops, the number of line segments to use for the curve approximation.

object.scale base length for plotting objects, as a fraction of the linear scale of the plotting
region. Defaults to 0.01.

uselen boolean; should we use edge.len to rescale edge lengths?

usecurve boolean; should we use edge.curve?

suppress.axes boolean; suppress plotting of axes?

vertices.last boolean; plot vertices after plotting edges?

new boolean; create a new plot? If new==FALSE, vertices and edges will be added to
the existing plot.

layout.par parameters to the network.layout function specified in mode.

cex.main Character expansion for the plot title.

cex.sub Character expansion for the plot sub-title.

seed Integer for seeding random number generator. See set.seed.

latent.control A list of parameters to control the latent and latentPrior models, dyadsample
determines the size above which to sample the latent dyads; see ergm and optim
for details.

colornames A vector of color names that can be selected by index for the plot. By default it
is colors().

verbose logical; if this is TRUE, we will print out more information as we run the function.

latent logical; use a two-dimensional latent space model based on the MLE fit. See
documentation for ergmm() in latentnet.

... additional arguments to plot.

Details

plot.network is a version of the standard network visualization tool within the sna package. By
means of clever selection of display parameters, a fair amount of display flexibility can be obtained.
Network layout – if not specified directly using coord – is determined via one of the various avail-
able algorithms. These are (briefly) as follows:

1. latentPrior: Use a two-dimensional latent space model based on a Bayesian minimum
Kullback-Leibler fit. See documentation for latent() in ergm.

2. random: Vertices are placed (uniformly) randomly within a square region about the origin.

3. circle: Vertices are placed evenly about the unit circle.
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4. circrand: Vertices are placed in a “Gaussian donut,” with distance from the origin following
a normal distribution and angle relative to the X axis chosen (uniformly) randomly.

5. eigen, princoord: Vertices are placed via (the real components of) the first two eigenvectors
of:

(a) eigen: the matrix of correlations among (concatenated) rows/columns of the adjacency
matrix

(b) princoord: the raw adjacency matrix.

6. mds, rmds, geodist, adj, seham: Vertices are placed by a metric MDS. The distance matrix
used is given by:

(a) mds: absolute row/column differences within the adjacency matrix
(b) rmds: Euclidean distances between rows of the adjacency matrix
(c) geodist: geodesic distances between vertices within the network
(d) adj: (maxA)−A, where A is the raw adjacency matrix
(e) seham: structural (dis)equivalence distances (i.e., as per sedist in the package sna)

based on the Hamming metric

7. spring, springrepulse: Vertices are placed using a simple spring embedder. Parameters for
the embedding model are given by embedder.params, in the following order: vertex mass;
equilibrium extension; spring coefficient; repulsion equilibrium distance; and base coefficient
of friction. Initial vertex positions are in random order around a circle, and simulation pro-
ceeds – increasing the coefficient of friction by the specified base value per unit time – until
“motion” within the system ceases. If springrepulse is specified, then an inverse-cube repul-
sion force between vertices is also simulated; this force is calibrated so as to be exactly equal
to the force of a unit spring extension at a distance specified by the repulsion equilibrium
distance.

Value

None.

Requires

mva

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Wasserman, S., and Faust, K. (1994). “Social Network Analysis: Methods and Applications.”
Cambridge: Cambridge University Press.

See Also

plot
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Examples

data(florentine)
plot(flomarriage) #Plot the Florentine Marriage data
plot(network(10)) #Plot a random network
## Not run: plot(flomarriage,interactive="points")

print.ergm Exponential Random Graph Models

Description

print.ergm is the method used to print an ergm object created by the ergm function.

Usage

## S3 method for class 'ergm'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x An ergm object. See documentation for ergm.

digits Significant digits for coefficients

... Additional arguments, to be passed to lower-level functions in the future.

Details

Automatically called when an object of class ergm is printed. Currently, print.ergm summarizes

the size of the MCMC sample, the theta vector governing the selection of the sample, and the Monte
Carlo MLE.

Value

The value returned is the ergm object itself.

See Also

network, ergm

Examples

data(florentine)

x <- ergm(flomarriage ~ density)
class(x)
x
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samplk Longitudinal networks of positive affection within a monastery as a
“network" object

Description

Sampson (1969) recorded the social interactions among a group of monks while resident as an
experimenter on vision, and collected numerous sociometric rankings. During his stay, a political
“crisis in the cloister" resulted in the expulsion of four monks (Nos. 2, 3, 17, and 18) and the
voluntary departure of several others - most immediately, Nos. 1, 7, 14, 15, and 16. (In the end,
only 5, 6, 9, and 11 remained). Of particular interest is the data on positive affect relations (“liking"),
in which each monk was asked if they had positive relations to each of the other monks.

