
Package ‘wux’
January 27, 2015

Type Package

Title Wegener Center Climate Uncertainty Explorer

Version 1.2-2

Date 2014-10-20

Author Thomas Mendlik, Georg Heinrich, Andreas Gobiet and Armin Leuprecht

Maintainer Thomas Mendlik <thomas.mendlik@uni-graz.at>

Depends sp, ncdf, reshape, abind, fields

Imports rgdal, rgeos, class, stringr, Hmisc, gdata, corpcor

Suggests lattice

Description Analysis of climate model output uncertainties for specified geographical regions.

License GPL (>= 2)

LazyLoad yes

LazyData yes

NeedsCompilation no

Repository CRAN

Date/Publication 2014-11-24 10:36:38

R topics documented:
wux-package . 2
AnnualCycleplotWux . 4
AnovaBarplotWux . 5
AnovaReconstructIterative . 7
AnovaReconstructIterativeCC . 8
AnovaReconstructLES . 9
AverageWuxDataFrame . 11
cmip3_2050 . 11
cmip3_2100 . 12
CMIP5fromESGF . 13
cmip5_2050 . 15
cmip5_2100 . 16

1

2 wux-package

CMIP5_example_changesignal . 17
CMIP5_example_timeseries . 18
ensembles . 19
ensembles_gcms . 20
HistplotWux . 21
modelinput_test . 23
models2wux . 24
read.wux.table . 32
ScatterplotWux . 33
summaryWux . 36
userinput_CMIP5_changesignal . 37
userinput_CMIP5_timeseries . 38
WuxAnova . 39

Index 41

wux-package Wegener Center Climate Uncertainty Explorer

Description

The WUX package is a toolbox to analyze climate change uncertainties projected by numerical
model simulations.

The package provides methods to calculate and interpret climate change signals and time series
from entire multi-model ensembles. Climate model output in binary NetCDF format is read in and
aggregated to a data.frame for statistical analysis with tools provided by the R environment. The
NetCDF format is not restricted to any specific type of climate model. Global circulation models
(GCMs), as the CMIP5 or CMIP3 simulations, can be read in the same way as Regional Climate
Models (RCMs), as e.g. the CORDEX or ENSEMBLES simulations.

Details

This package can currently perform following actions:

• Reading output of climate model simulations from NetCDF files, processing it, and writing it
to a data.frame (the so-called WUX data frame).

• Various plotting options and summarizing utilities for a descriptive analysis of the projected
climate change signals.

• Performing an Analysis of Variance (ANOVA) in order to estimate variance components.

• Performing a simple two-way linear data reconstruction, in order to fill the missing values of
a simulation matrix as e.g. the GCM-RCM simulation matrix of ENSEMBLES.

wux-package 3

I. Reading, processing, and writing of climate model ouput

Functions:
models2wux Reads NetCDF climate model output, processes it, and writes the results to a data.frame which is the backbone of all further WUX analyses
CMIP5fromESGF Automated downloading of the CMIP5 multi-model climate ensemble
read.wux.table Reads in wux csv file obtained from models2wux from harddisk and creates a data frame from it (same data.frame as models2wux returns interactively)
AverageWuxDataFrame WUX data frame averaging function
Datasets:
userinput_CMIP5_changesignal,
userinput_CMIP5_timeseries,
modelinput_test Example config files for models2wux
ensembles, ensembles_gcms,
cmip3_2050, cmip3_2100,
cmip5_2050, cmip5_2100,
CMIP5_example_changesignal,
CMIP5_example_timeseries Example data frames calculatated by models2wux

II. Descriptive analysis of climate change signals

Descriptive analysis of multiple climate model simulations.

summaryWux Summary statistics of the WUX data frame
ScatterplotWux Scatter Plot
HistplotWux Density Plot
AnnualCycleplotWux Annual Cycle Plot

III. Analysis of variance components

Extracts variance components of multiple climate model simulations using an ANOVA.

WuxAnova ANOVA for WUX data.frame
AnovaBarplotWux barplot for WuxAnova output

IV. Reconstruction tools

Tools for filling missing values of an unbalanced climate model simulation matrix (e.g. missing
RCM-GCM combinations of ENSEMBLES) in order to avoid biased ensemble estimates. Cur-
rently, the underlying reconstrtuction technique is based on an ANOVA.

AnovaReconstructLES Linear reconstruction based on solving the linear equation system (LES) of the ANOVA design matrix
AnovaReconstructIterative Iterative linear reconstruction based on an ANOVA
AnovaReconstructIterativeCC Leave-one-out cross-calculation (CC) for AnovaReconstructIterative

4 AnnualCycleplotWux

Author(s)

Thomas Mendlik <thomas.mendlik@uni-graz.at>, Georg Heinrich <g.heinrich@uni-graz.at>,
Andreas Gobiet <andreas.gobiet@uni-graz.at> and Armin Leuprecht <armin.leuprecht@uni-graz.at>

Maintainer: Thomas Mendlik <thomas.mendlik@uni-graz.at>

AnnualCycleplotWux Plots the annual cycle

Description

AnnualCycleplotWux plots the monthly or seasonal annual cycle of indicated models and the box-
whisker plots of the underlying distribution.

This plotting routine extracts all the information from the input data frame which has to be ’WUX-
style’ (see models2wux).

Usage

AnnualCycleplotWux(datain.df, var.name = NULL, subreg.subset = NULL,
season.subset = NULL, plot.quantiles = NULL, quantile.method = 7,
mark.df = NULL, plot.legend = FALSE, cex.names = 1.2, cex.lab = 1.2,
ylab = NULL, main = NULL, out.file.directory = NULL, out.file.name =
NULL, copyright = FALSE, ...)

Arguments

datain.df WUX data frame obtained from models2wux.

var.name Character string of parameter in WUX dataset.

subreg.subset Vector of subregions to be plotted (e.g. c("EU.ENS", "GAR")).

season.subset Vector of seasons to be plotted (e.g. c("MAM", "DJF")).

plot.quantiles 5 element vector indictaing the quantiles to be plotted (e.g. c(0.02,0.25,0.5,0.75,0.98)).
quantile.method

An integer between 1 and 9 selecting one of the nine quantile types in quantiles
with default 7.

mark.df Subset of WUX data frame indicating the models to be marked.

plot.legend Boolean. Indicating if a plot legend indicating the models of mark.df and sam-
ple size should be plotted. Default is FALSE.

cex.names Expansion factor for numeric axis labels in bxp. Default is 1.2.

cex.lab Expansion factor for axis names (bar labels) in bxp. Default is 1.2.

ylab Label for y-axis.

main Main title.
out.file.directory

String of the directory where the plots are exported (e.g. "/tmp/plots/").

AnovaBarplotWux 5

out.file.name Prefix of the file names of the plots. Files will be stored as out.file.name_subreg_season.eps,
where subreg is one realization of the subreg.subset argument and season is
one realization of season.subset. For example: out.file.name = "AnnualCycle"
will store to the files to AnnualCycle_EUROPE_DJF.eps and AnnualCycle_EUROPE_JJA.eps.

copyright Boolean. If a copyright message should be plotted. Default is FALSE.

... Further optional arguments passed to bxp.

Author(s)

Georg Heinrich <g.heinrich@uni-graz.at>

Examples

load WUX and read WUX test data
require(wux)
data(ensembles)

wuxtest.df <- subset(ensembles, subreg == "GAR")

set data frame for model marks
mark.df <- subset(wuxtest.df, acronym %in% c("ICTP-REGCM3", "MPI-M-REMO"))
mark.df2 <- gdata::drop.levels(mark.df)

Not run: AnnualCycleplotWux(wuxtest.df, "perc.delta.precipitation_amount", mark.df =
mark.df, plot.legend = TRUE, boxfill = "light yellow", notch =
FALSE, boxwex = 0.5, ylim = c(-60,60), plot.quantiles =
c(0.02,0.25,0.5,0.75,0.98), boxcol = "red", ylab = "Precipitation
Amount [%]", main = "Annual cycle ", las = 1, copyright = TRUE)

End(Not run)

AnovaBarplotWux Barplots of the ANOVA results

Description

Barplots of the WuxAnova results displaying the relative or absolute contribution of the individual
factors to the overall variance.

Usage

AnovaBarplotWux(datain.list, ss.relative = TRUE, subreg.subset =
NULL, cex.names = 1.2, cex.lab = 1.2, legend.text = NULL, sd.text =
TRUE, sd.unit = "", ylim = NULL, ylab = NULL, main = NULL,
out.file.directory = NULL, out.file.name = NULL, copyright = FALSE, ...)

6 AnovaBarplotWux

Arguments

datain.list List result obtained from WuxAnova.

ss.relative Boolean. Indicating if the relative contribution of the factors to the overall vari-
ance should be calculated. Default is TRUE.

subreg.subset Vector of subregions to be plotted (e.g. c("EU.ENS", "GAR")).

cex.names Expansion factor for numeric axis labels in bxp. Default is 1.2.

cex.lab Expansion factor for axis names (bar labels) in bxp. Default is 1.2.

legend.text String vector of the factors (e.g. c("GCM", "RCM", "RES")).

sd.text Boolean. Indicating if the overall standard deviation should be displayed. De-
fault is TRUE.

sd.unit Character string of the standard deviation unit with default "" (e.g. "K").

ylim Range vector for the y-axis.

ylab Label for y-axis.

main Main title.
out.file.directory

String of the directory where the plots are exported (e.g. "/tmp/plots/"). If
neither out.file.name nor out.file.directory are passed, the plot will be
displayed on screen.

out.file.name Prefix of the file names of the plots. Files will be stored as out.file.name_subreg_season.eps,
where subreg is one realization of the subreg.subset argument and season is
one realization of season.subset. For example: out.file.name = "Barplot"
will store to the files to Barplot_EUROPE_DJF.eps and Barplot_EUROPE_JJA.eps.
If neither out.file.name nor out.file.directory are passed, the plot will be
displyed on screen.

copyright Boolean. If a copyright message should be plotted. Default is FALSE.

