
Package ‘sideChannelAttack’
July 2, 2014

Version 1.0-6

Date 2013-04-12

Title Side Channel Attack

Author Liran Lerman <llerman@ulb.ac.be>, Gianluca Bontempi
<gbonte@ulb.ac.be>, Olivier Markowitch <olivier.markowitch@ulb.ac.be>

Maintainer Liran Lerman <llerman@ulb.ac.be>

Depends R (>= 2.10), MASS, corpcor, mmap, ade4, infotheo

Description This package has many purposes: first, it gives to the
community an R implementation of each known side channel attack
and countermeasures as well as data to test it, second it
allows to implement a side channel attack quickly and easily.

License GPL-3

URL http://student.ulb.ac.be/~llerman/

NeedsCompilation no

Repository CRAN

Date/Publication 2013-04-12 17:46:02

R topics documented:
sideChannelAttack-package . 2
dpa1 . 3
filter.MAX . 5
filter.mRMR . 6
filter.NULL . 7
filter.PCA . 8
filter.RegressionTreeFilter . 9
gaussian . 10
plot.verify.cv . 12

1

http://student.ulb.ac.be/~llerman/

2 sideChannelAttack-package

plot.verify.ho . 13
plot.verify.loo . 14
powerC . 15
simulator.Simple1 . 16
verify.cv . 17
verify.ho . 18
verify.loo . 20

Index 22

sideChannelAttack-package

Side channel attack

Description

Most embedded devices require security and privacy protection. Cryptography algorithms and pro-
tocols are designed with the aim to provide such security. However, cryptanalytics attacks based on
physical measures (such as the device power consumption named trace) realized on secure devices
can be used to challenge their actual security. These attacks called side channel attacks and consist
in retrieving secret data by observing physical properties of the device. Note that each observed
physical properties are described with a vector of real values and each component of this vector is
seen as a variable.

Side channel attacks are probably among the most dangerous attacks in cryptanalysis. However, we
observe that many scientific papers presenting new side channel attack do not give any implementa-
tion of their attacks neither any data would allowed to verify the claimed results. In other side, when
a researcher need to realize an attack, he/she has to implement it. This package has many purposes:
first, it gives to the community an R implementation of each known attack/countermeasure as well
as data to test it, second it allows to implement a side channel attack quickly and easily.

Details

This package is divided in 4 blocks.

The first block is the simulator that allows to simulate a cryptographic device without any knowl-
edge of VHDL, FPGA, etc. On the base of a key and messages, it provides a physical measure
such as power consumption. Its goal is to facilitate and accelerate the collect of data, to compare
attacks with the same dataset and to implement countermeasures. Note that simulator can be catego-
rized into several groups depending on their level of abstraction: at the gate level, at the instruction
level and the function level, etc. And note that you can obtain traces through powerC given in this
package.

The second block is the filter, a feature selection, intended to reduce the number of points per
trace and therefore to accelerate the attack.

The third is the model (an attack) which returns the key used by the cryptographic device knowing
a trace.

The last block is the verify function who estimates the quality of the attacks and the corresponding
countermeasures. It can be based on the execution time of the attack, the amount of memory used,

dpa1 3

the number of power consumption traces required or only by the number of times the model predicts
correctly the key.

Author(s)

Liran Lerman & Gianluca Bontempi & Olivier Markowitch

References

P. C. Kocher & J. Jaffe & B. Jun, (1999), Differential Power Analysis: Leaking Secrets, In Proc.
Crypto ’99, Springer-Verlag, LNCS 1666, pages 388-397.

P. C. Kocher, (1996), Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems, Neal Koblitz, Advances in Cryptology - CRYPTO’96, volume 1109 de Lecture Notes in
Computer Science, pages 104-113. Springer-Verlag.

K. Gandolfi & C. Mourtel & F. Olivier, (2001), Electromagnetic analysis: Concrete results, CHES
2001, C. K. Koc, D. Naccache, and C. Paar, Eds., vol. 2162 of LNCS, pp. 255-265, Springer-Verlag.

S. Chari & J. R. Rao & P. Rohatgi, (2002), Template Attacks , in CHES, volume 2523 of LNCS,
pages 13-28. Springer.

L. Lerman & G. Bontempi & O. Markowitch, (2011) Side Channel Attack: an Approach based
on Machine Learning. In the Proceedings of 2nd International Workshop on Constructive Side-
Channel Analysis and Security Design, COSADE 2011.

