
Data import and manipulation in poppr version 2.0.2

Zhian N. Kamvar1 and Niklaus J. Grünwald1,2

1) Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR

2) Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, OR

July 18, 2015

Abstract

Poppr provides open-source, cross-platform tools for quick analysis of population genetic data enabling

focus on data analysis and interpretation. While there are a plethora of packages for population genetic

analysis, few are able to offer quick and easy analysis of populations with mixed reproductive modes.

Poppr ’s main advantage is the ease of use and integration with other packages such as adegenet and vegan,

including support for novel methods such as clone correction, multilocus genotype analysis, calculation

of Bruvo’s distance, and the index of association. New features in version 2.0 include generation of

minimum spanning networks with reticulation, calculation of the index of association for genomic data,

and filtering multilocus genotypes based on genetic distance.

1

Contents

i Table of Functions 3

1 Introduction 5
1.1 Purpose . 5
1.2 A note about poppr version 2.0.2 . 5
1.3 Resources . 6
1.4 Getting Help . 6
1.5 Acknowledgments . 6
1.6 Citation . 6

2 Installation and Quick Start 7
2.1 Installation . 7
2.2 Quick start . 8

3 Import and Data types 12
3.1 Importing data into poppr {Get out of my dreams and into my R} 12
3.2 Getting to know adegenet ’s genind object . 18
3.3 The genclone object {send in the clones} . 20
3.4 About polyploid data . 23

4 Data Manipulation 26
4.1 Replace or remove missing data {Inside the golden days of missing data} 26
4.2 Extract populations {Divide (populations) and conquer (your analysis)} 30
4.3 Clone-censor data sets {Attack of the clone correction} . 32
4.4 Permutations and bootstrap resampling {every day I’m shuffling (data sets)} 34
4.5 Removing uninformative loci {Cut It Out!} . 37

5 Multilocus Genotype Analysis 38
5.1 How many multilocus genotypes are in our data set? {Just a peek} 38
5.2 MLGs across populations {clone-ing around} . 39
5.3 Producing MLG tables and graphs {bringing something to the table} 41
5.4 Combining MLG functions {getting into the mix} . 44

A Appendix 47
A.1 Manipulating Graphics . 47
A.2 Exporting Graphics . 50

2

i Table of Functions

Below is a table of functions found in poppr . These functions are linked within the document. If a
function name is blue, simply click on it to go to its definition and description.

Table 1: Functions available in poppr

Function Description

Import/Export
getfile Provides a quick GUI to grab files for import
read.genalex Read GenAlEx formatted csv files to a genind object
genind2genalex Converts genind objects to GenAlEx formatted csv files
as.genclone Converts genind objects to genclone objects

Manipulation
as.genclone Converts genind objects to genclone objects
genclone2genind Removes the @mlg slot from genclone objects
setPop (moved to adegenet) Set the population using defined hierarchies
splitStrata (moved to adegenet) Split a concatenated hierarchy imported as a population
strata (moved to adegenet) Define a population hierarchy of a genclone object
strata (moved to adegenet) Extract the hierarchy data frame
addStrata (moved to adegenet) Add a vector or data frame to an existing hierarchy
nameStrata (moved to adegenet) Rename a population hierarchy
missingno Handles missing data
clonecorrect Clone censors at a specified population hierarchy
informloci Detects and removes phylogenetically uninformative loci
popsub Subsets genind objects by population
shufflepop Shuffles genotypes at each locus using four different shuffling algorithms
recode polyploids recode polyploid data sets with missing alleles imported as “0”
fix replen Finds and fixes inconsistant repeat lengths for Bruvo’s distance.

Distances
bruvo.dist Bruvo’s distance
diss.dist Absolute genetic distance (see provesti.dist)
nei.dist Nei’s 1978 genetic distance
rogers.dist Rogers’ euclidean distance
reynolds.dist Reynolds’ coancestry distance
edwards.dist Edwards’ angular distance
provesti.dist Provesti’s absolute genetic distance

Bootstrapping
aboot Creates a bootstrapped dendrogram for any distance measure
bruvo.boot Produces dendrograms with bootstrap support

based on Bruvo’s distance
diversity boot Generates boostrap distributions of diversity

statistics for multilocus genotypes
diversity ci Generates confidence intervals for

multilocus genotype diversity

Analysis: Multilocus Genotypes
mlg Calculates the number of multilocus genotypes

Continued on next page...

3

Table 1 – continued from previous page

Function Description

mll Displays the current multilocus lineages (genotypes) defined.
nmll Same as mlg.
mlg.crosspop Finds all multilocus genotypes that cross populations
mlg.table Returns a table of populations by multilocus genotypes
mlg.vector Returns a vector of a numeric multilocus genotype assignment for each individual
mlg.id Finds all individuals associated with a single multilocus genotype
mlg.filter Collapses MLGs by genetic distance
filter stats Calculate mlg.filter for all algorithms and plot
cutoff predictor predict cutoff threshold from mlg.filter.
mll.custom Allows for the custom definition of multilocus lineages
mll.levels Allows the user to change levels of custom MLLs.
diversity stats Creates a table of diversity indices for multilocus genotypes.

Analysis: Other
poppr.amova Analysis of Molecular Variance (as implemented in ade4)
ia Calculates the index of association
pair.ia Calculates the index of association for all loci pairs.
win.ia Index of association windows for genlight objects.
samp.ia Index of association on random subsets of loci for genlight objects.
poppr Returns a diversity table by population
poppr.all Returns a diversity table by population for all compatible

files specified
private alleles Tabulates the occurrences of alleles that only occur

in one population.
locus table Creates a table of summary statistics per locus.

Visualization
imsn interactive construction and visualization of minimum spanning networks
plot poppr msn Plots minimum spanning networks produced in poppr with

scale bar and legend
greycurve Helper to determine the appropriate parameters for adjusting the

grey level for msn functions
bruvo.msn Produces minimum spanning networks based off Bruvo’s distance

colored by population
poppr.msn Produces a minimum spanning network for any pairwise distance

matrix related to the data
info table Creates a heatmap representing missing data or observed ploidy
genotype curve Creates a series of boxplots demonstrating how many loci are

needed to represent the diversity of your data.

Data Sets
Aeut (AFLP) Oomycete root rot pathogen Aphanomyces euteiches

(Grünwald & Hoheisel, 2006)
monpop (SSR) Peach brown rot pathogen Monilinia fructicola

(Everhart & Scherm, 2015)
partial clone (SSR) partially-clonal data simulated via simuPOP

(Peng & Amos, 2008)
Pinf (SSR) Potato late blight pathogen Phytophthora infestans

(Goss et al., 2014)
Continued on next page...

4

Table 1 – continued from previous page

Function Description

Pram (SSR) Sudden Oak Death pathogen Phytophthora ramorum
(Kamvar et al., 2015b; Goss et al., 2009)

1 Introduction

1.1 Purpose

Poppr is an R package with convenient functions for analysis of genetic data with mixed modes of repro-
duction including sexual and clonal reproduction. While there are many R packages in CRAN and other
repositories with tools for population genetic analyses, few are appropriate for populations with mixed modes
of reproduction. There are several stand-alone programs that can handle these types of data sets, but they
are often platform specific and often only accept specific data types. Furthermore, a typical analysis often
involves switching between many programs, and converting data to each specific format.

Poppr is designed to make analysis of populations with mixed reproductive modes more streamlined and
user friendly so that the researcher using it can focus on data analysis and interpretation. Poppr allows
analysis of haploid and diploid dominant/co-dominant marker data including microsatellites, Single Nu-
cleotide Polymorphisms (SNP), and Amplified Fragment Length Polymorphisms (AFLP). To avoid creating
yet another file format that is specific to a program, poppr was created on the backbone of the popular R
package adegenet and can take all the file formats that adegenet can take (Genpop, Genetix, Fstat, and
Structure) and newly introduces compatibility with GenAlEx formatted files (exported to CSV). This means
that anything you can analyze in adegenet can be further analyzed with poppr .