... Further optional arguments passed to barplot.

Author(s)

Georg Heinrich <g.heinrich@uni-graz.at>

Examples

load WUX and read WUX test data
require(wux)
data(ensembles)

wuxtest.df <- subset(ensembles, subreg == "GAR")

unique model acronyms are required for reconstruction
wuxtest.df$acronym <- factor(paste(wuxtest.df$institute, "_",
wuxtest.df$rcm, sep=""))

reconstruction of the missing data
reconstructLES.df <- AnovaReconstructLES(wuxtest.df, factor1.name =

AnovaReconstructIterative 7

"acronym", factor2.name = "gcm", data.name =
"perc.delta.precipitation_amount")

calculate ANOVA
anova.list <- WuxAnova(perc.delta.precipitation_amount ~ acronym +
gcm, reconstructLES.df)

barplot of ANOVA results
Not run: AnovaBarplotWux(anova.list, ss.relative = TRUE, las = 1,
sd.unit = "%", legend.text = c("RCM", "GCM", "RES"), mgp = c(2.5,1,0),
main = "ANOVA Barplot", ylim = c(0,110))

End(Not run)

AnovaReconstructIterative

Missing value reconstruction based on ANOVA

Description

Performs a simple missing value reconstruction based on an ANOVA with two factors using an
iterative procedure.

Usage

AnovaReconstructIterative(datain.df, factor1.name, factor2.name,
data.name, iterations.num)

Arguments

datain.df WUX data frame obtained from models2wux

factor1.name Name of the 1st factor.

factor2.name Name of the 2nd factor.

data.name Name of the variable to be reconstructed.

iterations.num Number of iterations to be performed.

Details

The data reconstruction follows the iterative procedure based on the ANOVA proposed by Déqué et
al. (2007). The reconstruction algorithm is based on unique factor combinations (i.e. one element
per combination of factor1.name and factor2.name).

Note

Returns a WUX data frame containing the reconstructed data.

8 AnovaReconstructIterativeCC

Author(s)

Georg Heinrich <g.heinrich@uni-graz.at>

References

Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de
Castro M, van den Hurk B. 2007. An intercomparison of regional climate simulations for Europe:
Assessing uncertainties in model projections. Climatic Change 81: 53–70. DOI:10.1007/s10584-
006-9228-x.

Examples

load WUX and read WUX test data
require(wux)
data(ensembles)

wuxtest.df <- subset(ensembles, subreg == "GAR")

unique model acronyms are required for reconstruction
wuxtest.df$acronym <- factor(paste(wuxtest.df$institute, "_", wuxtest.df$rcm, sep=""))

reconstruction of the missing data
reconstructIterative.df <- AnovaReconstructIterative(wuxtest.df,

factor1.name = "acronym", factor2.name = "gcm", data.name =
"perc.delta.precipitation_amount", iterations.num = 100)

AnovaReconstructIterativeCC

Missing value reconstruction based on ANOVA

Description

Performs a leave one out cross calculation (CC) of the ANOVA based missing value reconstruction
with two factors based on and following the iterative procedure of AnovaReconstructIterative.

Usage

AnovaReconstructIterativeCC(datain.df, factor1.name, factor2.name,
data.name, iterations.num)

Arguments

datain.df WUX dataframe obtained from models2wux

factor1.name Name of the 1st factor.

factor2.name Name of the 2nd factor

data.name Name of the variable to be reconstructed.

iterations.num Number of iterations to be performed.

AnovaReconstructLES 9

Details

The data reconstruction follows the iterative procedure based on the ANOVA proposed by Déqué et
al. (2007). The reconstruction algorithm is based on unique factor combinations (i.e. one element
per combination of factor1.name and factor2.name).

Note

Returns a WUX data frame containing the reconstructed values based on the leave one out cross
calculation. A new variable in the data frame is created with the variable name "NameOfVari-
able_crosscal".

Author(s)

Georg Heinrich <g.heinrich@uni-graz.at>

References

Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de
Castro M, van den Hurk B. 2007. An intercomparison of regional climate simulations for Europe:
Assessing uncertainties in model projections. Climatic Change 81: 53–70. DOI:10.1007/s10584-
006-9228-x.

Examples

load WUX and read WUX test data
require(wux)
data(ensembles)

wuxtest.df <- subset(ensembles, subreg == "GAR")

unique model acronyms are required for reconstruction
wuxtest.df$acronym <- factor(paste(wuxtest.df$institute, "_", wuxtest.df$rcm, sep=""))

cross calculation of the missing data. This might take some time...
Not run: crosscal.df <- AnovaReconstructIterativeCC(wuxtest.df,
factor1.name = "acronym", factor2.name = "gcm", data.name =
"perc.delta.precipitation_amount", iterations.num = 100)
End(Not run)

AnovaReconstructLES Missing value reconstruction based on ANOVA

Description

Performs a simple missing value reconstruction with two factors based on solving the linear equa-
tion system (LES) of the ANOVA.

10 AnovaReconstructLES

Usage

AnovaReconstructLES(datain.df, factor1.name, factor2.name, data.name)

Arguments

datain.df WUX data frame obtained from models2wux.

factor1.name Name of the 1st factor.

factor2.name Name of the 2nd factor.

data.name Name of the variable to be reconstructed.

Details

The algorithm follows Déqué et al. (2007) but the reconstruction is based on solving the linear
equation system (LES) of the ANOVA instead of reconstructing iteratively. The main advantages
of this method are that it is much faster and can be more easily extended to more factors than the
original one. However, keep in mind that the results slightly differ from the iterative procedure pro-
posed by Déqué et al. (2007). The reconstruction algorithm is based on unique factor combinations
(i.e. one element per combination of factor1.name and factor2.name).

Note

Returns a WUX data frame containing the reconstructed data.

Author(s)

Georg Heinrich <g.heinrich@uni-graz.at>

References

Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de
Castro M, van den Hurk B. 2007. An intercomparison of regional climate simulations for Europe:
Assessing uncertainties in model projections. Climatic Change 81: 53–70. DOI:10.1007/s10584-
006-9228-x.

Examples

load WUX and read WUX test data
require(wux)
data(ensembles)

wuxtest.df <- subset(ensembles, subreg == "GAR")

unique model acronyms are required for reconstruction
wuxtest.df$acronym <- factor(paste(wuxtest.df$institute, "_", wuxtest.df$rcm, sep=""))

reconstruction of the missing data
reconstructLES.df <- AnovaReconstructLES(wuxtest.df, factor1.name =

"acronym", factor2.name = "gcm", data.name = "perc.delta.precipitation_amount")

AverageWuxDataFrame 11

AverageWuxDataFrame WUX data frame averaging function

Description

Collapses WUX data frame by averaging over specified factor (column name). The chosen data
frame column will disappear after aggregation.

This function is primarly used to average over model runs (see example).

Usage

AverageWuxDataFrame(x, INDEX, fun = "mean")

Arguments

x wux data.frame (returned by models2wux or read.wux.table)
INDEX character column names from wux data.frame over which aggregation should

take place. Those columns will dissapear after aggregation
fun keyword for aggregation function. Default is mean

Author(s)

Thomas Mendlik <thomas.mendlik@uni-graz.at>

Examples

load WUX and read WUX test data
require(wux)
data(cmip3_2050)

average over runs
cmip3.avg.runs <- AverageWuxDataFrame(cmip3_2050, "gcm.run")
average over seasons, runs and subregions
cmip3.avg.all <- AverageWuxDataFrame(cmip3_2050, INDEX = c("gcm.run", "subreg", "season"))

cmip3_2050 Climate Change signals for CMIP3 ensemble

Description

This dataset contains air temperature and precipitation climate change signals of all climate sim-
ulations from the CMIP3 project from 1961-1990 to 2021-2050. Subregions are defined accord-
ing to the CORDEX project. Subregion EU.ENS contains the European region defined in the EN-
SEMBLES project and World contains the entire earth. http://wcrp.ipsl.jussieu.fr/SF_RCD_
CORDEX.html.

http://wcrp.ipsl.jussieu.fr/SF_RCD_CORDEX.html
http://wcrp.ipsl.jussieu.fr/SF_RCD_CORDEX.html

12 cmip3_2100

Details

This dataset is an exemplary output of models2wux.

Source

CMIP3 project: http://www-pcmdi.llnl.gov

References

Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and
K. E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change research,
Bulletin of the American Meteorological Society, 88, 1383-1394.

Examples

require(wux)
data(cmip3_2050)

str(cmip3_2050)
summaryWux(cmip3_2050)

Not run: ScatterplotWux(cmip3_2050, "perc.delta.precipitation_amount",
"delta.air_temperature", subreg.subset = "CORDEX.Africa",
boxplots = TRUE, xlim = c(-10,10), label.only.these.models = "",
ylim = c(0, 3), xlab = "Precipitation Amount [%]",
ylab = "2-m Air Temperature [K]", draw.legend = FALSE,
draw.median.lines = FALSE,
main = "CMIP3 2-m Air Temp. and Precip. Amount")

End(Not run)

cmip3_2100 Climate Change signals for CMIP3 ensemble

Description

This dataset contains air temperature and precipitation climate change signals of all climate sim-
ulations from the CMIP3 project from 1961-1990 to 2071-2100. Subregions are defined accord-
ing to the CORDEX project. Subregion EU.ENS contains the European region defined in the EN-
SEMBLES project and World contains the entire earth. http://wcrp.ipsl.jussieu.fr/SF_RCD_
CORDEX.html.