The data were gathered at three times to capture changes in group sentiment over time: samplk1,
samplk2, and samplk3. They represent three time points in the period during which a new cohort
entered the monastery near the end of the study but before the major conflict began.

Each member ranked only his top three choices on “liking."

(Some subjects offered tied ranks for their top four choices). A tie from monk A to monk B exists
if A nominated B as one of his three best friends at that that time point.

samplk3 is a data set of Hoff, Raftery and Handcock (2002).

See also the data set sampson containing the time-aggregated graph samplike.

It is the cumulative tie for “liking" over the three periods. For this, a tie from monk A to monk B
exists if A nominated B as one of his three best friends at any of the three time points.

All graphs are stored as network objects. They have three vertex attributes:

group Groups of novices as classified by Sampson: "Loyal", "Outcasts", and "Turks". There is
also an interstitial group not represented here.

cloisterville An indicator if attendance the minor seminary of “Cloisterville" before coming to the
monastery.

vertex.names The given names of the novices.

This data set is standard in the social network analysis literature, having been modeled by Holland
and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), and Fienberg, Meyer,
and Wasserman (1981), Hoff, Raftery, and Handcock (2002), etc. This is only a small piece of the
data collected by Sampson.

This dataset was updated for version 2.5 (March 2012) to add the cloisterville variable and
refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original
vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8,
Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17,
Simp_18.

Usage

data(samplk)
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Source

Sampson, S.~F. (1968), A novitiate in a period of change: An experimental and case study of
relationships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

References

White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. I.
Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.

Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj (2005) Exploratory Social Network Analysis
with Pajek, Cambridge: Cambridge University Press

See Also

sampson, florentine, network, plot.network, ergm

sampson Cumulative network of positive affection within a monastery as a “net-
work" object

Description

Sampson (1969) recorded the social interactions among a group of monks while resident as an
experimenter on vision, and collected numerous sociometric rankings. During his stay, a political
“crisis in the cloister" resulted in the expulsion of four monks (Nos. 2, 3, 17, and 18) and the
voluntary departure of several others - most immediately, Nos. 1, 7, 14, 15, and 16. (In the end,
only 5, 6, 9, and 11 remained). Of particular interest is the data on positive affect relations (“liking"),
in which each monk was asked if they had positive relations to each of the other monks.

The data were gathered at three times to capture changes in group sentiment over time. They
represent three time points in the period during which a new cohort entered the monastery near the
end of the study but before the major conflict began.

Each member ranked only his top three choices on “liking."

(Some subjects offered tied ranks for their top four choices). A tie from monk A to monk B exists
if A nominated B as one of his three best friends at that that time point.

samplike is the time-aggregated graph.

It is the cumulative tie for “liking" over the three periods. For this, a tie from monk A to monk B
exists if A nominated B as one of his three best friends at any of the three time points.

The graph is stored as an network objects. It has three vertex attributes:

group Groups of novices as classified by Sampson: "Loyal", "Outcasts", and "Turks". There is
also an interstitial group not represented here.

cloisterville An indicator of attendance the minor seminary of “Cloisterville" before coming to the
monastery.

vertex.names The given names of the novices.

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm
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This data set is standard in the social network analysis literature, having been modeled by Holland
and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), and Fienberg, Meyer,
and Wasserman (1981), Hoff, Raftery, and Handcock (2002), etc. This is only a small piece of the
data collected by Sampson.

This dataset was updated for version 2.5 (March 2012) to add the cloisterville variable and
refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original
vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8,
Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17,
Simp_18.

Usage

data(sampson)

Source

Sampson, S.~F. (1968), A novitiate in a period of change: An experimental and case study of
relationships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

References

White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. I.
Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.

Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj (2005) Exploratory Social Network Analysis
with Pajek, Cambridge: Cambridge University Press

See Also

florentine, network, plot.network, ergm

san Use Simulated Annealing to attempt to match a network to a vector of
mean statistics

Description

This function attempts to find a network or networks whose statistics match those passed in via the
target.stats vector.

Usage

## S3 method for class 'formula'
san(object,

response=NULL,
reference=~Bernoulli,
constraints=~.,

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm
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target.stats=NULL,
nsim=1,
basis=NULL,
sequential=TRUE,
control=control.san(),
verbose=FALSE,
...)