Examples

#data collection
data(powerC)
traces = powerC[,-301]
traces = traces[,1:100]
key = powerC[,301]
newIndice = sample(1:256)
traces = traces[newIndice,]
key = key[newIndice]+1

#model checking
attack=verify.ho(model=gaussian,filter=filter.PCA,Xlearn=traces[1:128,],Ylearn=key[1:128],Xval=traces[129:256,],Yval=key[129:256],nbreVarX=c(2:3))
plot(attack)

dpa1 DPA

Description

The dpa1 function applies a Differential Power Analysis (DPA) to a set of traces in order to find the
key used by the cryptographic device.

Usage

dpa1(x, y,...)

4 dpa1

Arguments

x A matrix where each row is a trace.

y A vector where the ith element of the vector y is the key for the ith trace in the
matrix x.

... Currently ignored.

Details

The dpa1 function is an example of DPA. It calculates the average Xi of traces for each key Yi.
Then, to estimate the key from a trace T , it returns the key Yi which maximizes the equation
argmaxYi

(cor(T,Xi))

Value

The dpa1 function returns an object which knowing a trace can be used with the predict function
that estimates the value of the key. The value of this function is an object of class dpa1, which is a
list with the following components:

mean a list of arithmetics means, one for each possible key

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

References

P. C. Kocher & J. Jaffe & B. Jun, (1999), "Differential Power Analysis: Leaking Secrets", In Proc.
Crypto ’99, Springer-Verlag, LNCS 1666, pages 388-397.

Examples

#data collection
data(powerC)
traces = powerC[,-301]
key = powerC[,301]+1

#model creation
attack=dpa1(traces[-1,],factor(key[-1]))

#model prediction
predict(attack, traces[1,])

filter.MAX 5

filter.MAX filter.MAX

Description

The filter.MAX function returns the maximum values of a physical measure.

Usage

filter.MAX(nbreVarX_,...)

Arguments

nbreVarX_ The number of variables which represents each physical measures after the re-
duction.

... Currently ignored.

Details

The filter.MAX function is the feature selection MAX. It converts a set of physical measures to
another one with less components.

Value

The filter.MAX function returns an object which can be used with the predict function to reduce
each physical measure. This physical measure can be the same or another one than contained in X .

The value of this function is an object of class filter.MAX, which is a list with the following
components:

nbreVarX number of component to get after the reduction of a physical measure.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

Examples

#data collection
data(powerC)
traces = powerC[,-301]
key = powerC[,301]

#model creation
attack=filter.MAX(nbreVarX_=2)

#model prediction
predict(attack,t(traces[1,]))

6 filter.mRMR

filter.mRMR filter.mRMR

Description

The filter.mRMR function applies the feature selection mRMR to a set of physical measures.

Usage

filter.mRMR(X,Y,nbreVarX_,...)

Arguments

X A matrix where each row is a physical measure.

Y A vector where the ith element of the vector y is the key for the ith physical
measure in the matrix x.

nbreVarX_ Number of component to get after the reduction by the mRMR of a physical
measure.

... Currently ignored.

Details

The filter.mRMR function is the feature selection mRMR. It returns an object which can be used
with the predict function to convert a set of physical measures to another one with less variables.

Value

The filter.mRMR function returns an object which can use with the predict function to reduce
each physical measure. This physical measure can be the same or an other one than contained in X .

The value of this function is an object of class filter.mRMR, which is a list with the following
components:

filter sorted list of the best variables returned by the mRMR algorithm.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

References

H. Peng & F. Long & C. Ding, (2005), "Feature Selection based on Mutual Infor- mation : Cri-
teria of Max-Dependency, Max-Relevance, and Min-Redundancy", IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 27, No 8, pp 1226-1238.

filter.NULL 7

Examples

#data collection
data(powerC)
traces = powerC[,-301]
key = powerC[,301]

#model creation
attack=filter.mRMR(X=traces[-1,1:10],Y=key[-1],nbreVarX_=2)

#model prediction
predict(attack,t(traces[1,]))

filter.NULL filter.NULL

Description

The filter.NULL function applies the feature selection NULL to a set of physical measures. In
other words, it returns all this data.

Usage

filter.NULL(...)

Arguments

... Currently ignored.

