SemiParBIVProbit: Semiparametric Bivariate Probit Modelling

Routine for fitting bivariate probit models with semiparametric predictors (including linear and nonlinear effects) in the presence of correlated error equations, endogeneity, sample selection or partial observability. Bivariate copula models are also supported.

Version: 3.2-12.1
Depends: R (≥ 3.1.1), mgcv, mvtnorm
Imports: magic, CDVine, VineCopula, VGAM, survey, trust, Matrix, sn
Published: 2014-11-12
Author: Giampiero Marra and Rosalba Radice
Maintainer: Giampiero Marra <giampiero.marra at ucl.ac.uk>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: http://www.ucl.ac.uk/statistics/people/giampieromarra
NeedsCompilation: no
Materials: ChangeLog
CRAN checks: SemiParBIVProbit results

Downloads:

Reference manual: SemiParBIVProbit.pdf
Package source: SemiParBIVProbit_3.2-12.1.tar.gz
Windows binaries: r-devel: SemiParBIVProbit_3.2-12.1.zip, r-release: SemiParBIVProbit_3.2-12.1.zip, r-oldrel: SemiParBIVProbit_3.2-12.zip
OS X Snow Leopard binaries: r-release: SemiParBIVProbit_3.2-12.1.tgz, r-oldrel: SemiParBIVProbit_3.2-12.tgz
OS X Mavericks binaries: r-release: SemiParBIVProbit_3.2-12.1.tgz
Old sources: SemiParBIVProbit archive