The real power of poppr is in the data manipulation and analytic tools. Poppr has the ability to bootstrap,
clone-censor, and subset data sets. With poppr you can also quickly calculate Bruvo’s distance, the index of
association, and easily determine which multilocus genotypes are shared across populations.

In version 2.0, tools for genomic data were introduced (Kamvar et al., 2015a). These tools allow re-
searchers to define what it means to be a clone lost in a sea of genomic data, generate bootstrapped dendro-
grams with any genetic distance, and calculate minimum spanning networks with reticulations to reveal the
underlying population structure of your clonal data.

1.2 A note about poppr version 2.0.2

In poppr version 1.1, the genclone object was introduced. This was an extension of adegenet ’s genind

object by adding two new slots:

1. mlg numeric classification of multilocus genotypes in the data set

2. hierarchy storage of multiple population factors.

In particular, the hierarchy slot played a large role in providing a more tractable way of performing
analyses such as clone-correction and AMOVA. In March of 2015, The hierarchy slot was ported to the
adegenet packaged and the name was changed to the strata slot. This means that code written before poppr
2.0.0 might need some small changes. Please see the Migrating from poppr version 1 vignette for more
details:

vignette("how_to_migrate", package = "poppr")

5

1.3 Resources

This vignette will cover all of the material you need to know to efficiently analyze data in poppr . For
information on methods of analysis (eg. index of association, distance measures, AMOVA, ...), please read
the manual pages provided for each function.

As poppr expanded from version 1.0, the vignette also expanded to be 80+ pages. As a result, it became
clear that over 22,000 was less of a manual and more of a novella with a terrible plot. To remedy this,
this vignette will focus only on data manipulation and a separate vignette, “algo”, has been written to give
algorithmic details of analyses introduced with poppr .

As of spring 2014, Drs. Niklaus J. Grünwald, Sydney E. Everhart, and I have co-authored a primer on
using R for population genetic analysis. It is located at http://grunwaldlab.github.io//Population_

Genetics_in_R and the source code can be found on our github site.

1.4 Getting Help

If you have any questions or feedback, feel free to send a message to the poppr forum at http://groups.
google.com/group/poppr. You can submit bug reports there or on our github site: https://github.com/
grunwaldlab/poppr

1.5 Acknowledgments

Much thanks goes to Sydney E. Everhart for alpha testing, beta testing, feature requests, proofreading, data
contribution, and moral support throughout the writing of this package and manual. Thanks also to Brian
Knaus, Ignazio Carbone, David Cooke, Corine Schoebel, Jane Stewart, and Zaid Abdo for beta testing and
feedback.

The following data sets are included in poppr :

• Pinf (SSR, Phytophthora infestans)(Goss et al., 2014)

• monpop (SSR, Monilinia fructicola)(Everhart & Scherm, 2015)

• Aeut (AFLP, Aphanomyces eutieches)(Grünwald & Hoheisel, 2006)

• Pram (SSR, Phytophthora ramorum)(Kamvar et al., 2015b; Goss et al., 2009)

1.6 Citation

To cite poppr , please type in your R console:

citation(package = "poppr")

##

To cite poppr in publications, please specify poppr version 2.0.2

and with the following citation:

##

Kamvar ZN, Tabima JF, Grünwald NJ. (2014) Poppr: an R package

for genetic analysis of populations with clonal, partially

clonal, and/or sexual reproduction. PeerJ 2:e281. doi:

10.7717/peerj.281

##

Kamvar ZN, Brooks JC and Grünwald NJ (2015) Novel R tools for

analysis of genome-wide population genetic data with emphasis on

clonality. Front. Genet. 6:208. doi: 10.3389/fgene.2015.00208

6

http://grunwaldlab.github.io//Population_Genetics_in_R
http://grunwaldlab.github.io//Population_Genetics_in_R
https://github.com/grunwaldlab/Population_Genetics_in_R
http://groups.google.com/group/poppr
http://groups.google.com/group/poppr
https://github.com/grunwaldlab/poppr
https://github.com/grunwaldlab/poppr

The formal publication for the first version of poppr was published in the journal PeerJ: http://peerj.
com/articles/281/ (Kamvar et al., 2014). The new features in version 2.x were published in Frontiers
http://dx.doi.org/10.3389/fgene.2015.00208 (Kamvar et al., 2015a).

2 Installation and Quick Start

2.1 Installation

This manual assumes you have installed R. If you have not, please refer to The CRAN home page at
http://cran.r-project.org/. We also recommend the Rstudio IDE (http://www.rstudio.com/), which
allows the user to view the R console, environment, scripts, and plots in a single window.

2.1.1 From CRAN

To install poppr from CRAN, select “Package Installer” from the menu “Packages & Data” in the GUI
or type:

install.packages("poppr", dependencies=TRUE)

All dependencies (adegenet, pegas, vegan, ggplot2, phangorn, ape, reshape2 and igraph) will also be
installed. In the unfortunate case this does not work, consult http://cran.r-project.org/doc/manuals/
R-admin.html#Installing-packages.

2.1.2 From GitHub

GitHub is a repository where you can find all stable and development versions of poppr .
Since poppr contains C code, it needs to be compiled, which means that you need a working C compiler.

If you are on Linux, you should have that, but if you are on Windows or OSX, you might need to download
some special tools:

Windows Download Rtools: http://cran.r-project.org/bin/windows/Rtools/

OSX Download Xcode: https://developer.apple.com/xcode

To install from GitHub, you do not need to download the tarball since there is a package called devtools
that will download and install the package for you directly from GitHub. After you have installed all
dependencies (see above section), you should download devtools:

install.packages("devtools")

Now you can execute the command install github with the user and repository name:

devtools::install_github("grunwaldlab/poppr")

If you are the adventurous type and are willing to test out unreleased versions of the package, you can
also install the development version:

devtools::install_github("grunwaldlab/poppr@devel")

Users who install this version do so at their own risk. Since it is a development version, documentation
may be incomplete or non-existent for new functions.

7

http://peerj.com/articles/281/
http://peerj.com/articles/281/
http://dx.doi.org/10.3389/fgene.2015.00208
http://cran.r-project.org/
http://www.rstudio.com/
http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages
http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages
http://cran.r-project.org/bin/windows/Rtools/
https://developer.apple.com/xcode

2.1.3 From Source

The tarball for poppr can be downloaded from CRAN: http://cran.r-project.org/package=poppr
or via github at https://github.com/grunwaldlab/poppr.

You will need a C compiler to install this way. See the section above for details.
If you choose to install poppr from a source file, you should first make sure to install all of the dependencies

with the following command:

pkgs <- c("adegenet", "pegas", "vegan", "ggplot2", "phangorn", "ape",

"igraph", "reshape2", "dplyr", "shiny")

install.packages(pkgs)

After installing dependencies, download the package to your computer and then install it with:

install.packages("/path/to/poppr.tar.gz", type="source", repos=NULL)

2.2 Quick start

The author assumes that if you have reached this point in the manual, then you have successfully
installed R and poppr . Before proceeding, you should be aware that R is case sensitive. This means that the
words “Case” and “case” are different. You should also know where your R package library is located. In
this section, you will learn how to locate a file, import it to R, and make a first analysis using the poppr()

function.