## S3 method for class 'ergm'
san(object,

formula=object$formula,
constraints=object$constraints,
target.stats=object$target.stats,
nsim=1,
basis=NULL,
sequential=TRUE,
control=object$control$SAN.control,
verbose=FALSE,
...)

Arguments

object Either a formula or an ergm object. The formula should be of the form y ~ <model terms>,
where y is a network object or a matrix that can be coerced to a network object.
For the details on the possible <model terms>, see ergm-terms. To create a
network object in R, use the network() function, then add nodal attributes to it
using the %v% operator if necessary.

response EXPERIMENTAL. Name of the edge attribute whose value is to be modeled.
Defaults to NULL for simple presence or absence.

reference EXPERIMENTAL. One-sided formula whose RHS gives the reference measure
to be used. (Defaults to ~Bernoulli.)

formula (By default, the formula is taken from the ergm object. If a different formula
object is wanted, specify it here.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a simi-
lar argument for ergm and see list of implemented constraints for more informa-
tion. For simulate.formula, defaults to no constraints. For simulate.ergm,
defaults to using the same constraints as those with which object was fitted.

target.stats A vector of the same length as the number of terms implied by the formula,
which is either object itself in the case of san.formula or object$formula in
the case of san.ergm.

nsim Number of desired networks.

basis If not NULL, a network object used to start the Markov chain. If NULL, this is
taken to be the network named in the formula.

sequential Logical: If TRUE, the returned draws always use the prior draw as the starting
network; if FALSE, they always use the original network.

control A list of control parameters for algorithm tuning; see control.san.
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verbose Logical: If TRUE, print out more detailed information as the simulation runs.

... Further arguments passed to other functions.

Value

A network or list of networks that hopefully have network statistics close to the target.stats
vector.

simulate.ergm Draw from the distribution of an Exponential Family Random Graph
Model

Description

simulate is used to draw from exponential family random network models in their natural param-
eterizations. See ergm for more information on these models.

Usage

## S3 method for class 'formula'
simulate(object, nsim=1, seed=NULL,

coef,
response=NULL, reference=~Bernoulli,
constraints=~.,
monitor=NULL,
basis=NULL,
statsonly=FALSE,
sequential=TRUE,
control=control.simulate.formula(),
verbose=FALSE,
...)

## S3 method for class 'ergm'
simulate(object, nsim=1, seed=NULL,

coef=object$coef,
response=object$response, reference=object$reference,
constraints=object$constraints,
monitor=NULL,
statsonly=FALSE,
sequential=TRUE,
control=control.simulate.ergm(),
verbose=FALSE,
...)
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Arguments

object an R object. Either a formula or an ergm object. The formula should be of the
form y ~ <model terms>, where y is a network object or a matrix that can be
coerced to a network object. For the details on the possible <model terms>,
see ergm-terms. To create a network object in R, use the network() function,
then add nodal attributes to it using the %v% operator if necessary.

nsim Number of networks to be randomly drawn from the given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

seed Random number integer seed. See set.seed.

coef Vector of parameter values for the model from which the sample is to be drawn.
If object is of class ergm, the default value is the vector of estimated coeffi-
cients.

response EXPERIMENTAL. Name of the edge attribute whose value is to be modeled.
Defaults to NULL for simple presence or absence, modeled via binary ERGM
terms. Passing anything but NULL uses valued ERGM terms.

reference EXPERIMENTAL. A one-sided formula specifying the reference measure (h(y))
to be used. (Defaults to ~Bernoulli.) See help for ERGM reference measures
implemented in the ergm package.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a simi-
lar argument for ergm and see list of implemented constraints for more informa-
tion. For simulate.formula, defaults to no constraints. For simulate.ergm,
defaults to using the same constraints as those with which object was fitted.

monitor A one-sided formula specifying one or more terms whose value is to be moni-
tored. These terms are appeneded to the model, along with a coefficient of 0, so
their statistics are returned.

basis An optional network object to start the Markov chain. If omitted, the default
is the left-hand-side of the formula. If neither a left-hand-side nor a basis is
present, an error results because the characteristics of the network (e.g., size and
directedness) must be specified.

statsonly Logical: If TRUE, return only the network statistics, not the network(s) them-
selves.

sequential Logical: If FALSE, each of the nsim simulated Markov chains begins at the
initial network. If TRUE, the end of one simulation is used as the start of the
next. Irrelevant when nsim=1.

control A list of control parameters for algorithm tuning. Constructed using control.simulate.ergm
or control.simulate.formula, which have different defaults.

verbose Logical: If TRUE, extra information is printed as the Markov chain progresses.