Details

This dataset is an exemplary output of models2wux.

Source

CMIP3 project: http://www-pcmdi.llnl.gov

http://www-pcmdi.llnl.gov
http://wcrp.ipsl.jussieu.fr/SF_RCD_CORDEX.html
http://wcrp.ipsl.jussieu.fr/SF_RCD_CORDEX.html
http://www-pcmdi.llnl.gov

CMIP5fromESGF 13

References

Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and
K. E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change research,
Bulletin of the American Meteorological Society, 88, 1383-1394.

Examples

require(wux)
data(cmip3_2100)

str(cmip3_2100)
summaryWux(cmip3_2100)

Not run: ScatterplotWux(cmip3_2100, "perc.delta.precipitation_amount",
"delta.air_temperature", subreg.subset = "CORDEX.Africa",
boxplots = TRUE, xlim = c(-20,20), label.only.these.models = "",
ylim = c(0,5), xlab = "Precipitation Amount [%]",
ylab = "2-m Air Temperature [K]", draw.legend = FALSE,
draw.median.lines = FALSE,
main = "CMIP3 2-m Air Temp. and Precip. Amount")

End(Not run)

CMIP5fromESGF Downloads CMIP5 climate simulations from the ESGF data portal

Description

Downloads available monthly CMIP5 simulations from ESGF data portal. You need an account
at any ESGF node (see http://cmip-pcmdi.llnl.gov/cmip5/data_getting_started.html).
This function creates subdirectories for each climate simulation in the specified folder, automati-
cally recieves the bash scripts needed for the partiular simulation-variable-experiment combination
and then executes the bash scripts one by one. An external PYTHON script is called for this task.
If either data or bash-scripts exist, the download will be skipped. Use this function with care. You
need a working internet connection for this function to work.

Usage

CMIP5fromESGF(save.to = NULL, variables = NULL,
experiments = NULL, models = NULL)

Arguments

save.to Directory location for downloading CMIP5 data and bash scripts. ATTEN-
TION: subdirectories for each model-experiment combination will be created!

http://cmip-pcmdi.llnl.gov/cmip5/data_getting_started.html

14 CMIP5fromESGF

variables Short variable names for meteorological parameters of interest (e.g. "tas" for 2m
air temperature or "pr" for precipitation amount). See e.g. the IPCC Standard
Output from GCMs (http://www-pcmdi.llnl.gov/ipcc/standard_output.
html).

experiments Experiment of the climate simulation (e.g. c("historical", "rcp45"), see Taylor
(2012) for a detailed description.

models Climate simulations to be downloaded. If no models are provided (default),
all available simulations will be retrieved. See the "Model" column at http://
cmip-pcmdi.llnl.gov/cmip5/availability.html for available simulations.
ATTENTION: This is a considerable amount of data, so watch out for your
diskspace!

Details

Firstly you need an ESGF account. If you do not have any, start here: http://cmip-pcmdi.llnl.
gov/cmip5/data_getting_started.html

This function calls an external python script which

1. looks for the latest CMIP5 models at ESGF http://pcmdi9.llnl.gov

2. generates a local directory structure where the data will be stored

3. receives the corresponding bash files from ESGF

4. executes the bash files.

You can find the location of the script with system.file("exec", "CMIP5_downloader.py", package="wux")

This function is an alternative to downloading the corresponding models by point-and-click on the
ESGF node (as http://pcmdi9.llnl.gov or http://esgf-data.dkrz.de), as it takes advantage
of the ESGF search API mechanism for automated data screening and wget-script generation. For
thei nterested user more information on downloading strategies is available at https://github.
com/ESGF/esgf.github.io/wiki/ESGF_Data_Download_Strategies.

Warning

This function automatically creates new directories on your system, downloads wget scripts, flags
them execueable and runs them, which can download quite some data.

Note

Use with care, your harddisk might get stuffed. This tools works on unix platforms only.

Author(s)

Thomas Mendlik <thomas.mendlik@uni-graz.at>

References

Karl E. Taylor, Ronald J. Stouffer, and Gerald A. Meehl, 2012: An Overview of CMIP5 and the
Experiment Design. Bull. Amer. Meteor. Soc., 93, 485-498. doi: http://dx.doi.org/10.1175/BAMS-
D-11-00094.1

http://www-pcmdi.llnl.gov/ipcc/standard_output.html
http://www-pcmdi.llnl.gov/ipcc/standard_output.html
http://cmip-pcmdi.llnl.gov/cmip5/availability.html
http://cmip-pcmdi.llnl.gov/cmip5/availability.html
http://cmip-pcmdi.llnl.gov/cmip5/data_getting_started.html
http://cmip-pcmdi.llnl.gov/cmip5/data_getting_started.html
http://pcmdi9.llnl.gov
http://pcmdi9.llnl.gov
http://esgf-data.dkrz.de
https://github.com/ESGF/esgf.github.io/wiki/ESGF_Data_Download_Strategies
https://github.com/ESGF/esgf.github.io/wiki/ESGF_Data_Download_Strategies

cmip5_2050 15

Examples

Not run:
download temperature fields of two example GCMs (NorESM1-M and
CanESM2) with the RCP 8.5 and the historical run
into your temporary directory. This command will create a folder
"CMIP5" in "~/tmp" with two subfolders for each model again with
two subfolders for each experiment.
CMIP5fromESGF(save.to = "~/tmp/CMIP5/",

models = c("NorESM1-M", "CanESM2"),
variables = c("tas"),
experiments= c("historical", "rcp85"))

End(Not run)

cmip5_2050 Climate Change signals for CMIP5 ensemble

Description

This dataset contains air temperature and precipitation climate change signals of all climate sim-
ulations from the CMIP5 project from 1961-1990 to 2021-2050. Subregions are defined accord-
ing to the CORDEX project. Subregion EU.ENS contains the European region defined in the EN-
SEMBLES project and World contains the entire earth. http://wcrp.ipsl.jussieu.fr/SF_RCD_
CORDEX.html.

Details

This dataset is an exemplary output of models2wux.

Source

CMIP5 project: http://www-pcmdi.llnl.gov

References

Karl E. Taylor, Ronald J. Stouffer, and Gerald A. Meehl, 2012: An Overview of CMIP5 and the
Experiment Design. Bull. Amer. Meteor. Soc., 93, 485-498. doi: http://dx.doi.org/10.1175/BAMS-
D-11-00094.1

Examples

require(wux)
data(cmip5_2050)

str(cmip5_2050)
summaryWux(cmip5_2050)

tas.range <- c(0, 2.5)
pr.range <- c(-10, 15)

http://wcrp.ipsl.jussieu.fr/SF_RCD_CORDEX.html
http://wcrp.ipsl.jussieu.fr/SF_RCD_CORDEX.html
http://www-pcmdi.llnl.gov

16 cmip5_2100

Not run: ScatterplotWux(cmip5_2050, "delta.air_temperature",
"perc.delta.precipitation_amount", boxplots = TRUE,
ylim = pr.range, xlim = tas.range, ylab = "Precipitation Amount [
xlab = "2-m Air Temperature [K]", draw.legend = TRUE,
draw.median.lines = FALSE, subreg.subset = "CORDEX.Africa",
main = "CMIP5 2-m Air Temp. and Precip. Amount 1961-1990 to 2021-2050",
label.only.these.models = "", draw.seperate.legend = TRUE,
copyright = TRUE, horiz.box.col = "coral", vert.box.col = "cyan")

End(Not run)

cmip5_2100 Climate Change signals for CMIP5 ensemble

Description

This dataset contains air temperature and precipitation climate change signals of all climate sim-
ulations from the CMIP5 project from 1961-1990 to 2071-2100. Subregions are defined accord-
ing to the CORDEX project. Subregion EU.ENS contains the European region defined in the EN-
SEMBLES project and World contains the entire earth. http://wcrp.ipsl.jussieu.fr/SF_RCD_
CORDEX.html.

Details

This dataset is an exemplary output of models2wux.

Source

CMIP5 project: http://www-pcmdi.llnl.gov

References

Karl E. Taylor, Ronald J. Stouffer, and Gerald A. Meehl, 2012: An Overview of CMIP5 and the
Experiment Design. Bull. Amer. Meteor. Soc., 93, 485-498. doi: http://dx.doi.org/10.1175/BAMS-
D-11-00094.1

Examples

require(wux)
data(cmip5_2100)

str(cmip5_2100)
summaryWux(cmip5_2100)

tas.range <- c(0, 2.5)
pr.range <- c(-10, 15)
Not run: ScatterplotWux(cmip5_2100, "delta.air_temperature",

"perc.delta.precipitation_amount", boxplots = TRUE,
ylim = pr.range, xlim = tas.range, ylab = "Precipitation Amount [

http://wcrp.ipsl.jussieu.fr/SF_RCD_CORDEX.html
http://wcrp.ipsl.jussieu.fr/SF_RCD_CORDEX.html
http://www-pcmdi.llnl.gov

CMIP5_example_changesignal 17

xlab = "2-m Air Temperature [K]", draw.legend = TRUE,
draw.median.lines = FALSE, subreg.subset = "CORDEX.Africa",
main = "CMIP5 2-m Air Temp. and Precip. Amount 1961-1990 to 2071-2100",
label.only.these.models = "", draw.seperate.legend = TRUE,
copyright = TRUE, horiz.box.col = "coral", vert.box.col = "cyan")

End(Not run)

CMIP5_example_changesignal

Climate change signals of example userinput for models2wux

Description

This example of a WUX data.frame is the result of running userinput_CMIP5_changesignal with
models2wux.

Usage

data(CMIP5_example_changesignal)

Details

You can download the NetCDF files from ESGF using CMIP5fromESGF.