What or where is my R package library?
R is as powerful as it is through a community of people who submit extra code called
“packages” to help it do specific things. These packages live in a certain place on
your computer called an R library. You can find out where this library is by typing
.libPaths()

Importing a file into R involves you knowing the path to your file and then typing that into R’s console.
getfile() will help provide a point and click interface for selecting a file. This is simply a tool to help you
get started. As you get better with R, you might feel that you don’t need it at all.

First, tell your computer to search R’s library, load the poppr package, and use getfile():

library("poppr")

x <- getfile()

A pop up window will appear like this1:

1This window sometimes appears behind your current session of R, depending on the GUI and you will have to toggle to
this window

8

http://cran.r-project.org/package=poppr
https://github.com/grunwaldlab/poppr

Figure 1: A popup window as it appears in OSX (Mountain Lion).

Hey! My window doesn’t look like that!
Now, this window will not match up to your window on your computer because you
will probably not be in the right directory. Remember the first path in .libPaths()?
Move to a folder called poppr in that path. In that folder, you will find another folder
called files. Move there and your window will match the one displayed.

You should navigate to your R library and select the file called “rootrot.csv”. If you don’t know where
your the poppr package lives, you can find it by typing find.package(’poppr’) into the R command line.
Once we select a file, the file name and its path will be stored in the variable, x. We can confirm that by
typing x into R’s command line.

x

$files

[1] "/path/to/R/poppr/files/rootrot.csv"

##

$path

[1] "/path/to/R/poppr/files"

Here we can see that x is a list with two entries: $files shows the files you selected and $path shows
the path to those files.

9

Not sure what I mean by path or working directory?
For anyone who has never used a command line, this is a new con-
cept. You can think of the path as an address. So instead of
"/path/to/R", you could have "/USA/Oregon/Corvallis". Or on
your computer, it could be "C:/users/poppr-user/R/win-library/3.1"

on Windows (where “poppr-user” is your username) or
"/Library/Frameworks/R.framework/Versions/3.1/Resources/library" on
OSX. Each slash represents a folder that you would click on when you are using the
mouse.
A working directory is the folder that R is working in. It is where you can access and
write files. When you tell R to read a file, it will only look for that file in your working
directory. Note that you will not endanger your files by reading them into R. R works
by making a copy of the file into memory. This means that you can manipulate the
data in any way that you want without ever changing the original file.

To find what your current working directory is set to, type getwd() into the R console.
Usually, you will start off a session in your “home” directory, which will look like this:
"∼/". The command setwd() will change your working directory to any folder of
your choice on your computer as indicated by the path that you provide. For more
information, see Quick R at http://www.statmethods.net.

We will use x$files to access the file. The file is in the GenAlEx format, so we will import it using
read.genalex() and then analyze it with the function poppr() to get a table of diversity indices per
population.

myData <- read.genalex(x$files)

myData

popdata <- poppr(myData)

| Athena_1

| Athena_10

| Athena_2

| Athena_3

| Athena_4

| Athena_5

| Athena_6

| Athena_7

| Athena_8

| Athena_9

| Mt. Vernon_1

| Mt. Vernon_2

| Mt. Vernon_3

| Mt. Vernon_4

| Mt. Vernon_5

| Mt. Vernon_6

| Mt. Vernon_7

| Mt. Vernon_8

| Total

The output of poppr() was assigned to the variable popdata, so let’s look at the data.

10

http://www.statmethods.net

popdata

Pop N MLG eMLG SE H G lambda E.5 Hexp Ia rbarD File

1 Athena_1 9 7 7.00 0.000 1.889 6.23 0.840 0.932 0.1081 2.92 0.210 myData

2 Athena_10 9 8 8.00 0.000 2.043 7.36 0.864 0.948 0.1230 2.85 0.137 myData

3 Athena_2 12 12 10.00 NaN 2.485 12.00 0.917 1.000 0.1999 4.16 0.128 myData

4 Athena_3 10 2 2.00 0.000 0.325 1.22 0.180 0.571 0.0107 2.00 1.000 myData

5 Athena_4 13 9 7.15 0.769 1.946 5.12 0.805 0.687 0.1012 5.49 0.372 myData

6 Athena_5 10 7 7.00 0.000 1.834 5.56 0.820 0.866 0.0802 4.53 0.353 myData

7 Athena_6 5 5 5.00 0.000 1.609 5.00 0.800 1.000 0.1143 2.46 0.190 myData

8 Athena_7 11 10 9.18 0.386 2.272 9.31 0.893 0.955 0.1584 2.13 0.086 myData

9 Athena_8 8 6 6.00 0.000 1.667 4.57 0.781 0.831 0.0791 3.86 0.323 myData

10 Athena_9 10 10 10.00 0.000 2.303 10.00 0.900 1.000 0.1532 2.82 0.118 myData

11 Mt. Vernon_1 10 9 9.00 0.000 2.164 8.33 0.880 0.952 0.1766 7.13 0.276 myData

12 Mt. Vernon_2 6 6 6.00 0.000 1.792 6.00 0.833 1.000 0.3940 20.65 0.492 myData

13 Mt. Vernon_3 8 6 6.00 0.000 1.667 4.57 0.781 0.831 0.1033 2.12 0.106 myData

14 Mt. Vernon_4 12 8 6.83 0.665 1.814 4.50 0.778 0.681 0.0823 3.01 0.255 myData

15 Mt. Vernon_5 17 7 5.54 0.828 1.758 5.07 0.803 0.848 0.0544 2.68 0.340 myData

16 Mt. Vernon_6 12 11 9.32 0.466 2.369 10.29 0.903 0.958 0.3001 19.50 0.467 myData

17 Mt. Vernon_7 12 9 7.82 0.649 2.095 7.20 0.861 0.870 0.0601 1.21 0.153 myData

18 Mt. Vernon_8 13 9 7.35 0.764 2.032 6.26 0.840 0.794 0.0430 1.15 0.169 myData

19 Total 187 119 9.61 0.612 4.558 68.97 0.986 0.720 0.3651 14.37 0.271 myData

The fields you see in the output include:

• Pop - Population name (Note that “Total” also means “Pooled”).

• N - Number of individuals observed.

• MLG - Number of multilocus genotypes (MLG) observed.

• eMLG - The number of expected MLG at the smallest sample size ≥ 10 based on rarefaction. (Hurlbert,
1971)

• SE - Standard error based on eMLG (Heck et al., 1975)

• H - Shannon-Wiener Index of MLG diversity. (Shannon, 1948)

• G - Stoddart and Taylor’s Index of MLG diversity. (Stoddart & Taylor, 1988)

• lambda - Simpson’s index, λ.

• E.5 - Evenness, E5. (Pielou, 1975)(Ludwig & Reynolds, 1988)(Grünwald et al., 2003)

• Hexp - Nei’s 1978 Expected Heterozygosity. (Nei, 1978)

• Ia - The index of association, IA. (Brown et al., 1980) (Smith et al., 1993) (Agapow & Burt, 2001)

• rbarD - The standardized index of association, r̄d. (Agapow & Burt, 2001)

These fields are further described in the function poppr. You can access the help page for poppr by
typing ?poppr in your R console.

One thing to note about this output is the NaN in the column labeled SE. In R, NaN means “Not a num-
ber”. This is produced from calculation of a standard error based on rarefaction analysis. Occasionally, this
calculation will encounter a situation in which it must attempt to take a square root of a negative number.
Since the root of any negative number is not defined in the set of real numbers, it must therefore have an
imaginary component, i. Unfortunately, R will not represent the imaginary components of numbers unless
you specifically tell it to do so. By default, R represents these as NaN.