... Further arguments passed to or used by methods.

Details

A sample of networks is randomly drawn from the specified model. The model is specified by the
first argument of the function. If the first argument is a formula then this defines the model. If the
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first argument is the output of a call to ergm then the model used for that call is the one fit - and
unless coef is specified, the sample is from the MLE of the parameters. If neither of those are given
as the first argument then a Bernoulli network is generated with the probability of ties defined by
prob or coef.

Note that the first network is sampled after burnin + interval steps, and any subsequent networks
are sampled each interval steps after the first.

More information can be found by looking at the documentation of ergm.

Value

If statsonly==TRUE a matrix containing the simulated network statistics. If control$parallel>0,
the statistics from each Markov chain are stacked.

Otherwise, if nsim==1, an object of class network. If nsim>1, it returns an object of class network.list:
a list of networks with the following attr-style attributes on the list:

formula The formula used to generate the sample.

stats The nsim × p matrix of network statistics, where p is the number of network
statistics specified in the model.

control Control parameters used to generate the sample.

constraints Constraints used to generate the sample.

reference The reference measure for the sample.

monitor The monitoring formula.

response The edge attribute used as a response.

If statsonly==FALSE && control$parallel>0 the returned networks are "interleaved", in the
sense that for y[i,j] is the jth network from MCMC chain i, the sequence returned if control$parallel==2
is list(y[1,1], y[2,1], y[1,2], y[2,2], y[1,3], y[2,3], ...). This is different from
the behavior when statsonly==TRUE. This detail may change in the future.

This object has summary and print methods.

See Also

ergm, network

Examples

#
# Let's draw from a Bernoulli model with 16 nodes
# and density 0.5 (i.e., coef = c(0,0))
#
g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0, 0))
#
# What are the statistics like?
#
summary(g.sim ~ edges + mutual)
#
# Now simulate a network with higher mutuality
#



summary.ergm 103

g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0,2))
#
# How do the statistics look?
#
summary(g.sim ~ edges + mutual)
#
# Let's draw from a Bernoulli model with 16 nodes
# and tie probability 0.1
#
g.use <- network(16,density=0.1,directed=FALSE)
#
# Starting from this network let's draw 3 realizations
# of a edges and 2-star network
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8,0.03),

basis=g.use, control=control.simulate(
MCMC.burnin=1000,
MCMC.interval=100))

g.sim
summary(g.sim)
#
# attach the Florentine Marriage data
#
data(florentine)
#
# fit an edges and 2-star model using the ergm function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
summary(gest)
#
# Draw from the fitted model (satatistics only), and observe the number
# of triangles as well.
#
g.sim <- simulate(gest, nsim=10,

monitor=~triangles, statsonly=TRUE,
control=control.simulate.ergm(MCMC.burnin=1000, MCMC.interval=100))

g.sim

summary.ergm Summarizing ERGM Model Fits

Description

summary method for class "ergm".

Usage

## S3 method for class 'ergm'
summary(object, ...,

digits = max(3, getOption("digits") - 3),
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correlation = FALSE, covariance = FALSE,
total.variation=TRUE,
eps = 1e-04)

Arguments

object an object of class "ergm", usually, a result of a call to ergm.

digits Significant digits for coefficients

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

covariance logical; if TRUE, the covariance matrix of the estimated parameters is returned
and printed.

total.variation

logical; if TRUE, the standard errors reported in the Std. Error column are
based on the sum of the likelihood variation and the MCMC variation. If FALSE
only the likelihood varuation is used. The p-values are based on this source of
variation.

eps number; indicates the smallest p-value. See printCoefmat.

... Arguments to logLik.ergm

Details

summary.ergm tries to be smart about formatting the coefficients, standard errors, etc.

Value

The function summary.ergm computes and returns a list of summary statistics of the fitted ergm
model given in object.

See Also

network, ergm, print.ergm. The model fitting function ergm, summary.

Function coef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

Examples

data(florentine)

x <- ergm(flomarriage ~ density)
summary(x)
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summary.gofobject Summaries the Goodness-of-Fit Diagnostics on a Exponential Family
Random Graph Model

Description

summary.gofobject summaries the diagnostics such as the degree distribution, geodesic distances,
shared partner distributions, and reachability for the goodness-of-fit of exponential family random
graph models. See ergm for more information on these models.