See Also

models2wux

Examples

thats what CMIP5_changesignal looks like
data("CMIP5_example_changesignal")
CMIP5_example_changesignal

You can run models2wux to get the same result as
above.
data(userinput_CMIP5_changesignal)
data(modelinput_test)
Not run:
You must have downloaded the example NetCDF files according to
"modelinput_test" in order to run "models2wux", or you will get an
error message. See the examples of ?CMIP5fromESGF or ?modelinput_test.
CMIP5_example_changesignal <- models2wux(userinput_CMIP5_changesignal,

modelinput = modelinput_test)
End(Not run)

18 CMIP5_example_timeseries

CMIP5_example_timeseries

Climate change signals of example userinput for models2wux

Description

This example of a WUX data.frame is the result of running userinput_CMIP5_timeseries with
models2wux.

Usage

data(CMIP5_example_timeseries)

Details

You can download the NetCDF files from ESGF using CMIP5fromESGF.

See Also

models2wux

Examples

thats what CMIP5_timeseries looks like
data("CMIP5_example_timeseries")
head(CMIP5_example_timeseries)

You can run models2wux to get the same result as
above.
data(userinput_CMIP5_timeseries)
data(modelinput_test)
Not run:
You must have downloaded the example NetCDF files according to
"modelinput_test" in order to run "models2wux". See the examples of
?CMIP5fromESGF or ?modelinput_test.
CMIP5_example_timeseries <- models2wux(userinput_CMIP5_timeseries,

modelinput = modelinput_test)
End(Not run)

ensembles 19

ensembles ENSEMBLES dataset

Description

This dataset contains air temperature and precipitation climate change signals of all 22 A1B forced
climate simulations from the ENSEMBLES project from 1961-1990 to 2021-2050.

Usage

data(ensembles)

Source

The ENSEMBLES project: http://www.ensembles-eu.org/

References

van der Linden P, Mitchell JFB. 2009. ENSEMBLES: Climate Change and its Impacts: Summary
of research and results from the ENSEMBLES project. Met Office Hadley Centre: Exeter.

Examples

require(wux)
data(ensembles)
ensembles <- droplevels(subset(ensembles, subreg == "EU.ENS"))

str(ensembles)
parms <- c("delta.air_temperature", "perc.delta.precipitation_amount",

"delta.global_radiation", "delta.wind_speed")
summaryWux(ensembles, parms = parms)

Not run: ScatterplotWux(ensembles, "perc.delta.precipitation_amount",
"delta.air_temperature", boxplots = TRUE, xlim = c(-10,10),
ylim = c(0, 3),
label.only.these.models = c(""),
xlab = "Precipitation Amount [%]",
ylab = "2-m Air Temperature [K]",
main = "CCS 2-m Air Temp. and Precip. Amount 1961-90 to 2021-50",
subreg.subset = c("EU.ENS"))

End(Not run)

comparing ENSEMBLES RCMs with its driving GCMs
data(ensembles_gcms)
ensembles_gcms.eu <- gdata::drop.levels(subset(ensembles_gcms, subreg ==
"EU.ENS"))
gcm.names <- levels(ensembles_gcms.eu$acronym)

vars.of.interest <- !names(ensembles) %in% c("delta.global_radiation", "delta.wind_speed")
ensembles <- ensembles[vars.of.interest]

http://www.ensembles-eu.org/

20 ensembles_gcms

ensembles.merge <- rbind(ensembles, ensembles_gcms.eu)
summaryWux(ensembles.merge)

Not run: ScatterplotWux(ensembles.merge, "perc.delta.precipitation_amount",
"delta.air_temperature", boxplots = TRUE, xlim = c(-10,10),
ylim = c(0, 3),
label.only.these.models = gcm.names,
xlab = "Precipitation Amount [%]", ylab = "2-m Air Temperature [K]",
main = "CCS 2-m Air Temp. and Precip. Amount 1961-90 to 2021-50",
subreg.subset = c("EU.ENS"), draw.median.lines = FALSE)

End(Not run)

ensembles_gcms GCM forcing data from the ENSEMBLES project

Description

This dataset contains air temperature and precipitation climate change signals of the 8 A1B driving
GCMs used as boundary conditions for the ENSEMBLES RCMs. The climate change signal is
from 1961-1990 to 2021-2050.

Usage

data(ensembles_gcms)

Source

ENSEMBLES project: http://www.ensembles-eu.org/ CMIP3 project: http://www-pcmdi.
llnl.gov

References

van der Linden P, Mitchell JFB. 2009. ENSEMBLES: Climate Change and its Impacts: Summary
of research and results from the ENSEMBLES project. Met Office Hadley Centre: Exeter.

See Also

cmip3_2050, ensembles, models2wux

Examples

require(wux)
data(ensembles_gcms)
ensembles.gcm.names <- levels(ensembles_gcms$acronym) #8 GCM names
summaryWux(ensembles_gcms)

Now lets compare this dataset to the CMIP3 ensemble
data(cmip3_2050) # GCMs of CMIP3 ensemble

http://www.ensembles-eu.org/
http://www-pcmdi.llnl.gov
http://www-pcmdi.llnl.gov

HistplotWux 21

cmip3_2050.sub <- subset(cmip3_2050, subreg %in% c("World", "EU.ENS")
& em.scn == "A1B")

cmip3_2050.sub <- droplevels(cmip3_2050.sub)
"mpi_echam5-r3", "bccr_bcm2_0-r1", "ipsl_cm4-r2" can be found
in the ensembles_gcms dataset as well as in the cmip3_2050 dataset
so we delete it from one of these dataset
ensembles_gcms.sub <- subset(ensembles_gcms, !acronym %in%

c("mpi_echam5-r3", "bccr_bcm2_0-r1",
"ipsl_cm4-r2"))

ensembles_gcms.sub <- gdata::drop.levels(ensembles_gcms.sub)
combine cmip3 and ENSEMBLES GCMs in one data.frame
gcms.combined <- rbind(ensembles_gcms.sub, cmip3_2050.sub)

Scatterplot
prec.range <- range(gcms.combined$perc.delta.precipitation_amount) + c(-1, 1)
tas.range <- range(gcms.combined$delta.air_temperature)
Not run: ScatterplotWux(gcms.combined,

"perc.delta.precipitation_amount", "delta.air_temperature",
subreg.subset = "EU.ENS", draw.median.lines = FALSE,
label.only.these.models = ensembles.gcm.names,
xlim = prec.range,
ylim = tas.range,
main = "GCMs from ENSEMBLES project within CMIP3 SRESA1B ensemble",
draw.seperate.legend = TRUE)

End(Not run)

HistplotWux Plots histograms and kernel density estimates

Description

HistplotWux plots either one or two histograms and the according kernel density estimates using
density.

This plotting routine extracts all the information from the input dataframe which has to be ’WUX-
style’ (see models2wux).

Usage

HistplotWux(datain1.df, datain2.df = NULL, var.name = NULL,
subreg.subset = NULL, season.subset = NULL, plot.density = TRUE,

hist1.col = "red", hist2.col = "blue", bw = "nrd0", kernel = "gaussian",
mark.df = NULL, plot.legend = FALSE, xlim = NULL, ylim = NULL,
xtick.number = 10, ytick.number = 10, xminor.tick = FALSE, yminor.tick =
FALSE, xlab = NULL, ylab = "Probability Density", main =
NULL, out.file.directory = NULL, out.file.name = NULL, copyright = FALSE, ...)

22 HistplotWux

Arguments

datain1.df 1st WUX dataframe obtained from models2wux.

datain2.df 2nd WUX dataframe obtained from models2wux.

var.name Character string of parameter in WUX dataset.

subreg.subset Vector of subregions to be plotted (e.g. c("EU.ENS", "GAR")).

season.subset Vector of seasons to be plotted (e.g. c("MAM", "DJF")).

plot.density Boolean. Indicating if kernel density estimates should be plotted. Default is
TRUE.

hist1.col Character string of the 1st histogram color (e.g. "red").

hist2.col Character string of the 2nd histogram color (e.g. "blue").

bw The smoothing bandwidth to be used in density. Default is "nrd0".

kernel A character string giving the smoothing kernel to be used in density. This must
be one of "gaussian", "rectangular", "triangular", "epanechnikov","biweight",
"cosine" or "optcosine" with default "gaussian".

mark.df Subset of WUX dataframe indicating the models to be marked.

plot.legend Boolean. Indicating if a plot legend indicating the models of mark.df and sample
size should be plotted. Default is FALSE.

xlim Range vector for the x-axis.

ylim Range vector for the y-axis.

xtick.number Number of ticks for the x-axis with default 10.

ytick.number Number of ticks for the y-axis with default 10.

xminor.tick Boolean. Indicating if minor ticks for the x-axis should be plotted. Default is
FALSE.

yminor.tick Boolean. Indicating if minor ticks for the y-axis should be plotted. Default is
FALSE.

xlab Label for x-axis.

ylab Label for y-axis with default Probability Density.

main Main title.
out.file.directory

String of the directory where the plots are exported (e.g. "/tmp/plots/"). If
neither out.file.name nor out.file.directory are passed, the plot will be
displayed on screen.

out.file.name Prefix of the file names of the plots. Files will be stored as out.file.name_subreg_season.eps,
where subreg is one realization of the subreg.subset argument and season is
one realization of season.subset. For example: out.file.name = "histogram"
will store to the files to histogram_EUROPE_DJF.eps and histogram_EUROPE_JJA.eps.
If neither out.file.name nor out.file.directory are passed, the plot will be
displyed on screen.

copyright Boolean. If a copyright message should be plotted. Default is FALSE.