11

3 Import and Data types

3.1 Importing data into poppr {Get out of my dreams and into my R}

3.1.1 How does R represent data? {Objective: data}

Working with data in R means that these data have to be stored inside an “object”, which is stored in the
computer’s memory. Because of this, it’s important to know the difference between a file and an object.
When anyone talking about importing a file into R, they are referring to a spreadsheet or text file that
lives in a folder on your hard drive. Spreadsheet files (saved as *.csv files) are normally imported through
the R function read.table(). The output of read.table() is a data.frame. A data.frame is an object
represented in your computer’s memory. This means that it only exists for as long as R is running.

The good thing about having objects stored in memory is that you can manipulate them in any way and
not affect the source of those data. Since R is a scripted language (instead of point-and-click), any of your
manipulations can be saved in a separate R file that can be easily adapted to new data. Of course, most
data are not going to be entered into R manually. Usually they will be formatted in a manner that can be
read by popular population genetics programs.

As previously mentioned, since poppr is based on adegenet , it’s possible to read in the following file
formats into a genind object with the function import2genind():

• Fstat

• Genepop

• Genetix

• Structure

Here, we introduce a new way of importing data into a genind or genclone object from a GenAlEx
formatted file.

3.1.2 Function: read.genalex

A very popular program for population genetics is GenAlEx (http://biology.anu.edu.au/GenAlEx/
Welcome.html) (Peakall & Smouse, 2012, 2006). GenAlEx runs within the Excel environment and can be
very powerful in its analyses. Poppr has added the ability to read *.CSV files2 produced in the GenAlEx
format. It can handle data types containing regions and geographic coordinates, but currently cannot
import allelic frequency data from GenAlEx. Using the poppr function read.genalex will import your data
into adegenet ’s genind object or poppr ’s genclone object (more information on that below). For ways of
formatting a GenAlEx file, see the manual here: http://biology.anu.edu.au/GenAlEx/Download_files/
GenAlEx%206.5%20Guide.pdf

Below is an example of the GenAlEx format. We will use the data set called microbov from the adegenet
package to generate it. The data contains three demographic factors: Country, Species and Breed contained
within the @other slot (detailed in The other slot). We will first set these as the population strata,
define the population as the combination of the strata, and then save a file to the desktop.

library("poppr")

data(microbov)

strata(microbov) <- data.frame(other(microbov)) # set the strata

microbov

genind2genalex(microbov, file = "~/Desktop/microbov.csv")

2*.CSV files are comma separated files that are easily machine readable.

12

http://biology.anu.edu.au/GenAlEx/Welcome.html
http://biology.anu.edu.au/GenAlEx/Welcome.html
http://biology.anu.edu.au/GenAlEx/Download_files/GenAlEx%206.5%20Guide.pdf
http://biology.anu.edu.au/GenAlEx/Download_files/GenAlEx%206.5%20Guide.pdf

Extracting the table ... Writing the table to ~/Desktop/microbov.csv ... Done.

Figure 2: The first 15 individuals and 4 loci of the microbov data set. The first column contains the individual names, the
second column contains the population names, and each subsequent column represents microsatellite genetic data. Highlighted
in red is a list of populations and their relative sizes.

The GenAlEx format contains individuals in rows and loci in columns. Individual data begins at row 4.
Column A always contains individual names and column B defines the population of each individual. Notice
here that the three demographic factors from the data have been concatenated with a “ ”. This allows us
to import more than one population factor to use as hierarchical levels in a genclone object.

13

The First three rows contain information pertaining to the global data set. The only important informa-
tion for poppr is the information contained in row 3 and the first three columns of row 1.

A B C D
1 # of Loci # of Individuals # of Populations Pop1 Size ...
2 - - - Pop1 Name ...
3 - - Locus 1 ...

Highlighted in red in figure 2 are definitions of the number of populations and their respective sizes.
As this is redundant information, we can remove it. Below is an example of a valid data set that can be
imported into poppr .

Figure 3: The first 15 individuals and 4 loci of the microbov data set. This is the same figure as above, however the populations
and counts have been removed from the header row and the third number in the header has been replaced by 1.

All GenAlEx formatted data can be imported with the command read.genalex, detailed below:

14

Default Command:

read.genalex(genalex, ploidy = 2, geo = FALSE, region = FALSE,

genclone = TRUE, sep = ",", recode = FALSE)

• genalex - a *.CSV file exported from GenAlEx on your disk (For example: "my genalex file.csv").

• ploidy - a number indicating the ploidy for the data set (eg 2 for diploids, 1 for haploids).

• geo - GenAlEx allows you to have geographic data within your file. To do this for poppr , you will
need to follow the first format outlined in the GenAlEx manual and place the geographic data AFTER
all genetic and demographic data with one blank column separating it (See the GenAlEx Manual for
details). If you have geographic information in your file, set this flag to TRUE and it will be included
within the resulting genind object in the @other slot. (If you don’t know what that is, don’t worry. It
will be explained later in The other slot.)

• region - To format your GenAlEx file to include regions, you can choose to include a separate column
for regional data, or, since regional data must be in contiguous blocks, you can simply format it in
the same way you would any other data (see the GenAlEx manual for details). If you have your file
organized in this manner, select this option and the regional information will be stored in the @other
slot of the resulting genind object or be incorporated into the hierarchy of the genclone object.

• genclone - This flag will convert your data into a genclone object (see Send in the clones for
more info).

• sep - The separator argument for columns in your data. It defaults to “,”.

• recode - If your data is polyploid data, this gives you the option to recode it. (See About Polyploid
Data for details)

If you are unfamiliar with exporting data from Excel

1. Click the Microsoft Office Button in the top left corner of Excel. (Or go to the
File menu if you have an older version)

2. Click Save As...

3. In the “Save as type” drop down box, select CSV (comma delimited).

Note that regional data and geographic data are not mutually exclusive. You can have both in one file,
just make sure that they are on the same sheet and that the geographic data is always placed after all genetic
and demographic data.

We have a short example of GenAlEx formatted data with no geographic or regional formatting. We
will first see where the data is using the command system.file()

system.file("files/rootrot.csv", package="poppr")

15

[1] "/path/to/R/library/poppr/files/rootrot.csv"

Now import the data into poppr like so:

rootrot <- read.genalex(system.file("files/rootrot.csv", package="poppr"))

Executing rootrot shows that this file is now in genclone format and can be used with any function in
poppr and adegenet

rootrot

##

This is a genclone object

Genotype information:

##

119 original multilocus genotypes

187 diploid individuals

56 dominant loci

##

Population information:

##

1 stratification - Pop

18 populations defined - Athena_1 Athena_10 Athena_2 ... Mt. Vernon_6 Mt. Vernon_7

Mt. Vernon_8

3.1.3 Other ways of importing data

Adegenet already supports the import of FSTAT, Structure, Genpop, and Genetix formatted files,
so if you have data in those formats, you can import them using the function import2genind. For sequence
data, check if you can use read.dna from the ape package to import your data. If you can, then you can use
the adegenet function DNAbin2genind. If you don’t have any of these formats handy, you can still import
your data using R’s read.table along with df2genind from adegenet . For more information, see adegenet ’s
“Getting Started” vignette.

3.1.4 Function: genind2genalex (exporting data)

Of course, being able to export data is just as useful as being able to import it, so we have this handy
little function that will write a GenAlEx formatted file to wherever you desire.
WARNING: This will overwrite any file that exists with the same name.

Default Command:

genind2genalex(gid, filename = "genalex.csv", quiet = FALSE,

pop = NULL, allstrata = TRUE, geo = FALSE, geodf = "xy",

sep = ",")

• pop - a genind object.

• filename - This is where you specify the path to the new file you wish to create. If you specify only
a filename with no path, it will place the file in your current working directory.

16

• quiet - If this is set to FALSE, a status message will be printed to the console as the extraction
progresses.