Details

The filter.NULL function is the feature selection NULL. It returns an object which can be used
with the predict function to convert a set of physical measures to another one. But in this particular
case, it returns all the data without reduction.

Value

The filter.NULL function returns an object which can be used with the predict function to reduce
each physical measure. This data can be the same or an other one than contained in X .

The value of this function is an object of class filter.NULL, which is a list without element.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

8 filter.PCA

Examples

#data collection
data(powerC)
traces = powerC[,-301]
key = powerC[,301]

#model creation
attack=filter.NULL()

#model prediction
predict(attack,t(traces[1,]))

filter.PCA filter.PCA

Description

The filter.PCA function applies the feature selection Principal Component Analysis (PCA) to a
set of physical measures.

Usage

filter.PCA(X,nbreVarX_,...)

Arguments

X A matrix where each row is a physical measures.

nbreVarX_ The number of variables which represents each physical measures after the re-
duction by the PCA.

... Currently ignored.

Details

The filter.PCA function is the feature selection PCA. It converts a set of physical measures to
another one with less components.

Value

The filter.PCA function returns an object which can be used with the predict function to reduce
each physical measure. This physical measure can be the same or another one than contained in X .

The value of this function is an object of class filter.PCA, which is a list with the following
components:

mod a model of PCA.

nbreVarX number of component to get after the projection by the PCA of a physical mea-
sure.

filter.RegressionTreeFilter 9

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

References

K. Pearson, (1901), "On Lines and Planes of Closest Fit to Systems of Points in Space", Philosoph-
ical Magazine 2 (6), pp. 559-572.

Examples

#data collection
data(powerC)
traces = powerC[,-301]
traces = traces[,1:100]
key = powerC[,301]

#model creation
attack=filter.PCA(X=traces[-1,],nbreVarX_=2)

#model prediction
predict(attack,t(traces[1,]))

filter.RegressionTreeFilter

filter.RegressionTreeFilter

Description

The filter.RegressionTreeFilter function implements the feature selection RegressionTreeFilter
to a set of physical measures.

Usage

filter.RegressionTreeFilter(X,nbreVarX_,...)

Arguments

X A matrix where each row is a physical measure.
nbreVarX_ The number of variables which represents each physical measure after the re-

duction by the RegressionTreeFilter.
... Currently ignored.

Details

The filter.RegressionTreeFilter function is the feature selection RegressionTreeFilter. It re-
turns an object which can be used with the predict function to convert a set of physical measures
to another one with less variables.

10 gaussian

Value

The filter.RegressionTreeFilter function returns an object which can be used with the predict
function to reduce each physical measure. This side channel can be the same or an other one than
contained in X .

The value of this function is an object of class filter.RegressionTreeFilter, which is a list
with the following components:

nbreVarX number of variable to get after the projection in the new basis.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

References

Pierre Geurts. 2001. Pattern Extraction for Time Series Classification. In Proceedings of the 5th
European Conference on Principles of Data Mining and Knowledge Discovery (PKDD ’01), Luc
De Raedt and Arno Siebes (Eds.). Springer-Verlag, London, UK, 115-127.

Examples

#data collection
data(powerC)
traces = powerC[,-301]
key = powerC[,301]

#model creation
attack=filter.RegressionTreeFilter(X=traces[-1,],nbreVarX_=2)

#model prediction
predict(attack,t(traces[1,]))

gaussian Template Attack

Description

The gaussian function applies a template attack (TA) to a set of traces in order to find the key used
by the cryptographic device.

Usage

gaussian(x, y,...)

gaussian 11

Arguments

x A matrix where each row is a trace.

y A vector where the ith element of the vector y is the key for the ith trace in the
matrix x.

... Currently ignored.

Details

The gaussian function is an example of TA. It estimates the conditional probability of the trace
for each key and then returns the key which maximizes this probability. It extracts all possible
informations available in each trace and is hence the strongest form of side channel attack possible
in an information theoretic sense that relies on a parametric Gaussian estimation approach.

Value

The gaussian function returns an object which can be used with the predict function to estimate
the value of the key knowing a trace.