... Further optional arguments passed to hist.

modelinput_test 23

Author(s)

Georg Heinrich <g.heinrich@uni-graz.at>

Examples

load WUX and read WUX test data
require(wux)
data(ensembles)

wuxtest.df <- subset(ensembles, subreg == "GAR")

set dataframe for model marks
mark.df <- subset(wuxtest.df, acronym %in% c("ICTP-REGCM3", "MPI-M-REMO"))
mark.df <- droplevels(mark.df)

histogram plot
Not run: HistplotWux(datain1.df = wuxtest.df, var.name =

"perc.delta.precipitation_amount", xlim = c(-50,50), ylim = c(0,0.12),
xtick.number = 9, xminor.tick = TRUE, ytick.number = 5,
yminor.tick = TRUE, xlab = "Precipitation Amount [%]", main =
"WUX histogram", plot.legend = TRUE, mark.df = mark.df, hist1.col =
"dark blue")

graphics.off()
End(Not run)

modelinput_test Example model specification file for models2wux

Description

This is an example model specification for WUX, giving information on two example NetCDF
files from the CMIP5 project. The datatype is a list. For specification details see the "Configfile
modelinput" section in models2wux.

Usage

data(modelinput_test)

Details

The two CMIP5 simulations "NorESM1-M" and "CanESM2" (either having historical run and RCP
8.5 forcing) are assumed to be stored in the home directory "~/tmp/CMIP5". You can download
them using CMIP5fromESGF. See the example for a typical workflow.

See Also

models2wux, CMIP5fromESGF

24 models2wux

Examples

Not run:
Here is how to use the climate model specification file
"modelinput_test" for models2wux.

I) DOWNLOAD EXEMPLARY DATA
download temperature fields of two example GCMs (NorESM1-M and
CanESM2) with the RCP 8.5 and the historical run
into your temporary directory. This command will create a folder
"CMIP5" in "~/tmp" with two subfolders for each model again with
two subfolders for each experiment.
CMIP5fromESGF(save.to = "~/tmp/CMIP5/",

models = c("NorESM1-M", "CanESM2"),
variables = c("tas"),
experiments= c("historical", "rcp85"))

II) INTERFACE FOR THE DATA (type list)
This is the information for models2wux to read in the data. Usually
you have to create such a file for yourself, or add it to an existing
one. This file assumes you have downloaded the two GCMs into ~/tmp/CMIP5 by
CMIP5fromESGF, as shown above.
data(modelinput_test)

III) CONTROL FILE FOR models2wux (type list)
What climate data you want to read in (here it is the two example
simluations mentioned above)? What subregion to analysze? What is you
reference and what your scenario period? Aggregate to specific
seasons?
data(userinput_CMIP5_timeseries)

IV) CONVERT CLIMATE SIMULATIONS TO A data.frame
wux.test <- models2wux(userinput_CMIP5_timeseries, modelinput_test)

V) ANALYZE data.frame
require(lattice)
wux.test$year <- as.integer(as.character(wux.test$year))
xyplot(air_temperature ~ year|season,

groups=acronym,
data = wux.test,
type = c("l", "g"),
main = "NorESM1-M and CanESM2 simulations over Alpine Region\n
historical and RCP 8.5 forcing")

End(Not run)

models2wux Processing climate model output

models2wux 25

Description

Reads various climate model NetCDF outputs, processes them according to userinput, and writes
the processed data to a data.frame.

The data.frame output of WUX (the WUX data frame) contains the climate change signals for
user-specified periods, regions, seasons, and parameters for each of the indicated climate models as
defined in userinput.

The userinput is a named list object or a file containing a named list. It passes the controlling
parameters to models2wux. The file paths, file names and meta-information on the climate simu-
lations are stored in another list called modelinput. See the "Details" section and the "Configfile
userinput" and "Configfile modelinput" section for a detailed description of these two lists.

Usage

models2wux(userinput, modelinput)

Arguments

userinput The specification of e.g. the parameters, periods, aggregation statistics, seasons,
subregions, and climate models to be processed. This is either a file name con-
taining a list which will be sourced internally, or a list object.

modelinput The specifications of file paths, file names and meta-information of every single
climate simulation output you have stored on your HDD. This is either a file
name containing a list which will be sourced internally, or a list object.

Details

To process a climate multimodel ensemble of your choice, models2wux needs two config files
userinput and modelinput, both being named list objects or files containing a named list.

modelinput stores general information about your climate data, i.e. the locations of the NetCDF
files and their filenames. It also safes certain metainformation for the specific climate simulations
(e.g. a unique acronym for the simulation; the developing institution; the radiative forcing). Usually
the modelinput information should be stored in a single file on your system and should be updated
when new climate simulations come in. It is advisable to share this file with your collegues if you
work with the same NetCDF files on a shared IT infrastructure.

userinput contains information on what you actually want models2wux to be doing for you,
mainly, which climate simulations defined in modelinput should be processed and what kind of
statistic should be performed. You also define the geographical regions of interest you want to
investigate and what time horizon you want to regard. Here is an overview of all possible tags a
userinput list contains:

parameter.names Specification of parameters to process.
reference.period Specification of the reference period.
scenario.period Specification of the scenario period.
temporal.aggregation Specification of the temporal aggregation of the climate models (e.g. monthly mean or season sum) and indicating if either time series or climate change signals should be created.
subregions Specification of subregions.
area.fraction Take parts of model-pixels according to subregion coverage.
spatial.weighting Cosine areal weighting of regular grid.

26 models2wux

na.rm Behavior for missing values of timeslices.
save.as.data Specification of output directory and filename.
climate.models Specification of climate models to be processed.

This is what models2wux is doing: First, models2wux extracts attributes set in the userinput list
and loads the corresponding model information (storage paths, filenames, ...) from the modelinput
list. It then retrieves the geographical boundaries of the specified regions in subregions (here the
model gridfiles are introduced) and reads the specified parameter data from the NetCDF files within
the boundaries of the actual subregion. Subsequently, models2wux aggregates over the time di-
mension by the indicated months for the specified periods and calculates either the climatological
mean values of the reference and future period and the according climate change signals or time
series. Next, models2wux aggregates over the spatial dimension. models2wux repeats these pro-
cessing steps for each model specified in climate.models, each parameter in parameter.names,
each subregion in subregions, and each period in reference.period and scenario.period, re-
spectively. Finally, the processed data is written to a data.frame and stored to the hard disk as
indicated by save.as.data.

For more detailed information on modelinput and userinput see the corresponding sections
Configfile "modelinput" and Configfile "userinput" in this help page.

Value

A data.frame containing climate change signals for all models, subregions, and parameters speci-
fied in userinput. It also writes a csv file on your HDD.

Configfile "userinput"

Those are specifications the user provides to control models2wux.

parameter.names: A character vector of parameters to be processed according to the NetCDF
Climate and Forecast (CF) Metadata Convention (http://cf-pcmdi.llnl.gov/),
e.g. parameter.names = c("air_temperature", "precipitation_amount").

reference.period: A character specifying the climate change reference period defined by
"from-to" ("YYYY-YYYY"),
e.g. reference.period = "1961-1990".

scenario.period: A character specifying the climate change future period defined by "from-to"
("YYYY-YYYY"),
e.g. scenario.period = "2021-2050".

temporal.aggregation: A named list containing the n different levels of statistical aggrega-
tion where the single list elements are sequentially named by stat.level.1, stat.level.2, stat.level.3,
... , stat.level.n. Each stat.level is again a list containing three elements: period, statistic, and
time.series.

period: A named list containing the time period of temporal aggregation. The first aggregation
level (stat.level.1) refers to the number of the month in the year. All subsequent aggregation
levels refer to the list names of the previous stat.level (i.e. nested structure). For example, in
stat.level.1 seasons are defined via

http://cf-pcmdi.llnl.gov/

models2wux 27

period=list(DJF=c(12,1,2), MAM=c(3,4,5), JJA=c(6,7,8), SON=c(9,10,11)).
Winter and summer half years can then be defined in stat.level.2 referring to the list names
indicated in stat.level.1:
period=list(winter=c(SON,DJF), summer=c(MAM,JJA))

statistic: A string indicating the statistic which is used to aggregate the data. The statistic can be
every statistic which is known to R (e.g., mean, sum, quantile).

time.series: TRUE or FALSE indicating if time series or climatological mean values of the refer-
ence and future period and the according climate change signals are calculated.

subregions: Named list containing information for geographical regions. You can specify the
boundaries by passing

• a rectangular region by hand
• a shapefile with subregions of interest
• a NetCDF file containing subregions

All longitude coordinate values are forced to the range from -180 to 180 degrees. In case you want
to define a subregion containing the (180,-180)-meridian, you should force the longitude values
to the range from 0 to 360 degrees, as it could be the case for the Australasian domain. This can
be done with the wrap.to-tag (currently defined only for shapefiles).

rectangle: A vector of the form c(lon.west, lon.east, lat.north, lat.south).
e.g. World = c(-180, 180, 90, -90)

shapefile: A named list containing the directory to the shapefiles dirname and the name of the
files filename (without file extension). Optional: If no projection file is available, you can
set a projection tag to
e.g. projection = "+proj=longlat +ellps=WGS84".
In case there are more regions defined in the shapefile, one can give specific names to the
subregionnames tag e.g subregionnames = c("South_America", "Central_America").
However, sometimes these multiple regions form a set. Then the category.variable tag
merges the subregions with the same category to a single subregion and category.label
gives corresponding labels. category.label has to be a named vector, with the names being
the category values from the category.variable and their values being the labels. Omitting
the category.label vector when using category.variable, WUX tries to get the names
of category.variable. Note that the subregionnames tag and the category.label should
not be used together.
In case you want to wrap your longitudes to the 0-360-degrees grid, flag the named vector
wrap.to = c("my.subregion" = "360"). Example:
CORDEX = list(dirname = "/tmp/shapefiles/cordex", filename = "cordex_regions", subregionnames = c("South_America", "Central_America", "North_America", "EU.ENS", "Africa", "West_Asia", "East_Asia","Central_Asia", "Australasia", "Antarctica", "Arctic", "Mediterranean_domain"), wrap.to = c('Australasia' = "360")).