• pop - A vector specifying a custom population OR a formula specifying the strata to be combined in
the new file.

• allstrata - This is TRUE by default and will combine all of the strata in your file unless you have
specified a new population factor.

• geo - Set to TRUE, if you have a data frame or matrix in the @other slot of your genind object that
contains geographic coordinates for all individuals or all populations. Setting this to TRUE means the
resulting file will have two extra columns at the end of your file with geographic coordinates.

• geodf - The name of the data frame or matrix containing the geographic coordinates.

• sep - A separator to separate columns in the resulting file.

First, a simple example for the rootrot data we demonstrated in section 1.4.2:

genind2genalex(rootrot, "~/Desktop/rootrot.csv")

Extracting the table ... Writing the table to ~/Desktop/rootrot.csv ... Done.

Here’s an example of exporting the nancycats data set into GenAlEx format with geographic informa-
tion. If we look at the nancycats geographic information, we can see it’s coordinates for each population,
but not each individual:

data(nancycats)

other(nancycats)$xy

x y

P01 263.3498 171.10939

P02 183.5028 122.40790

P03 391.1050 254.70148

P04 458.6121 41.72336

P05 182.7769 219.08398

P06 335.2121 344.83557

P07 359.1662 375.36486

P08 271.3345 67.89132

P09 256.8169 150.02964

P10 270.6086 17.00917

P11 493.4544 237.25618

P12 305.4510 85.33663

P13 462.9674 86.79040

P14 429.5768 291.04587

P15 531.2003 115.13903

P16 407.8003 99.87438

P17 345.3745 251.79393

To export it:

genind2genalex(nancycats, "~/Desktop/nancycats_pop_xy.csv", geo = TRUE)

17

Extracting the table ... Writing the table to ~/Desktop/nancycats_pop_xy.csv ... Done.

If we wanted to assign a geographic coordinate to each individual, we can use this trick knowing that
there are 17 populations in the data set:

nan2 <- nancycats

other(nan2)$xy <- other(nan2)$xy[rep(1:17, table(pop(nan2))),]

head(other(nan2)$xy)

x y

P01 263.3498 171.1094

P01 263.3498 171.1094

P01 263.3498 171.1094

P01 263.3498 171.1094

P01 263.3498 171.1094

P01 263.3498 171.1094

Now we can export it to a different file.

genind2genalex(nan2, "~/Desktop/nancycats_inds_xy.csv", geo = TRUE)

Extracting the table ... Writing the table to ~/Desktop/nancycats_inds_xy.csv ... Done.

3.2 Getting to know adegenet ’s genind object

Since poppr was built around adegenet ’s framework, it is important to know how adegenet stores data
in the genind object, as that is the object used by poppr . To create a genind object, adegenet takes a data
frame of genotypes (rows) across multiple loci (columns) and converts them into a matrix of individual allelic
counts at each locus (Jombart, 2008).

For example, Let’s say we had data with 3 diploid individuals each with 3 loci that had 3, 4, and 5 allelic
states respectively:

locus1 locus2 locus3
1 101/101 201/201 301/302
2 102/103 202/203 301/303
3 102/102 203/204 304/305

The resulting genind object would contain a matrix that has 3 rows and 12 columns. Below is a schematic
of what that would look like. Each column represents a separate allele, each row represents an individual
and each color represents a different locus.

1
2

3

locus1.101 locus1.102 locus1.103 locus2.201 locus2.202 locus2.203 locus2.204 locus3.301 locus3.302 locus3.303 locus3.304 locus3.305

locus1 locus2 locus3

18

When we look at the data derived from table 3.2, we see that we have a matrix of individual allele counts
at each locus.

locus1.101 locus1.102 locus1.103 locus2.201 locus2.202 locus2.203 locus2.204 locus3.301

1 2 0 0 2 0 0 0 1

2 0 1 1 0 1 1 0 1

3 0 2 0 0 0 1 1 0

locus3.302 locus3.303 locus3.304 locus3.305

1 1 0 0 0

2 0 1 0 0

3 0 0 1 1

At each locus, the allele counts for each individual sum to the ploidy, p. Homozygotes are denoted as having
an allele count of p at a single allele within a locus, while heterozygotes have their allele counts represented
as < p wher p = ploidy across multiple alleles in a single locus. Along with this matrix, are elements that
define the names of the individuals, loci, alleles, and populations. If you wish to know more, see the adegenet
“Getting Started” manual.

3.2.1 The other slot

The other slot is a place in the genind object that can be used to store useful information about the data.
We saw earlier that it could store demographic information, now let’s explore a different example. Bruvo’s
distance is based off of a stepwise mutation model for microsatellites. This requires us to know the length
of the repeat of each locus. We could store the repeat lengths in a separate variable in our R environment,
but we are at risk of losing that. One way to prevent it from being lost would be to place it in the “other”
slot. For the purpose of this example, we will use the “nancycats” data set from the adegenet package and
assume that it has di-nucleotide repeats at all of its loci.

data(nancycats) # Load the data

other(nancycats) # geographical coordinates

$xy

x y

P01 263.3498 171.10939

P02 183.5028 122.40790

P03 391.1050 254.70148

P04 458.6121 41.72336

P05 182.7769 219.08398

P06 335.2121 344.83557

P07 359.1662 375.36486

P08 271.3345 67.89132

P09 256.8169 150.02964

P10 270.6086 17.00917

P11 493.4544 237.25618

P12 305.4510 85.33663

P13 462.9674 86.79040

P14 429.5768 291.04587

P15 531.2003 115.13903

P16 407.8003 99.87438

P17 345.3745 251.79393

repeats <- rep(2, nLoc(nancycats)) #nLoc = number of loci

repeats

[1] 2 2 2 2 2 2 2 2 2

19

other(nancycats)$repeat_lengths <- repeats

other(nancycats) # two items named xy and repeat_lengths

$xy

x y

P01 263.3498 171.10939

P02 183.5028 122.40790

P03 391.1050 254.70148

P04 458.6121 41.72336

P05 182.7769 219.08398

P06 335.2121 344.83557

P07 359.1662 375.36486

P08 271.3345 67.89132

P09 256.8169 150.02964

P10 270.6086 17.00917

P11 493.4544 237.25618

P12 305.4510 85.33663

P13 462.9674 86.79040

P14 429.5768 291.04587

P15 531.2003 115.13903

P16 407.8003 99.87438

P17 345.3745 251.79393

##

$repeat_lengths

[1] 2 2 2 2 2 2 2 2 2

3.3 The genclone object {send in the clones}

The genclone class was defined in order to make working with clonal organisms more intuitive. It is built
off of the genind object and has dedicated slots for defined multilocus genotypes. The name genclone refers
to the fact that it has the ability to handle genotypes of clonal organisms (but it is also used for sexual
populations).

In previous versions of poppr , the genclone object contained a hierarchy slot as well. This slot was moved
to adegenet and its name was changed to “strata”. This slot allows you to carry around several definitions
for populations in the same data set.

The function as.genclone allows the user to convert a genind object to a genclone object. The
following example will demonstrate that the genclone object is an extension of the genind object as well
as the advantages of having populations pre-defined in your data set.

3.3.1 Function: as.genclone

Default Command:

as.genclone(x, ..., mlg, mlgclass = TRUE)

• x - a genind object to be converted.

• ... - any arguments to be passed to the genind constructor.

• mlg - a vector representing the multilocus genotype definitions of your data.

20

• mlgclass - if TRUE, the MLGs represented in your object will be converted to an MLG class object,
which allows for custom MLG definitions.