Usage

## S3 method for class 'gofobject'
summary(object, ...)

Arguments

object an object of class gofobject, typically produced by the gof.ergm or gof.formula
functions. See the documentation for these.

... Additional arguments, to be passed to the plot function.

Details

gof.ergm produces a sample of networks randomly drawn from the specified model. This function
produces a print out the summary measures.

Value

none

See Also

gof.ergm, gof.formula, ergm, network, simulate.ergm

Examples

## Not run:
#
data(florentine)
#
# test the gof.ergm function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
gest
summary(gest)

#
# Plot the probabilities first
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#
gofflo <- gof(gest)
gofflo
summary(gofflo)

## End(Not run)

summary.network.list Summarizing network.list objects

Description

summary and print methods for class network.list.

Usage

## S3 method for class 'network.list'
summary(object,

stats.print=TRUE,
net.print=FALSE,
net.summary=FALSE,
...)

## S3 method for class 'network.list'
print(x, stats.print=FALSE, ...)

Arguments

object, x an object of class network.list, such as the output from simulate.ergm

stats.print Logical: If TRUE, print network statistics.

net.print Logical: If TRUE, print network overviews.

net.summary Logical: If TRUE, print network summaries.

... Additional arguments to be passed to lower-level functions.

Value

The summary.network.list function returns a summary.network object. The print.summary.list
function calls the summary.network.list function but returns the network.list object.

See Also

simulate.ergm
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Examples

# Draw from a Bernoulli model with 16 nodes
# and tie probability 0.1
#
g.use <- network(16, density=0.1, directed=FALSE)
#
# Starting from this network let's draw 3 realizations
# of a model with edges and 2-star terms
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8, 0.03),

basis=g.use, control=control.simulate(
MCMC.burnin=100000,
MCMC.interval=1000))

print(g.sim)
summary(g.sim)

summary.statistics Calculation of network or graph statistics

Description

Used to calculate the specified statistics for an observed network if its argument is a formula for an
ergm. See ergm-terms for more information on the statistics that may be specified.

Usage

## Default S3 method:
summary.statistics(object, response=NULL, ..., basis=NULL)
## S3 method for class 'matrix'
summary.statistics(object, response=NULL, ..., basis=NULL)
## S3 method for class 'network'
summary.statistics(object, response=NULL, ..., basis=NULL)
## S3 method for class 'network.list'
summary.statistics(object, response=NULL, ..., basis=NULL)
## S3 method for class 'formula'
summary.statistics(object, ..., basis=NULL)
## S3 method for class 'ergm'
summary.statistics(object, ..., basis=NULL)

Arguments

object Either an R formula object (see above) or an ergm model object. In the latter
case, summary.statistics is called for the object$formula object. In the
former case, object is of the form y ~ <model terms>, where y is a network
object or a matrix that can be coerced to a network object. For the details on the
possible <model terms>, see ergm-terms. To create a network object in R, use
the network() function, then add nodal attributes to it using the %v% operator if
necessary.
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response Name of the edge attribute whose value is to be modeled. Defaults to NULL for
simple presence or absence, modeled via binary ERGM terms. Passing anything
but NULL uses valued ERGM terms.

basis An optional network object relative to which the global statistics should be
calculated.

... further arguments passed to or used by methods.

Details

If object is of class formula, then summary may be used in lieu of summary.statistics because
summary.formula calls the summary.statistics function.

The function actually cumulates the change statistics when removing edges from the observed net-
work one by one until the empty network results. Since each model term has a prespecified value
(zero by default) for the corresponding statistic(s) on an empty network, these change statistics give
the absolute statistics on the original network.

summary.formula for networks understands the lasttoggle "API".

Value

A vector of statistics measured on the network.

See Also

ergm, network, ergm-terms

Examples

#
# Lets look at the Florentine marriage data
#
data(florentine)
#
# test the summary.statistics function
#
summary(flomarriage ~ edges + kstar(2))
m <- as.matrix(flomarriage)
summary(m ~ edges) # twice as large as it should be
summary(m ~ edges, directed=FALSE) # Now it's correct

wtd.median Weighted Median

Description

Compute weighted median.
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Usage

wtd.median (x, na.rm = FALSE, weight=FALSE)

Arguments

x Vector of data, same length as weight

na.rm Logical: Should NAs be stripped before computation proceeds?

weight Vector of weights

Details

Uses a simple algorithm based on sorting.

Value

Returns an empirical .5 quantile from a weighted sample.
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