The value of this function is an object of class gaussian, which is a list with the following compo-
nents:

mean a list of arithmetic means, one for each possible key.

cov a list of covariance matrices, one for each possible key.

detCov a list of determinants of each covariance matrice.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

References

S. Chari & J. R. Rao & P. Rohatgi, (2002), "Template Attacks" , in CHES, volume 2523 of LNCS,
pages 13-28. Springer.

Examples

#data collection
data(powerC)
traces = powerC[,-301]
traces = traces[,1:100]
key = powerC[,301]+1

#feature selection
filter = filter.PCA(X=traces,nbreVarX_=2)
traces = predict(filter,traces)

#model creation
attack=gaussian(traces[-1,],factor(key[-1]))

12 plot.verify.cv

#model prediction
predict(attack,traces[1,])

plot.verify.cv plot.verify.cv

Description

Plot the quality of an attack of a verify.cv object.

Usage

S3 method for class 'verify.cv'
plot(x, ...)

Arguments

x An objet of class ’verify.cv’.

... Currently ignored.

Details

The verify.cv function estimates the quality of the attack with a k-cross-validation approach and
this function plots it.

Value

This function plots the quality of an attack of a verify.cv object.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

Examples

#data collection
data(powerC)
traces = powerC[,-301]
traces = traces[,1:10]
key = powerC[,301]
newIndice = c(sample(1:128,15),sample(129:256,15))
traces = traces[newIndice,]
key = key[newIndice]+1

#model checking
attack=verify.cv(model=dpa1,filter=filter.PCA,X=traces,Y=key,nbreVarX=c(2:4),k=3)
plot(attack)

plot.verify.ho 13

plot.verify.ho plot.verify.ho

Description

Plot the quality of an attack of a verify.ho object.

Usage

S3 method for class 'verify.ho'
plot(x, ...)

Arguments

x An objet of class ’verify.ho’.

... Currently ignored.

Details

The verify.ho function estimates the quality of the attack with a hold-out approach and this func-
tion plots it.

Value

This function plots the quality of an attack of a verify.ho object.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

Examples

#data collection
data(powerC)
traces = powerC[,-301]
traces = traces[,1:10]
key = powerC[,301]
newIndice = sample(1:256)
traces = traces[newIndice,]
key = key[newIndice]+1

#model checking
attack=verify.ho(model=gaussian,filter=filter.PCA,Xlearn=traces[1:128,],Ylearn=key[1:128],Xval=traces[129:256,],Yval=key[129:256],nbreVarX=c(2:4))
plot(attack)

14 plot.verify.loo

plot.verify.loo plot.verify.loo

Description

Plot the quality of an attack of a verify.loo object.

Usage

S3 method for class 'verify.loo'
plot(x, ...)

Arguments

x An objet of class ’verify.loo’.

... Currently ignored.

Details

The verify.loo function estimates the quality of the attack with a hold-out approach and this
function plots it.

Value

This function plots the quality of an attack of a verify.loo object.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

Examples

#data collection
data(powerC)
traces = powerC[,-301]
traces = traces[,1:10]
key = powerC[,301]
newIndice = c(sample(1:128,15),sample(129:256,15))
traces = traces[newIndice,]
key = key[newIndice]+1

#model checking
attack=verify.loo(model=dpa1,filter=filter.mRMR,X=traces,Y=key,nbreVarX=c(2:3))
plot(attack)

powerC 15

powerC Power Consumption Data

Description

This is a set of traces from a cryptographic device Xilinx Spartan XC3s5000 running at a frequency
around 33 MHz and collected by an oscilloscope Agile infiniium DSO80204B 2Ghz 40GSa/s.
The cryptographic device implemented the bloc cipher ‘Triple Data Encryption Algorithm’ and the
traces have been reduced with the feature selection mRMR in order to obtain only 300 components
from 20001 initially.

Usage

data(powerC)

Format

powerC is a matrix with 256 rows and 301 columns. From the first to the 300th component of
powerC, each row is a trace. The secret to retrieve by these traces is a bit of the secret key used by
the cryptographic device. The value of this bit is given by the 301th component of powerC.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

Examples

#data collection
data(powerC)
traces = powerC[,-301]
key = powerC[,301]+1

#model creation
attack=dpa1(traces[-1,],factor(key[-1]))

#model prediction
predict(attack,traces[1,])

16 simulator.Simple1

simulator.Simple1 simulator.Simple1

Description

The simulator.Simple1 function simulates an unprotected cryptographic device implementing a
bloc cipher.