Let’s show an example of a genclone object. First, we will take an existing genind object and convert
it using the function as.genclone (We can also use the function read.genalex to import as genclone or
genind objects). We will use the Aeut data set because it is a clonal data set that has a simple population
strata (Grünwald & Hoheisel, 2006). The data set is here: http://dx.doi.org/10.6084/m9.figshare.

877104 and it is AFLP data of the root rot pathogen Aphanomyces euteiches collected from two different
fields in NW Oregon and WWashington, USA. These fields were divided up into subplots from which samples
were collected. The fields represent the population and the subplots represent the subpopulation. Let’s take
a look at what the genind object looks like:

library("poppr")

data(Aeut)

Aeut

/// GENIND OBJECT /////////

##

// 187 individuals; 56 loci; 56 alleles; size: 66.5 Kb

##

// Basic content

@tab: 187 x 56 matrix of allele counts

@loc.n.all: number of alleles per locus (range: 56-56)

@ploidy: ploidy of each individual (range: 2-2)

@type: PA

@call: old2new_genind(object = x, donor = new(class(x)))

##

// Optional content

@pop: population of each individual (group size range: 90-97)

@other: a list containing: population_hierarchy

We can see that there is a data frame in the @other slot called “population hierarchy”. This is left over
from poppr version 1.x behavior. Since the genind object now has a @strata slot, we can use it to set the
stratification (previously called “hierarchy”).

strata(Aeut) <- other(Aeut)$population_hierarchy[-1]

Aeut

/// GENIND OBJECT /////////

##

// 187 individuals; 56 loci; 56 alleles; size: 70.1 Kb

##

// Basic content

@tab: 187 x 56 matrix of allele counts

@loc.n.all: number of alleles per locus (range: 56-56)

@ploidy: ploidy of each individual (range: 2-2)

@type: PA

@call: old2new_genind(object = x, donor = new(class(x)))

##

// Optional content

@pop: population of each individual (group size range: 90-97)

@strata: a data frame with 2 columns (Pop, Subpop)

@other: a list containing: population_hierarchy

21

http://dx.doi.org/10.6084/m9.figshare.877104
http://dx.doi.org/10.6084/m9.figshare.877104

Now we can convert this to a genclone object, which will store information about our multilocus geno-
types for us.

agc <- as.genclone(Aeut)

agc

##

This is a genclone object

Genotype information:

##

119 original multilocus genotypes

187 diploid individuals

56 dominant loci

##

Population information:

##

2 strata - Pop Subpop

2 populations defined - Athena Mt. Vernon

We can see here that it shows less information, but it gives us a very simple overview of our data. Don’t
be fooled, however, because it contains the same information as a genind object.

c(is.genind(Aeut), is.genclone(Aeut), is.genind(agc), is.genclone(agc))

[1] TRUE FALSE TRUE TRUE

Adegenet functions work the same, too

c(nInd(Aeut), nInd(agc))

[1] 187 187

If we wanted to, we could also convert it back to a genind object.

genclone2genind(agc)

/// GENIND OBJECT /////////

##

// 187 individuals; 56 loci; 56 alleles; size: 79.6 Kb

##

// Basic content

@tab: 187 x 56 matrix of allele counts

@loc.n.all: number of alleles per locus (range: 56-56)

@ploidy: ploidy of each individual (range: 2-2)

@type: PA

@call: genclone2genind(x = agc)

##

// Optional content

@pop: population of each individual (group size range: 90-97)

@strata: a data frame with 2 columns (Pop, Subpop)

@other: a list containing: population_hierarchy

22

3.4 About polyploid data

WARNING

Treat polyploid data with care. Please read this section carefully and consult the help
pages for all functions mentioned here.

With diploid or haploid data, genotypes are unambiguous. It is often clear when it is homozygous or
heterozygous. With polyploid data, genotypes can be ambiguous. For example, a tetraploid individual with
the apparent genotype of A/B could actually have one of three genotypes: A/A/A/B, A/A/B/B, or
A/B/B/B. This ambiguity prevents a researcher from accurately calling all alleles present. In adegenet ,
it was previously difficult to import polyploid data because of this ambiguity as data was required to be
unambiguous or missing.

A solution to this problem is to code missing alleles as “0”. An example of this is found within the Pinf
data set in poppr (Goss et al., 2014). First, we will look at where we have polyploid allele calls.

data(Pinf)

Pinf

##

This is a genclone object

Genotype information:

##

72 multilocus genotypes

86 tetraploid individuals

11 codominant loci

##

Population information:

##

2 strata - Continent Country

2 populations defined - South America North America

ptab <- info_table(Pinf, type = "ploidy", plot = TRUE)

23

PiPE27
PiPE26
PiPE25
PiPE24
PiPE23
PiPE22
PiPE21
PiPE20
PiPE14
PiPE13
PiPE12
PiPE11
PiPE10
PiPE09
PiPE08
PiPE07
PiPE06
PiPE05
PiPE04
PiPE03
PiPE02
PiPE01

PiMXt68
PiMXt48

PiMXT07
PiMXT06
PiMXT05
PiMXT04
PiMXT03
PiMXT02
PiMXT01

PiMX50
PiMX49
PiMX48
PiMX47
PiMX46
PiMX45
PiMX44
PiMX43
PiMX42
PiMX41
PiMX40
PiMX30
PiMX29
PiMX28
PiMX27
PiMX26
PiMX25
PiMX24
PiMX23
PiMX22
PiMX21
PiMX20
PiMX19
PiMX18
PiMX17
PiMX16
PiMX15
PiMX14
PiMX13
PiMX12
PiMX11
PiMX10
PiMX07
PiMX06
PiMX05
PiMX04
PiMX03
PiMX02
PiMX01
PiEC14
PiEC13
PiEC12
PiEC11
PiEC10
PiEC08
PiEC07
PiEC06
PiEC03
PiEC02
PiEC01
PiCO05
PiCO04
PiCO03
PiCO02
PiCO01

Pi02
D13

Pi33
Pi04

Pi4B
Pi16

G11
Pi56

Pi63
Pi70

Pi89

Locus

S
am

pl
e

Observed
Ploidy

2

3

Observed ploidy of Pinf

24

We look at the last six samples over two loci, Pi63 (3 alleles, triploid) and Pi70 (3 alleles, diploid) to
examine how the data is represented.

tail(tab(Pinf[loc = locNames(Pinf)[9:10]]))

Pi63.000 Pi63.148 Pi63.151 Pi63.157 Pi70.000 Pi70.189 Pi70.192 Pi70.195

PiPE22 1 1 1 1 2 1 1 0

PiPE23 1 1 1 1 2 1 1 0

PiPE24 1 1 1 1 2 1 1 0

PiPE25 1 1 1 1 2 1 1 0

PiPE26 2 0 0 2 2 0 1 1

PiPE27 1 1 1 1 2 1 1 0

Each column in this data represents a different allele at a particular locus. Pi63.148 is the allele 148 at
locus Pi63. Each row is an individual. The numbers represent the fraction of a given allele that makes up
the individual genotype at a particular locus. What we can see here is that the number of columns is 8 when
we expect only 6 (2 loci × 3 alleles). The first allele at each locus is 000. Let’s take a look at the data in a
human-readable format.

Pinfdf <- genind2df(Pinf, sep = "/")

tail(Pinfdf[10:11])

Pi63 Pi70

PiPE22 000/148/151/157 000/000/189/192

PiPE23 000/148/151/157 000/000/189/192

PiPE24 000/148/151/157 000/000/189/192

PiPE25 000/148/151/157 000/000/189/192

PiPE26 000/000/157/157 000/000/192/195

PiPE27 000/148/151/157 000/000/189/192

It’s more clear now that we have a data set of tetraploid individuals where some genotypes appear diploid
(000/000/157/157) and some appear triploid (000/148/151/157). The tetraploid genotype is padded with
zeroes to make up the difference in ploidy.

