Structural equation modeling (SEM) is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex datasets with intercorrelated dependent and independent variables. Here we implement a simple method for spatially explicit SEM (SE-SEM) based on the analysis of variance covariance matrices calculated across a range of lag distances. This method provides readily interpretable plots of the change in path coefficients across scale.
Version: | 1.0.1 |
Depends: | R (≥ 1.8.0) |
Imports: | lavaan, mgcv, gplots |
Published: | 2014-03-04 |
Author: | Eric Lamb [aut, cre], Kerrie Mengersen [aut], Katherine Stewart [aut], Udayanga Attanayake [aut], Steven Siciliano [aut] |
Maintainer: | Eric Lamb <eric.lamb at usask.ca> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | http://www.r-project.org, http://homepage.usask.ca/~egl388/index.html |
NeedsCompilation: | no |
Citation: | sesem citation info |
Materials: | NEWS |
CRAN checks: | sesem results |
Reference manual: | sesem.pdf |
Package source: | sesem_1.0.1.tar.gz |
Windows binaries: | r-devel: sesem_1.0.1.zip, r-release: sesem_1.0.1.zip, r-oldrel: sesem_1.0.1.zip |
OS X Snow Leopard binaries: | r-release: sesem_1.0.1.tgz, r-oldrel: sesem_1.0.1.tgz |
OS X Mavericks binaries: | r-release: sesem_1.0.1.tgz |
Old sources: | sesem archive |