
An Introduction to Rclusterpp

Michael Linderman

Rclusterpp version 0.3.1.2.1 as of November 6, 2013

Abstract

The Rclusterpp package provides alternative implementations for common geometric hierarchical clus-
tering algorithms, e.g., average link clustering, that are optimized for large numbers of observations and
efficient execution on modern multicore processors. Rclusterpp can be used directly from R as a replace-
ment for stats::hclust, or as a linkable C++ library.

1 Introduction

Hierarchical clustering is a fundamental data analysis tool. However, the O(n2) memory footprint of
commonly available implementations, such as stats::hclust, which maintain the dissimilarity matrix in
memory (colloquially stored-distance) limit these implementations to tens of thousands of observations
or less. In the motivating domain for this work, flow cytometry, datasets are hundreds of thousands or
even millions of observations in size (but with comparatively low dimensionality, e.g., less than 30). In
this and other similar contexts building out the complete distance matrix is not possible and alternative
implementations with O(n) memory footprint are needed.

The memory requirements of hierarchical clustering have motivated the development of alternative
clustering algorithms that do not require the full dissimilarity matrix. Such algorithms are not the focus
of Rclusterpp. Instead we focus on the common situation wherein a complex data analysis pipeline,
which includes hierarchical clustering, is first designed and validated on smaller datasets, and only later
scaled to larger in inputs. In these cases, we wish to maintain the same functionality, an if possible
the same results, but scale efficiently. Thus the goal for Rclusterpp is to provide efficient “stored data”
implementations for common hierarchical clustering routines, e.g., single, complex, average and Ward’s
linkage, that scale to hundreds of thousands of observations while delivering results identical to the“stock”
stats::hclust implementation.

As an example, the following two statements produce identical results:

> h <- hclust(dist(USArrests, method="euclidean"), method="average")

> r <- Rclusterpp.hclust(USArrests, method="average", distance="euclidean")

> # Check equality of the dedrogram tree and agglomeration heights

> identical(h$merge, r$merge) && all.equal(h$height, r$height)

[1] TRUE

however, in the latter, the memory footprint is on the order of O(n) as opposed to O(n2), for n observa-
tions (ignoring the footprint of the data itself). When required, such as in the example above, Rclusterpp
purposely trades time for space to maintain a O(n) memory footprint. Section 2 includes a summary of
the complexity of each linkage method as implemented.

The computational demanding components of Rclusterpp are implemented in C++ using OpenMP1

to take advantage of multi-core processors and multi-processor shared memory computers. Thus even
when incurring additional computation costs to reduce the memory footprint Rclusterpp is faster than
stats::hclust, and in cases, such as Ward’s linkage, where no such trade-off exists, Rclusterpp can be
faster than even the “fast” stored-distance clustering packages like fastcluster. Sample benchmark results
are shown in Table 1.

In some applications, such as the WGCNA [4] algorithm that also motivated this work, the dissimi-
larity matrix is already computed in a previous stage of the workflow and thus there is no advantage to
be gained with stored-data approaches. However, memory footprint is still a concern. Those individuals

1OpenMP is only enabled on Linux and OSX due to issues with the pthreads compatibility DLL on Windows

1

Table 1: Execution time averaged across 5 runs for various clustering implementations (including distance
computation) for Ward’s minimum variance method for n × 10 input data measured on a quad-core 3.05
GHz Intel i7 950 server

Implementation Exec. Time (s) n
Rclusterpp 0.0006

100fastcluster 0.0008
hclust 0.0028
Rclusterpp 0.0036

500fastcluster 0.0208
hclust 0.2606
Rclusterpp 0.0092

1000fastcluster 0.1252
hclust 1.8012
Rclusterpp 0.1814

5000fastcluster 2.6246
hclust 199.1894

Table 2: Worst-case time and space complexities for the Rclusterpp stored-data implementation (not includ-
ing the original O(n ∗m) data footprint)

Method Algorithm Time Complexity Space Complexity
Average RNN O(n3 ∗m) O(n)
Complete RNN O(n3 ∗m) O(n)
Ward RNN O(n2 ∗m) O(n ∗m)
Single SLINK O(n2 ∗m) O(n)

who have attempted to cluster more than 46340 observations have discovered that R limits matrices to
231 elements or less. In these cases, it is desirable to perform all of the memory intensive components
of the workflow on the “C++ side”, where there is no such limit and where the implementor has more
control over the creation of temporaries. Rclusterpp exposes its various clustering implementations as a
templated library that can be linked against by other C++-backed R packages (modeled on the techniques
used in the Rcpp package).