NetCDF subregionfile: A named list containing information about the NetCDF file defining the
subregion by a constant value (e.g. all pixels flagged by 1 define a subregion). Names of the
list have to be:

subreg.file Name of the NetCDF subregions file.
subreg.dir Path to the NetCDF subregions file.
grid.file Name of NetCDF file with longitude and latitude coordinates of the subregions file.
grid.dir Directory of grid.file.
mask.name Variable name in subreg.file file defining the region.
mask.value Value of mask.name defining the region. If more regions are defined, use a vector of values to analyse a set of them.

28 models2wux

area.fraction: Dealing with gridded data, subregions almost never happen do be cut out
exactly the way your subregion is specified. If the centroid of a single data pixel lies within the
subregion, this datapoint will be taken into analysis, else the datapoint will be considered as lying
outside of the subregion and set NA. This is WUX default behavior (area.fraction = FALSE).
For very small subregions and/or very course data resolution however, it can happen you get very
few data points or even none at all.
However, if you want to take every data pixel which just ’touches’ your subregion, use area.fraction.
The pixel’s centroid doesn’t have to be necessarily inside the subregion to be taken into analysis
then. With area.fraction = TRUE WUX does a weighted spatial average of all these pixels. The
weight is the ratio of the pixel area lying within the subregion and the entire pixel area. So if one
quarter of a data point is wihin the subregion (but its centroid for example is not), the data pixel
value will be taken into analysis and weighted by 0.25 when averaging spatially. Pixels being
covered completely in the subregion have weight 1. area.fraction is useful if you are dealing
with very small subregions and/or small data resolution, resulting in just a few pixels.

spatial.weighting: When averaging data over its spatial component, the simple arithmetic
mean can result in strongly biased areal estimates. The reason for this is due the geographical
projection of the data. The globe has 360 longitudinal degrees and 180 degrees in latitude. The
real distance (km) between latitudes remains the same on the entire globe, whereas the distances
between longitudes depend on the latitude considered. One degree in longitude near equator
represents much more distance (km) than one degree in Norway as the longitudes converge at the
poles.
This fact has to be considered especially when dealing with global data (e.g. GCMs). GCM data
is usually (within WUX so far 100%) stored on a rectangular lon-lat grid. Therefore the poles
seem overproportionaly large in area. Common practice is cosine weighting of latides, resulting
in smaller weights near the poles and largest weights at the equator. See http://www.grassaf.
org/general-documents/gsr/gsr_10.pdf for more details.
spatial.weighting = TRUE enables cosine weighting of latitudes, whereas omitting or setting
FALSE results in unweighted arithmetic areal mean (default). This option is valid only for data on
a regular grid.

na.rm: It may happen that time slices of NetCDF data may be missing and the user does not
know anything about it. Reason for these artifacts might be short time series (e.g. some models
project only until 2035, so an analysis unitl 2050 would be biased) or simply missing values due
to corrupt or missing NetCDF files.
If na.rm = TRUE is set in the user input, missing values are filled with NA, but the temporal
statistics are calculated using the na.rm = TRUE flag. na.rm = FALSE keeps the NA values and
thus leads to NA statistics.

save.as.data: A character containing both the output path and filename. For example save.as.data = "/tmp/cmip3"
will save files in the directory /tmp/ as cmip3.csv (data frame containing model climatologies),
cmip3_diff.csv (data frame containing the differences of the climatologies, i.e. the climate
change signals) and cmip3.Rdata (a R binary file which can be loaded into the next R session
containing variables wux.data and wux.data.diff data frames analog to the csv-files).

climate.models: A character vector containing the names of the models to be processed. The
names must be identical to the unique acronyms in the modelinput list. Read the next section if
you want to add a model in the modelinput file.

http://www.grassaf.org/general-documents/gsr/gsr_10.pdf
http://www.grassaf.org/general-documents/gsr/gsr_10.pdf

models2wux 29

Configfile "modelinput"

When you want to read in a new climate simulation WUX does not know so far, all you need to do
is to specify this model in the modelinput list (which should be stored in a file). You don’t need to
write tedious input routines, WUX does that for you. The modelinput list is a named list of climate
models and contains meta-information of all currently known climate models. Sometimes models
indicate wrong attributes in their NetCDF files needed by modelinput. Therfore: KNOW YOUR
MODEL YOU WANT TO ADD AND TAKE CARE OF THE META-INFORMATION YOU ARE
INDICATING IN modelinput.

Each tag consists of a named list with the following mandatory tags (i.e. names):

institute: Character indicating the institute which is developing the model.

rcm: Character name indicating the RCM acronym; if you are processing a gcm type "".

gcm: Character name indicating the GCM acronym.

emission: Type of emission scenario used for the simulation.

gridfile.filename: Name of NetCDF grid file containing the lon/lat variables.

gridfile.path: Directory of the NetCDF grid file.

file.path.default: Default directory of the NetCDF data files. If the files are stored not only
in one directory, use the file.path.alt tag (see below).

file.path.alt: If your files are stored not only in one directory, here you can enter a named
vector of paths. If files are scattered by parameter, pass the parameter name (CF Metadata con-
vention) as the vector name. If they are split by periods, then pass reference.period and
scenario.period as vector names. If files are seperated by both period and parameter, you
can use nested named lists instead of vectors.

file.name: Character vector of file names of the NetCDF data files. If there are different file
names for parameters (which will be mostly the case) and/or file names in scenario- and reference
period are of different nature as well, use named or nested lists as in the file.path.alt tag. You
can set this tag NA if this climate model has no files. This makes sense for example for the GKSS
model for global radiation, as this ENSEMBLES model does not provide this parameter. Values
for this model will be NA in the WUX dataframe.

These tags are optional:

resolution: Grid resolution character.

gcm.run: GCM run. Default is blank "".

what.timesteps: Default are daily time steps, type "monthly" for monthly data.

calendar: Define the NetCDF time:calender attribute by hand. This is necessary if the NetCDF
file contains wrong information. You can pass 360_days, no_leap or julian.

time.units: Define the NetCDF time:units attribute by hand. E.g. days since 1950-01-06 00:00:00.

30 models2wux

count.first.time.value: The time variable in NetCDF files is a vector of time steps relative
to the "time:units" attribute with calendar according to the "time:calendar" attribute. However,
there are cases where certain climate models are dealing with two calendar types at once! Yes,
that’s possible... For example: Data claim to have a "360 days" calendar. The "time:units" at-
tribute is set to days since 1961-01-01 00:00:00 and the time vector looks like
365, 366, ..., 723, 724. The 365th day since 1961-01-01 is definetely not the 1st January of
1962 concerning the 360-days calendar but is correctly in terms of "julian" dates.
In such a case we would set count.first.time.value = "julian" and calendar remains 360
days. Other possibilities are count.first.time.value = "noleap" (or = "360days").
Currently this property is defined for calendar = "360 days" only, but can easily be
extended to other calendars as well.

parameters: A named vector indicating parameter long- and shortname which belong together,
e.g. parameters = c(air_temperature = "tas_dm", precipitation_amount = "pr_24hc").
This is important if the NetCDF internal variable name deviates from the WUX default parameter
shortname:

tas for air_temperature
pr for precipitation_amount
hurs for relative_humidity
rsds for global_radiation
wss for wind_speed
ua for eastward_wind
va for northward_wind
psl for air_pressure_at_sea_level
hus for specific_humidity
hfss for surface_upward_sensible_heat_flux
tasmin for air_temperature_minimum
tasmax for air_temperature_maximum
ts for surface_temperature

Note

This is an awesome tool (rfp).

Author(s)

Thomas Mendlik <thomas.mendlik@uni-graz.at> and Georg Heinrich <g.heinrich@uni-graz.at>

See Also

modelinput_test, userinput_CMIP5_changesignal, cmip5_2050, cmip5_2100, ensembles, ensembles_gcms

Examples

This example shows a typical workflow for models2wux, the workhorse of
the wux package. Going through this example step-by-step, you will
retrieve NetCDF files of two CMIP5 simulations and aggregate them to
an R data.frame for further analysis.

models2wux 31

I) Load wux functions and example datasets...
library(wux)

II) You need to obtain the climate simulations first. You can get
started with downloading some example CMIP5 NetCDF files from the
ESGF visiting for example http://pcmdi9.llnl.gov or using the
CMIP5fromESGF function. Here, we dowload two simulations "NorESM1-M" and
"CanESM2" into your home directory "~/tmp/CMIP5/" which will be
created automatically. You will need a valid account at any ESGF
node for this function to run. See ?CMIP5fromESGF for further help.
Not run: CMIP5fromESGF(save.to = "~/tmp/CMIP5/",

models = c("NorESM1-M", "CanESM2"),
variables = c("tas"),
experiments= c("historical", "rcp85"))

End(Not run)

III) Specify those downloaded data for models2wux. models2wux needs
to know where the data is stored on your HDD and needs to have access
to certain metadata of the climate simulator, which you have to
provide as well. This information is stored in a list, which should
be saved as ONE file somewhere on your computer. We call this
information "modelinput". You should share this
file with you collegues using the same IT infrastructure to share
synergies. One example file would be the following:
data(modelinput_test)

It specifies temperature and precipitation files for the two
simulations "NorESM1-M" and "CanESM2" (RCP8.5), stored in
"~/tmp/CMIP5/".
str(modelinput_test)