This method allows Bruvo’s Distance (Bruvo et al., 2004) and the Index of Association (Brown
et al., 1980; Smith et al., 1993; Agapow & Burt, 2001) to work with polyploids as they specifically recognize
the zeroes as being missing data. A side effect, unfortunately is that the extra zeroes appear as extra alleles.
As this affects all frequency-based statistics (except for the ones noted above), the user should reformat their
data set with the function recode polyploids, which will remove the zeroes.

Pinf_rc <- recode_polyploids(Pinf, newploidy = TRUE)

Pinf_rc # Notice that the new ploidy is accounted for.

##

This is a genclone object

Genotype information:

##

72 multilocus genotypes

86 triploid (55) and diploid (31) individuals

11 codominant loci

##

Population information:

##

2 strata - Continent Country

2 populations defined - South America North America

25

tail(tab(Pinf_rc[loc = locNames(Pinf_rc)[9:10]]))

Pi63.148 Pi63.151 Pi63.157 Pi70.189 Pi70.192 Pi70.195

PiPE22 1 1 1 1 1 0

PiPE23 1 1 1 1 1 0

PiPE24 1 1 1 1 1 0

PiPE25 1 1 1 1 1 0

PiPE26 0 0 2 0 1 1

PiPE27 1 1 1 1 1 0

Below, we show the observed genotypes:

Pinfrcdf <- genind2df(Pinf_rc, sep = "/")

tail(Pinfrcdf[10:11])

Pi63 Pi70

PiPE22 148/151/157 189/192

PiPE23 148/151/157 189/192

PiPE24 148/151/157 189/192

PiPE25 148/151/157 189/192

PiPE26 157/157 192/195

PiPE27 148/151/157 189/192

If you have imported your data as recoded polyploid data, you can use the argument “addzero” to fill
out the ploidy:

tail(tab(recode_polyploids(Pinf_rc[loc = locNames(Pinf_rc)[9:10]], addzero = TRUE)))

Pi63.0 Pi63.157 Pi63.148 Pi63.151 Pi70.0 Pi70.192 Pi70.189 Pi70.195

PiPE22 0 1 1 1 1 1 1 0

PiPE23 0 1 1 1 1 1 1 0

PiPE24 0 1 1 1 1 1 1 0

PiPE25 0 1 1 1 1 1 1 0

PiPE26 1 2 0 0 1 1 0 1

PiPE27 0 1 1 1 1 1 1 0

4 Data Manipulation

One tedious aspect of population genetic analysis is the need for repeated data manipulation. Poppr
includes novel functions for clone- censoring your data sets, removing genotypes or loci with missing data,
removing uninformative loci, and shuffling populations.

4.1 Replace or remove missing data {Inside the golden days of missing data}

A data set without missing data is always ideal, but often not achievable. The poppr function missingno

exists to handle missing data. Missing data can mean different things based on your data type. For
microsatellites, missing data might represent any source of error that could cause a PCR product to not
amplify in gel electrophoresis, which may or may not be biologically relevant. For a DNA alignment, missing
data could mean something as simple as an insertion or deletion, which is biologically relevant. The choice
to exclude or estimate data has very different implications for the type of data you have.

26

WARNING

Treatment of Missing data is a non-trivial task. You should understand the nature of
missing data in your data set before treatment.

4.1.1 Function: missingno

missingno is a function that serves as a way to exclude specific areas that contain systematic missing
data. There are four methods available,

Default Command:

missingno(pop, type = "loci", cutoff = 0.05, quiet = FALSE, freq = FALSE)

• pop - a genind object.

• type - This could be one of four options:

“loci” This is to be used for a data set that has systematic problems with certain loci that contain
null alleles or simply failed to amplify. This will remove loci with a defined threshold of missing
data from the data set.

“geno” This is to be used for genotypes (individuals) in your data set where many null alleles are
present. Individuals with a defined threshold missing data will be removed.

“ignore” or “asis” This argument will retain missing data in your data set. It’s useful for functions
that utilize missingno internally, such as mlg.filter(), poppr.amova(), or aboot().

“mean” This replaces missing data with the mean allele frequencies in the entire data set (This is for
backwards compatibility, please don’t use this).

“zero” or “0” This replaces missing data with zero, signifying a new allele (This is for backwards
compatibility, please don’t use this).

• cutoff - This is a numeric value from 0 to 1 indicating the percent allowable missing data for either
loci or genotypes. If you have, for example, two loci containing missing 5% and 10% missing data,
respectively and you set cutoff = 0.05, missingno will remove the second locus. Percent missing
data for genotypes is considered the percent missing loci over number of total loci.

• quiet - When this is set to FALSE, the number of missing values replaced will be printed to screen if
the method is “zero” or “mean”. It will print the number of loci or individuals removed if the method
is “loci” or “geno”.

• freq - This is used for compatibility with the tab() method for genind object. It will convert counts
of alleles to frequencies of alleles, rendering an object that will return warnings.

Let’s take a look at what this does by focusing in on areas with missing data. We’ll use the data
set nancycats as an example. Using the poppr function info table, we can assess missing data within
populations.

library("poppr")

data(nancycats)

info_table(nancycats, plot = TRUE)

27

20 % 2.22 %

35.71 % 3.97 %

15 % 40 % 5 % 6.67 %
21.43 % 2.38 %

41.18 % 4.58 %

100 % 61.54 % 17.95 %
8.44 % 8.86 % 3.8 % 2.34 %Total

P17

P16

P15

P14

P13

P12

P11

P10

P09

P08

P07

P06

P05

P04

P03

P02

P01

fca8
fca23

fca43
fca45

fca77
fca78

fca90
fca96

fca37
M

ean

Locus

P
op

ul
at

io
n

0

25

50

75

100
Percent Missing

Percent missing data per locus and population of nancycats

Locus

Population fca8 fca23 fca43 fca45 fca77 fca78 fca90 fca96 fca37 Mean

P01 0.200 0.022

P02

P03

P04

P05

P06

P07 0.357 0.040

P08

P09

P10

P11 0.150 . . 0.400 . . . 0.050 . 0.067

P12 0.214 0.024

P13

P14 0.412 0.046

P15

P16

P17 . . . 1.000 . . . 0.615 . 0.179

Total 0.084 . . 0.089 . . . 0.038 . 0.023

We can see that locus fca8 has a lot of missing data. To demonstrate the function missingno, we will
zoom into the first five individuals at the first locus.

tab(nancycats)[1:5, 8:13]

fca8.133 fca8.135 fca8.137 fca8.139 fca8.141 fca8.143

N215 NA NA NA NA NA NA

N216 NA NA NA NA NA NA

N217 0 1 0 0 0 1

N218 1 1 0 0 0 0

N219 1 1 0 0 0 0

When looking at this data set, recall how a genind object is formatted. You have a matrix representing
counts of alleles. For diploids, if you see 1, that means it is heterozygous at that allele, and a 2 means it’s

28

homozygous. Here we see three heterozygotes and two individuals with missing data (indicated by NA).
Let’s look at what happens when we exclude loci and genotypes with >5% missing data).

nanloci <- missingno(nancycats, "loci")

##

2 loci contained missing values greater than 5%.

Removing 2 loci : fca8 fca45

nangeno <- missingno(nancycats, "geno")

##

38 genotypes contained missing values greater than 5%.