Usage

simulator.Simple1(message, key, noise=0)

Arguments

message A matrix where each row is a binary plaintext of 6 components. Each component
has the value 1 or 0.

key A vector representing the binary secret key of 6 components. Each component
has 1 or 0.

noise A positive integer to represent noise on traces returned by this function. Higher
is its value, more there are noise on data.

Details

The simulator.Simple1 function allows to simulate a cryptographic device implementing a bloc
cipher. Its goal is to facilitate and to accelerate the collect of data and to compare attacks with the
same dataset. With a key and messages, it returns a trace which is the power consumption, in volts,
during an encryption by the cryptographic device.

The algorithm, implemented in the simulator.Simple1 function, is detailed below. First, it applies
the xor function between a messagei and the key. The result is inserted in a S-Box which is a
nonlinear function that takes 6 components and returns 4 components.

Then it calculates the hamming distance between the result and the previous result of the S-Box or
the value null when encrypting the first message.

The result of the hamming distance is a point in the trace.

Value

The simulator.Simple1 function returns a trace which represents the power consumption, in volts,
during an encryption by a cryptographic device.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

verify.cv 17

References

E. Peeters & F-X Standaert & N Donckers & J-J Quisquater, (2005), "Improved Higher-Order Side-
Channel Attacks with FPGA Experiments", CHES, pp. 309-323.

Examples

n=100
clee = c(round(runif(6)))
inp=matrix(round(runif(6*n)),ncol=6)

#creating a trace without noise through the simulator
traces=simulator.Simple1(inp,clee)

verify.cv verify.cv

Description

The verify.cv function allows to estimate the quality of a model (an attack) with a k-cross-
validation approach.

Usage

verify.cv(model, filter, X,Y, nbreVarX, k, param.model=list(), param.fs=list(), ...)

Arguments

model A model such as randomForest, gaussian, svm, etc.

filter A feature selection such as filter.PCA, filter.mRMR, etc.

X A matrix where each row is a physical measure.

Y A vector where the ith element of the vector y is the key for the ith physical
measure in the matrix x.

nbreVarX The number of variables which represents each physical measure after the re-
duction by the feature selection.

k The number of traces in the validation set.

param.model A list of parameters to insert into the model.

param.fs A list of parameters to insert into the feature selection algorithm.

... Currently ignored.

Details

The verify.cv function estimates the quality of the attack with a k-cross-validation approach. It
is executed in N/k rounds. Each round uses N − k traces to learn a model and the remaining trace
to assess the generalization accuracy of the model. This is repeated until every set of k traces has
been used for testing purposes. The best model is the one that maximizes the value returned by
k-cross-validation.

18 verify.ho

Value

The verify.cv function returns an object which can be used with the plot function to plot the
quality of the model.

TP number of true positive

TN number of true negative

FN number of false negative

FP number of false positive

dim the number of variables which represents each physical measure after the reduc-
tion by the feature selection.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

Examples

#data collection
data(powerC)
traces = powerC[,-301]
traces = traces[,1:10]
key = powerC[,301]
newIndice = c(sample(1:128,15),sample(129:256,15))
traces = traces[newIndice,]
key = key[newIndice]+1

#model checking
attack=verify.cv(model=dpa1,filter=filter.PCA,X=traces,Y=key,nbreVarX=c(2:4),k=2)
plot(attack)

verify.ho verify.ho

Description

The verify.ho function allows to estimate the quality of a model (an attack) with a hold-out ap-
proach.

Usage

verify.ho(model, filter, Xlearn, Ylearn, Xval, Yval, nbreVarX, param.model=list(), param.fs=list(), ...)

verify.ho 19

Arguments

model A model such as randomForest, gaussian, svm, etc.

filter A feature selection such as filter.PCA, filter.mRMR, etc.

Xlearn A matrix where each row is a physical measure for the training set.

Ylearn A vector where the ith element of the vector Y learn is the key for the ith

physical measure in the matrix Xlearn.

Xval A matrix where each row is a physical measure for the validation set.

Yval A vector where the ith element of the vector Y val is the key for the ith physical
measure in the matrix Xval.

nbreVarX The number of variables which represents each physical measure after the re-
duction by the feature selection.

param.model A list of parameters to insert into the model.

param.fs A list of parameters to insert into the feature selection algorithm.

... Currently ignored.