IV) Next, you need to specify which simulations you want to read in
with models2wux, what kind of statistics to calculate, what subregion
to analyze, what time periods and seasons to define, and so on. This
is done with a user input file, which cntains a list with all the
necessary information. You typically use different userinput files
for different analysis, whereas your modelinput should remain in ONE
file which will be updated each time you obtain a new climate
simulation. One example user input file, which reads in both
simulations specified above for the Alpine domain and returns their
projected climate change signal, could look like follows:
data(userinput_CMIP5_changesignal)
str(userinput_CMIP5_changesignal)

alternatively following userinput returns a timeseries of both
models, which only differs by the "time.series" tag and differently
specified periods:
data(userinput_CMIP5_timeseries)
str(userinput_CMIP5_timeseries)

V) At last you can run models2wux to obtain a data.frame of the

32 read.wux.table

specified climatic change features defined above:
Not run: climchange.df <- models2wux(userinput = userinput_CMIP5_changesignal,

modelinput = modelinput_test)
End(Not run)
A better practice is to safe both input files containing a named
list each somewhere on your disk and pass the files directly to the
models2wux function. If you had stored the two files in your home
directory as e.g. "~/userinput.R" and "~/modelinput.R" you can call:
Not run: climchange.df <- models2wux(userinput = "~/userinput.R",

modelinput = "~/modelinput.R")
End(Not run)
if you downloaded the data correctly, you should obtain a data.frame:
Not run:

climchange.df

End(Not run)

which should be identical to this example data.frame:
data(CMIP5_example_changesignal)
CMIP5_example_changesignal

Instead of calculating the climate change signals, you can also
generate time series of the two models aggregated over the Alpine
domain, using a different user input file:
Not run: climchange.df <- models2wux(userinput = userinput_CMIP5_timeseries,

modelinput = modelinput_test)
End(Not run)

VI) Finally you can make all kind of analysis you are interested in,
using either functions from wux or from any other R funtionality
summaryWux(CMIP5_example_changesignal, parms = "delta.air_temperature")

or plot timeseries as
require(lattice)
data(CMIP5_example_timeseries)
Not run: xyplot(air_temperature ~ year|season,

groups = acronym,
data = CMIP5_example_timeseries,
type = c("l", "g"),
main = "NorESM1-M and CanESM2 simulations over Alpine Region\nRCP 8.5 forcing")

End(Not run)

read.wux.table Reads in wux data.frame from harddisk

Description

Reads in wux csv file obtained from models2wux from harddisk and creates a data frame from it

ScatterplotWux 33

Usage

read.wux.table(file, ...)

Arguments

file the name of the file which the data are to be read from.

... Further arguments to be passed to read.table.

Author(s)

Thomas Mendlik <thomas.mendlik@uni-graz.at>

Examples

read WUX test data
Not run: wux.data.frame <- read.wux.table("~/dir/to/data/ensembles_diff.csv")

ScatterplotWux Draws a climate change scatterplot for two parameters of the WUX
data frame

Description

ScatterplotWux plots one or more scatterplots containing climate change signals of selected meteo-
rological parameters.

This plotting routine extracts all the information from the input data frame which has to be ’WUX-
style’ (see models2wux).

Usage

ScatterplotWux(datain.df, var1.name, var2.name, subreg.subset = NULL,
season.subset = NULL, boxplots = TRUE,
label.only.these.models = NULL, highlight.models = NULL,
no.text = FALSE,

vert.box.col = "coral", horiz.box.col = "cyan",
zero.line.col = "gray80", median.line.col = "black",
draw.legend = TRUE, draw.seperate.legend = FALSE,
draw.median.lines = TRUE, use.rainbow.colors = TRUE,
xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL,
main = NULL, out.file.directory = NULL,
out.file.name = NULL, copyright = FALSE, ...)

34 ScatterplotWux

Arguments

datain.df WUX data frame obtained from models2wux’.
var1.name Character string of 1st parameter in WUX dataset.
var2.name Character string of 2nd parameter in WUX dataset.
subreg.subset Vector of subregions to be plotted (e.g. c("EU.ENS", "GAR")).
season.subset Vector of seasons to be plotted (e.g. c("MAM", "DJF")).
boxplots Boolean. Indicating if marginal boxplots for the two input parameters should be

plotted. Default is TRUE.
label.only.these.models

Character vector of modelnames (acronyms) to be labeled in the scatterplot.
highlight.models

Character vector of modelnames (acronyms) to be highlighted in the scatterplot.
no.text Boolean. Indicating if no models should be labeled. Default is FALSE.
vert.box.col Color character for vertical boxplot. Default is coral.
horiz.box.col Color character for horizontal boxplot. Default is cyan.
zero.line.col Color character for the zero lines. Default is gray80.
median.line.col

Color character for the median lines. Default is black.
use.rainbow.colors

Boolean. Use rainbow() color palette if TRUE, otherwise a custom color palette
with 17 colors is used. Default is TRUE.

xlim Range vector for 1st parameter (x-axis).
ylim Range vector for 2nd parameter (y-axis).
xlab Label of 1st parameter (x-axis).
ylab Label of 2nd parameter (y-axis).
draw.legend Boolean. Indicating if legend with GCMs should be plotted. Default is TRUE.
draw.seperate.legend

Boolean. Should legend with GCMs be plotted on a seperate screen? Default is
FALSE. Draws legend even if draw.legend is set FALSE.

draw.median.lines

Draw median lines for both parameters. Default is TRUE.
main Main title.
out.file.directory

Directory where the plots shall be exported (e.g. "/tmp/plots/"). If neither
out.file.name nor out.file.directory are passed, the plot will be displyed
on screen.

out.file.name Prefix of the file names of the plots. Files will be stored as out.file.name_subreg_season.eps,
where subreg is one realization of the subreg.subset argument and season is
one realization of season.subset. For example: out.file.name = "scatterplot"
will store to the files scatterplot_EUROPE_DJF.eps and scatterplot_EUROPE_JJA.eps.
If neither out.file.name nor out.file.directory are passed, the plot will be
displyed on screen.

copyright Boolean. If a copyright message should be plotted. Default is FALSE.
... Further optional arguments to be passed to plot, such as graphical parameters

(see par).

ScatterplotWux 35

Author(s)

Thomas Mendlik <thomas.mendlik@uni-graz.at> and Georg Heinrich <g.heinrich@uni-graz.at>

Examples

require(wux)

ENSEMBLES RCM analysis
data(ensembles)

Not run: ScatterplotWux(ensembles, "perc.delta.precipitation_amount",
"delta.air_temperature", boxplots = TRUE, xlim = c(-40,40),
ylim = c(0, 4), label.only.these.models = c("ICTP-REGCM3", "MPI-M-REMO"),
xlab = "Precipitation Amount [%]", ylab = "2-m Air Temperature [K]",
main = "Scatterplot", subreg.subset = c("GAR"))

End(Not run)

now see where ENSMEBLES GCMs lie within CMIP3 ensemble
data(ensembles_gcms) # GCMs for forcing of ENSEMBLES RCMs
data(cmip3_2050) # GCMs of CMIP3 ensemble

ensembles.gcm.names <- levels(ensembles_gcms$acronym) #8 GCM names

cmip3_2050.sub <- subset(cmip3_2050, subreg %in% c("World", "EU.ENS")
& em.scn == "A1B")

cmip3_2050.sub <- gdata::drop.levels(cmip3_2050.sub)
ensembles_gcms.sub <- subset(ensembles_gcms, !acronym %in%

c("mpi_echam5-r3", "bccr_bcm2_0-r1",
"ipsl_cm4-r2"))

ensembles_gcms.sub <- gdata::drop.levels(ensembles_gcms.sub)
combine cmip3 and ENSEMBLES GCMs in one data.frame
gcms.combined <- rbind(ensembles_gcms.sub, cmip3_2050.sub)

Scatterplot
prec.range <- range(gcms.combined$perc.delta.precipitation_amount) + c(-1, 1)
tas.range <- range(gcms.combined$delta.air_temperature)
Not run: ScatterplotWux(gcms.combined,

"perc.delta.precipitation_amount", "delta.air_temperature",
subreg.subset = "EU.ENS", draw.median.lines = FALSE,
label.only.these.models = ensembles.gcm.names,
xlim = prec.range,
ylim = tas.range,
main = "GCMs from ENSEMBLES project within CMIP3 SRESA1B ensemble",
draw.seperate.legend = TRUE)

End(Not run)

36 summaryWux

summaryWux Summary of a WUX data.frame

Description

Prints a screen summary of a WUX data.frame.

Usage

summaryWux(object, parms = c("perc.delta.precipitation_amount",
"delta.air_temperature"), average.over.gcm.runs = FALSE, ...)

Arguments

object WUX data.frame obtained from models2wux’

parms String vector specifying the parameters to be evaluated. Default is perc.delta.precipitation_amount
(percentage of precipitation change) and delta.air_temperature (air temper-
ature change in K).

average.over.gcm.runs

Boolean. Should the runs of the same GCM be averaged out? This is recom-
mended, as same GCMs tend to behave very similarly when run with different
initial conditions and would thus lead to biased statistics when regarding as in-
dependent. Only available for GCM analysis.

... Further optional arguments. Not active now.

Details

summaryWux gives an overview of model frequenzy and calculates statistics for each meteorological
parameter within each season in each subregion for all emission scenarios.

print.summaryWux prints the result to the screen.

Value

Returns a summaryWux object, which is a list, but will be printed in a special way. The list has
two elements, namely overall.stats and parms.stats. Both are lists again. overall.stats
stores all categorical statistics (climate model counts, emmission scenarios, rcm-gcm crosstables,
...). parms.stats is a list with statistics of continuous climate change signals (mean, standard
deviation, coeficent of variation and quantiles) split by season, emission scenario, meteorological
parameters and subregions.