2 Stored-data Hierarchical Clustering

Rclusterpp currently implements a subset of the clustering methods and distance metrics provided by
stats::hclust. Specifically, Rclusterpp currently supports the following linkage methods:

> Rclusterpp.linkageKinds()

[1] "ward" "average" "single" "complete"

and the following distance metrics:

> Rclusterpp.distanceKinds()

[1] "euclidean" "manhattan" "maximum" "minkowski"

The linkage methods are currently limited to reducible geometric methods that can implemented exactly
using the recursive nearest neighbor (RNN) algorithm [1].

Table 2 shows the estimated worst-case time and space complexities [2] for the algorithms used in
Rclusterpp. Ward’s and single-link are implemented with optimal time and space using the RNN and
SLINK [3] algorithms respectively; while average and complete-link trade increased time bounds, in
exchange for reducing the memory footprint to O(n) from O(n2).

As shown previously, the Rclusterpp.hclust function has a very similar interface to stats::hclust,
but will also accept a numeric matrix (instead of a dist object) and a distance metric. The return value
is the same hclust object as produced by stats::hclust.

2

Table 3: Execution time averaged across 5 runs for various clustering implementations (including distance
computation) for average-link/euclidean distance clustering on n × 10 input data measured on a quad-core
3.05 GHz Intel i7 950 server. RclusterppDistance is the stored-distance implementation and Rclusterpp

is the stored data implementation.
Implementation Exec. Time (s) n
fastcluster 0.0008

100RclusterppDistance 0.0014
Rclusterpp 0.0014
hclust 0.0028
fastcluster 0.0182

500RclusterppDistance 0.0220
Rclusterpp 0.0376
hclust 0.2354
fastcluster 0.1306

1000RclusterppDistance 0.1364
Rclusterpp 0.1508
hclust 1.7396
fastcluster 2.4642

5000RclusterppDistance 2.8008
Rclusterpp 5.5344
hclust 204.2906

Since the underlying components of the clustering implementation, including the RNN implementa-
tion, linkage methods and distance functions, are all exposed as a templated C++ library, users can
readily create derivative packages that implement custom clustering methodologies without starting
from scratch. Section 3 has more information on how to work with the C++ library (in the context
of stored-distance implementations, but the information is just as a applicable to stored-data). In ad-
dition, the interested user is pointed to the source for hclust_from_data, the C++ function called by
Rclusterpp.hclust, which is itself a consumer of the templated library.

3 Stored-distance Hierarchical Clustering (in C++)

Rclusterpp.hclust can be used as a limited-functionality replacement for stats::hclust, i.e., it will
accept a dist object as input. However, as shown Table 3, in this usage Rcpp is often slower than
fastcluster and other packages specifically optimized for this use case. Instead, Rclusterpp’s stored-
distance functionality is intended for use as linkable C++ library.

Rclusterpp is modeled on the Rcpp* family of packages. Rclusterpp provides its own skeleton function,
Rclusterpp.package.skeleton, which can be used to generate new packages that are setup to link against
the Rclusterpp library. Alternately one can use the inline package to compile C++ code from within R.
The Rclusterpp package includes an example “inline” function, shown below, which we will use as our
working example in this document.

> cat(readLines(system.file("examples","clustering.R",package="Rclusterpp")),sep="\n")

#!/usr/bin/env Rscript

library(Rclusterpp)

suppressMessages(require(inline))

basic_clustering <- function(data) {

fx <- cxxfunction(signature(data = "matrix"), '
using namespace Rclusterpp;

using namespace Eigen;

// Convert from R data structure to Eigen without any data copying (the "Map" part)

MapNumericMatrix data_e(as<MapNumericMatrix>(data));

3

// Compute the distance matrix. Note this can be bettter vectorized. Also

// note we create a strictly lower matrix.