Details

The verify.ho function estimates the quality of the attack with a hold-out approach. It cuts ran-
domly the set of observations in two subsets. The first one is retained as the training and the second
is used for the validation phase where the quality of the model is estimatedby counting the number
of time where model predicts correctly the key.

Value

The verify.ho function returns an object which can be used with the plot function to plot the
quality of the model.

The value of this function is an object of class verify.ho, which is a list with the following com-
ponents:

TP number of true positive

TN number of true negative

FN number of false negative

FP number of false positive

dim the number of variables which represents each physical measure after the reduc-
tion by the feature selection.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

20 verify.loo

Examples

#data collection
data(powerC)
traces = powerC[,-301]
traces = powerC[,1:10]
key = powerC[,301]
newIndice = sample(1:256)
traces = traces[newIndice,]
key = key[newIndice]+1

#model checking
attack=verify.ho(model=gaussian,filter=filter.PCA,Xlearn=traces[1:128,],Ylearn=key[1:128],Xval=traces[128:256,],Yval=key[128:256],nbreVarX=c(3:4))
plot(attack)

verify.loo verify.loo

Description

The verify.loo function allows to estimate the quality of a model (an attack) with a leave-one-out
approach.

Usage

verify.loo(model, filter, X, Y, nbreVarX, param.model=list(), param.fs=list(), ...)

Arguments

model A model such as randomForest, gaussian, svm, etc.
filter A feature selection such as filter.PCA, filter.mRMR, etc.
X A matrix where each row is a physical measure.
Y A vector where the ith element of the vector y is the key for the ith physical

measure in the matrix x.
nbreVarX The number of variables which represents each physical measure after the re-

duction by the feature selection.
param.model A list of parameters to insert into the model.
param.fs A list of parameters to insert into the feature selection algorithm.
... Currently ignored.

Details

The verify.loo function estimates the quality of the attack with a leave-one-out approach. It is
executed in N rounds. Each round uses N − 1 traces to learn a model and the remaining trace to
assess the generalization accuracy of the model. This is repeated until every trace has been used for
testing purposes. The best model is the one that maximizes the value returned by leave-one-out.

The advantages of this estimation is its accuracy but the estimation process is expensive in a com-
putational point of view.

verify.loo 21

Value

The verify.loo function returns an object which can be used with the plot function to plot the
quality of the model.

TP number of true positive

TN number of true negative

FN number of false negative

FP number of false positive

dim the number of variables which represents each physical measure after the reduc-
tion by the feature selection.

Author(s)

Liran Lerman <llerman@ulb.ac.be> & Gianluca Bontempi <gbonte@ulb.ac.be@ulb.ac.be> &
Olivier Markowitch <olivier.markowitch@ulb.ac.be>

Examples

#data collection
data(powerC)
traces = powerC[,-301]
traces = powerC[,1:10]
key = powerC[,301]
newIndice = c(sample(1:128,15),sample(129:256,15))
traces = traces[newIndice,]
key = key[newIndice]+1

#model checking
attack=verify.loo(model=dpa1,filter=filter.PCA,X=traces,Y=key,nbreVarX=c(4:5))
plot(attack)

Index

dpa1, 3

filter.MAX, 5
filter.mRMR, 6
filter.NULL, 7
filter.PCA, 8
filter.RegressionTreeFilter, 9

gaussian, 10

plot.verify.cv, 12
plot.verify.ho, 13
plot.verify.loo, 14
powerC, 15
predict.dpa1 (dpa1), 3
predict.filter.MAX (filter.MAX), 5
predict.filter.mRMR (filter.mRMR), 6
predict.filter.NULL (filter.NULL), 7
predict.filter.PCA (filter.PCA), 8
predict.filter.RegressionTreeFilter

(filter.RegressionTreeFilter),
9

predict.gaussian (gaussian), 10

sideChannelAttack
(sideChannelAttack-package), 2

sideChannelAttack-package, 2
simulator.Simple1, 16

verify.cv, 17
verify.ho, 18
verify.loo, 20

22

	sideChannelAttack-package
	dpa1
	filter.MAX
	filter.mRMR
	filter.NULL
	filter.PCA
	filter.RegressionTreeFilter
	gaussian
	plot.verify.cv
	plot.verify.ho
	plot.verify.loo
	powerC
	simulator.Simple1
	verify.cv
	verify.ho
	verify.loo
	Index