Author(s)

Thomas Mendlik <thomas.mendlik@uni-graz.at>

userinput_CMIP5_changesignal 37

Examples

ENSEMBLES data summary
data(ensembles)
summaryWux(ensembles)

CMIP3 data summary
data(cmip3_2100)
summaryWux(cmip3_2100, average.over.gcm.runs = TRUE) # Average GCMs with different

initial conditions

structure of summaryWux list
data(ensembles_gcms)
ensembles.gcms.summary <- summaryWux(ensembles_gcms)
ensembles.gcms.summary # summary of 8 GCMs
str(ensembles.gcms.summary)

userinput_CMIP5_changesignal

Example userinput for models2wux

Description

This example userinput_CMIP5_changesignal can be used to test the models2wux functionality.
A userinput is a list of configurations used to read and process climate model data. In general, you
should store it as an own file somewhere on your system. It calculates the climate change signal of
1971-2000 and 2071-2100 for temperature over the Alpine region of 2 CMIP5 models "NorESM1-
M" and "CanESM2". It aggregates the monthly NetCDF model output to boreal seasons, winter,
spirng, summer and autumn. It also stores the output as a csv-file in your "/tmp" directory.

Usage

data(userinput_CMIP5_changesignal)

Details

See "Configfile userinput" section in models2wux.

See Also

models2wux, userinput_CMIP5_timeseries

Examples

thats what userinput_CMIP5_changesignal looks like:
it contains a single list named user.input
describing 2 CMIP5 models in the alpine region
data("userinput_CMIP5_changesignal")
is.list(userinput_CMIP5_changesignal)
str(userinput_CMIP5_changesignal)

38 userinput_CMIP5_timeseries

data(modelinput_test)

reading in these data and process them:
Not run: wux.test <- models2wux(userinput_CMIP5_changesignal,

modelinput = model.input)
End(Not run)
if you had a file "/tmp/userinput_CMIP5_changesignal.R" which contains a
list 'user.input with the same content as 'userinput_CMIP5_changesignal'
you could read the data also like this:
Not run: wux.test <- models2wux("/tmp/userinput_CMIP5_changesignal.R",

modelinput = model.input)
End(Not run)

the result is what the data.set would look like, if you ran the code
above:
data(CMIP5_example_changesignal)
wux.test <- CMIP5_example_changesignal
wux.test

example summary though the statistics not make much sense with 2 models
summaryWux(wux.test, parms = "delta.air_temperature")

userinput_CMIP5_timeseries

Example userinput for models2wux

Description

This example userinput_CMIP5_changesignal can be used to test the models2wux functionality.
A userinput is a list of configurations used to read and process climate model data. In general, you
should store it as an own file somewhere on your system. It calculates a time series of the historical
run 1971-2005 and RCP 8.5 2006-2100 for temperature over the Alpine region of 2 CMIP5 mod-
els "NorESM1-M" and "CanESM2". It aggregates the monthly NetCDF model output to boreal
seasons, winter, spirng, summer and autumn. It also stores the output as a csv-file in your "/tmp"
directory.

Usage

data(userinput_CMIP5_timeseries)

Details

See "Configfile userinput" section in models2wux.

See Also

models2wux, userinput_CMIP5_changesignal

WuxAnova 39

Examples

thats what userinput_CMIP5_timeseries looks like:
it contains a single list named user.input
describing 2 CMIP5 models in the alpine region
data("userinput_CMIP5_timeseries")
is.list(userinput_CMIP5_timeseries)
str(userinput_CMIP5_timeseries)

data(modelinput_test)

reading in these data and process them:
Not run: wux.test <- models2wux(userinput_CMIP5_timeseries,

modelinput = model.input)
End(Not run)
if you had a file "/tmp/userinput_CMIP5_timeseries.R" which contains a
list 'user.input with the same content as 'userinput_CMIP5_timeseries'
you could read the data also like this:
Not run: wux.test <- models2wux("/tmp/userinput_CMIP5_timeseries.R",

modelinput = model.input)
End(Not run)

the result is what the data.set would look like, if you ran the code
above:
data(CMIP5_example_timeseries)
wux.test <- CMIP5_example_timeseries

Not run: require(lattice)
xyplot(air_temperature ~ year|season,

groups=acronym,
data = wux.test,
type = c("l", "g"),
main = "Temperature trends for Alpine Region")

End(Not run)

WuxAnova Missing value reconstruction based on ANOVA

Description

Calculates an analysis of variance (ANOVA) based on the specified model.

Usage

WuxAnova(model.formula = formula(model.formula), datain.df)

Arguments

model.formula Model formula used for aov.

datain.df WUX dataframe obtained from models2wux.

40 WuxAnova

Note

Returns a list containing the ANOVA results for each subregion and season. The names of the list
entries are "subreg = xx;season = yy".

Author(s)

Georg Heinrich <g.heinrich@uni-graz.at>

Examples

read WUX test data
library(wux)
data(ensembles)

wuxtest.df <- subset(ensembles, subreg == "GAR")

data reconstruction to obtain a balanced design
reconstruct.df <- AnovaReconstructLES(wuxtest.df,

factor1.name = "acronym", factor2.name = "gcm", data.name =
"perc.delta.precipitation_amount")

calculate ANOVA
anova.list <- WuxAnova(perc.delta.precipitation_amount ~ acronym +

gcm, reconstruct.df)

Index

∗Topic IO
AverageWuxDataFrame, 11
CMIP5fromESGF, 13
models2wux, 24
read.wux.table, 32

∗Topic NA
AnovaReconstructIterative, 7
AnovaReconstructIterativeCC, 8
AnovaReconstructLES, 9
WuxAnova, 39

∗Topic classes
AnovaReconstructIterative, 7
AnovaReconstructIterativeCC, 8
AnovaReconstructLES, 9
WuxAnova, 39

∗Topic connection
CMIP5fromESGF, 13

∗Topic database
CMIP5fromESGF, 13

∗Topic datagen
AnovaReconstructIterative, 7
AnovaReconstructIterativeCC, 8
AnovaReconstructLES, 9
AverageWuxDataFrame, 11
models2wux, 24
WuxAnova, 39

∗Topic datasets
cmip3_2050, 11
cmip3_2100, 12
cmip5_2050, 15
cmip5_2100, 16
CMIP5_example_changesignal, 17
CMIP5_example_timeseries, 18
ensembles, 19
ensembles_gcms, 20
modelinput_test, 23
userinput_CMIP5_changesignal, 37
userinput_CMIP5_timeseries, 38

∗Topic distribution

HistplotWux, 21
∗Topic file

CMIP5fromESGF, 13
models2wux, 24
read.wux.table, 32

∗Topic hplot
AnnualCycleplotWux, 4
AnovaBarplotWux, 5
HistplotWux, 21
ScatterplotWux, 33

∗Topic interface
CMIP5fromESGF, 13

∗Topic iteration
AnovaReconstructIterative, 7
AnovaReconstructIterativeCC, 8
AverageWuxDataFrame, 11

∗Topic manip
AverageWuxDataFrame, 11
summaryWux, 36

∗Topic methods
summaryWux, 36

∗Topic models
AnovaBarplotWux, 5
AnovaReconstructIterative, 7
AnovaReconstructIterativeCC, 8
AnovaReconstructLES, 9
WuxAnova, 39

∗Topic multivariate
models2wux, 24
ScatterplotWux, 33

∗Topic package
wux-package, 2

∗Topic print
summaryWux, 36

∗Topic programming
CMIP5fromESGF, 13

∗Topic regression
AnovaBarplotWux, 5
AnovaReconstructIterative, 7

41

42 INDEX

AnovaReconstructIterativeCC, 8
AnovaReconstructLES, 9
WuxAnova, 39

∗Topic spatial
models2wux, 24

∗Topic ts
models2wux, 24

∗Topic univar
AnnualCycleplotWux, 4
AverageWuxDataFrame, 11
HistplotWux, 21
summaryWux, 36

AnnualCycleplotWux, 3, 4
AnovaBarplotWux, 3, 5
AnovaReconstructIterative, 3, 7, 8
AnovaReconstructIterativeCC, 3, 8
AnovaReconstructLES, 3, 9
aov, 39
AverageWuxDataFrame, 3, 11

cmip3_2050, 3, 11, 20
cmip3_2100, 3, 12
cmip5_2050, 3, 15, 30
cmip5_2100, 3, 16, 30
CMIP5_example_changesignal, 3, 17
CMIP5_example_timeseries, 3, 18
CMIP5fromESGF, 3, 13, 17, 18, 23

ensembles, 3, 19, 20, 30
ensembles_gcms, 3, 20, 30

HistplotWux, 3, 21

modelinput_test, 3, 23, 30
models2wux, 3, 4, 7, 8, 10, 11, 17, 18, 20–23,

24, 32–34, 36–39

read.table, 33
read.wux.table, 3, 11, 32

ScatterplotWux, 3, 33
summaryWux, 3, 36

userinput_CMIP5_changesignal, 3, 30, 37,
38

userinput_CMIP5_timeseries, 3, 37, 38

wux (wux-package), 2
wux-package, 2
WuxAnova, 3, 5, 6, 39

	wux-package
	AnnualCycleplotWux
	AnovaBarplotWux
	AnovaReconstructIterative
	AnovaReconstructIterativeCC
	AnovaReconstructLES
	AverageWuxDataFrame
	cmip3_2050
	cmip3_2100
	CMIP5fromESGF
	cmip5_2050
	cmip5_2100
	CMIP5_example_changesignal
	CMIP5_example_timeseries
	ensembles
	ensembles_gcms
	HistplotWux
	modelinput_test
	models2wux
	read.wux.table
	ScatterplotWux
	summaryWux
	userinput_CMIP5_changesignal
	userinput_CMIP5_timeseries
	WuxAnova
	Index