Eigen::NumericMatrix data_d = Eigen::NumericMatrix::Zero(data_e.rows(), data_e.rows());

for (ssize_t i=0; i<(data_e.rows()-1); i++) {

for (ssize_t j=i+1; j<data_e.rows(); j++) {

data_d(j, i) = norm(data_e.row(i) - data_e.row(j)); // Euclidean distance

}

}

StrictlyLowerNumericMatrix data_t = data_d.triangularView<Eigen::StrictlyLower>();

typedef NumericCluster::plain cluster_type;

ClusterVector<cluster_type> clusters(data_t.rows()); // Create cluster vector

// Perform average link clustering via recursive nearest neighbor method

cluster_via_rnn(

average_link<cluster_type>(data_t, FromDistance),

init_clusters(data_t, clusters)

);

// Return merge, height, etc. to R...

return wrap(clusters);

',
plugin = "Rclusterpp", verbose=FALSE)

return(fx(data))

}

r <- basic_clustering(as.matrix(USArrests))

h <- hclust(dist(USArrests, method="euclidean"), method="average")

if (identical(r$merge, h$merge)) {

message("Success! Clustering output is the same between Rclusterpp and stats::hclust ...")

} else {

error("Failure! Clustering output doesn't match!")

}

Rclusterpp makes extensive use of Rcpp to build the interface between R and C++, and the Eigen
library (via RcppEigen) for matrix and vector operations. A working knowledge of both libraries will be
needed to effectively use Rclusterpp as this lower level.

Rclusterpp provides several convenience typedefs for working at the interface of Eigen and R, in this
case, we use MapNumericMatrix to wrap, or “map”, an Eigen Matrix around the R data pointer (and
thus no copy is involved) for use with Eigen operators. We further create a NumericMatrix to store the
distance matrix we will compute, and extract a reference to the strictly lower portion of that matrix for
use in the clustering routine.

At present, Rclusterpp assumes the dissimilarities are in the strictly lower portion of the matrix, and
will not work with other inputs.

Agglomerations are tracked in ClusterVector object. The user needs to select the appropriate cluster
type for their problem. A templated type factory, ClusterTypes is provided to assist in this selection
(NumericCluster is a convenience typedef for this factory for NumericMatrix).

typedef ClusterTypes <Rcpp:: NumericMatrix :: stored_type > NumericCluster;

NumericCluster ::plain; // Simplest cluster , used for stored -distance

NumericCluster :: center; // Maintains cluster "center", used for Ward ’s linkage

NumericCluster ::obs; // Tracks obs in each cluster , used for Average , Complete ...

Clustering is performed by specifying the clustering method, i.e., RNN, the linkage method and the
initialized cluster vector. In this case we are performing stored-distance average link clustering using the
distance matrix computed earlier. Note that the stored-distance linkage methods are implemented with
Lance-Williams update algorithm and are destructive to the strictly lower portion of the dissimilarity
matrix.

4

At the completion of the clustering, the cluster vector will contain all of the agglomerations along
with the agglomeration heights. Rclusterpp extends Rcpp with a wrap implementation that will translate
that vector into a R list with the merge, height and order entries needed for the hclust object.

5

References

[1] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms. Computer Journal,
26:354–359, 1983.

[2] F. Murtagh. Complexities of hierarchic clustering algorithms: State of the art. Computational
Statistics Quarterly, 1(2):101–113, 1984.

[3] R. Sibson. Slink: An optimally efficient algorithm for the single-link cluster method. Computer
Journal, 16:30–34, 1973.

[4] B. Zhang and S. Horvath. A general framework for weighted gene co-expression network analysis.
Statistical applications in genetics and molecular biology, 4:Article17, 2005. Zhang, Bin Horvath,
Steve Stat Appl Genet Mol Biol. 2005;4:Article17. Epub 2005 Aug 12.

6

	Introduction
	Stored-data Hierarchical Clustering
	Stored-distance Hierarchical Clustering (in C++)