Removing 38 genotypes : N215 N216 N188 N189 N190 N191 N192 N298 N299 N300

N301 N302 N303 N304 N310 N195 N197 N198 N199 N200 N201 N206 N182 N184 N186 N282

N283 N288 N291 N292 N293 N294 N295 N296 N297 N281 N289 N290

tab(nanloci)[1:5, 8:13]

fca23.144 fca23.146 fca23.148 fca23.150 fca43.133 fca43.135

N215 0 1 0 0 0 0

N216 0 2 0 0 0 0

N217 0 1 0 0 0 0

N218 0 0 0 0 0 0

N219 0 1 0 0 0 0

Notice how we now see columns named fca23.128 and fca23.130. This is showing us another locus because
we have removed the first. Recall from the summary table that the first locus had 16 alleles, and the second
had 11. Now that we’ve removed loci containing missing data, all others have shifted over.
Let’s look at the loci names and number of individuals.

nInd(nanloci) # Individuals

[1] 237

locNames(nanloci) # Names of the loci

[1] "fca23" "fca43" "fca77" "fca78" "fca90" "fca96" "fca37"

You can see that the number of individuals stayed the same but the loci “fca8”, “fca45”, and “fca96”
were removed.

Let’s look at what happened when we removed individuals.

tab(nangeno)[1:5, 8:13]

fca8.133 fca8.135 fca8.137 fca8.139 fca8.141 fca8.143

N217 0 1 0 0 0 1

N218 1 1 0 0 0 0

N219 1 1 0 0 0 0

N220 0 1 0 0 0 1

N221 0 2 0 0 0 0

nInd(nangeno) # Individuals

[1] 199

locNames(nangeno) # Names of the loci

[1] "fca8" "fca23" "fca43" "fca45" "fca77" "fca78" "fca90" "fca96" "fca37"

29

We can see here that the number of individuals decreased, yet we have the same number of loci. Notice
how the frequency matrix changes in both scenarios? In the scenario with “loci”, we removed several columns
of the data set, and so with our sub-setting, we see alleles from the second locus. In the scenario with “geno”,
we removed several rows of the data set so we see other individuals in our sub-setting.

4.2 Extract populations {Divide (populations) and conquer (your analysis)}

This poppr function popsub makes subsetting genind or genlight objects by population easier:

4.2.1 Function: popsub

The command popsub is powerful in that it allows you to choose exactly what populations you choose
to include or exclude from your analyses. As with many R functions, you can also use this within a function
to avoid creating a new variable to keep track of.

Default Command:

popsub(gid, sublist = "ALL", blacklist = NULL, mat = NULL, drop = TRUE)

• pop - a genind object.

• sublist - vector of populations or integers representing the populations in your data set you wish to
retain. For example: sublist = c("pop z", "pop y") or sublist = 1:2.

• blacklist - vector of populations or integers representing the populations in your data set you wish
to exclude. This can take the same type of arguments as sublist, and can be used in conjunction with
sublist for when you want a range of populations, but know that there is one in there that you do
not want to analyze. For example: sublist = 1:15, blacklist = "pop x". One very useful thing
about the blacklist is that it allows the user to be extremely paranoid about the data. You can set the
blacklist to contain populations that are not even in your data set and it will still work!

• mat - (see section Multilocus Genotype Analysis for more information) A matrix produced from
the mlg.table function. This overrides the pop argument and subsets this table instead.

To demonstrate this tool, we’ll use the H3N2 virus data set provided in adegenet . It contains a data
frame in the “other” slot called “x” that contains information about the year of epidemic, country, etc.

data("H3N2", package = "adegenet")

strata(H3N2) <- data.frame(other(H3N2)$x)

H3N2

/// GENIND OBJECT /////////

##

// 1,903 individuals; 125 loci; 334 alleles; size: 3.9 Mb

##

// Basic content

@tab: 1903 x 334 matrix of allele counts

@loc.n.all: number of alleles per locus (range: 2-4)

@loc.fac: locus factor for the 334 columns of @tab

@all.names: list of allele names for each locus

@ploidy: ploidy of each individual (range: 1-1)

30

@type: codom

@call: .local(x = x, i = i, j = j, drop = drop)

##

// Optional content

@strata: a data frame with 17 columns (accession, length, host, segment, subtype, country, ...)

@other: a list containing: x xy epid

We will demonstrate the popsub functionality by setting the population factor to “country”. Note, in
this section, I am naming the variables staring with “v” indicating “virus”.

setPop(H3N2) <- ~country

popNames(H3N2) # Only two countries from North America.

[1] "Japan" "USA" "Finland" "China" "South Korea"

[6] "Norway" "Taiwan" "France" "Latvia" "Netherlands"

[11] "Bulgaria" "Turkey" "United Kingdom" "Denmark" "Austria"

[16] "Canada" "Italy" "Russia" "Bangladesh" "Egypt"

[21] "Germany" "Romania" "Ukraine" "Czech Republic" "Greece"

[26] "Iceland" "Ireland" "Sweden" "Nepal" "Saudi Arabia"

[31] "Switzerland" "Iran" "Mongolia" "Spain" "Slovenia"

[36] "Croatia" "Algeria"

v_na <- popsub(H3N2, sublist = c("USA", "Canada"))

popNames(v_na)

[1] "USA" "Canada"

If we want to see the population size, we can use the adegenet function nInd():

c(NorthAmerica = nInd(v_na), Total = nInd(H3N2))

NorthAmerica Total

665 1903

You can see that the population factors are correct and that the size of the data set is considerably smaller.
Let’s see the data set without the North American countries.

v_na_minus <- popsub(H3N2, blacklist = c("USA", "Canada"))

popNames(v_na_minus)

[1] "Japan" "Finland" "China" "South Korea" "Norway"

[6] "Taiwan" "France" "Latvia" "Netherlands" "Bulgaria"

[11] "Turkey" "United Kingdom" "Denmark" "Austria" "Italy"

[16] "Russia" "Bangladesh" "Egypt" "Germany" "Romania"

[21] "Ukraine" "Czech Republic" "Greece" "Iceland" "Ireland"

[26] "Sweden" "Nepal" "Saudi Arabia" "Switzerland" "Iran"

[31] "Mongolia" "Spain" "Slovenia" "Croatia" "Algeria"

Let’s make sure that the number of individuals in both data sets is equal to the number of individuals in
our original data set:

(nInd(v_na_minus) + nInd(v_na)) == nInd(H3N2)

[1] TRUE

Now we have data sets with and without North America. Let’s try something a bit more challenging.
Let’s say that we want the first 10 populations in alphabetical order, but we know that we still don’t want
any countries in North America. We can easily do this by using the base function sort.

31

vsort <- sort(popNames(H3N2))[1:10]

vsort

[1] "Algeria" "Austria" "Bangladesh" "Bulgaria" "Canada"

[6] "China" "Croatia" "Czech Republic" "Denmark" "Egypt"

valph <- popsub(H3N2, sublist = vsort, blacklist = c("USA", "Canada"))

popNames(valph)

[1] "China" "Bulgaria" "Denmark" "Austria" "Bangladesh"

[6] "Egypt" "Czech Republic" "Croatia" "Algeria"

And that, is how you subset your data with poppr!

4.3 Clone-censor data sets {Attack of the clone correction}

Clone correction refers to the ability of keeping one observation of each MLG in a given population (or
sub-population). Clone correcting can be hazardous if its done by hand (even on small data sets) and it
requires a defined population hierarchy to get relevant results. Poppr has a clone correcting function that
that will correct down to the lowest level of any defined population hierarchy. Note that clone correction in
poppr is sensitive to missing data, as it treats all missing data as a single extra allele.

This function will create new data sets, but it is also utilized by the functions poppr and poppr.amova

natively.

4.3.1 Function: clonecorrect

This function will return a clone corrected data set corrected for the lowest population level. Population
levels are specified with the hier flag. You can choose to combine the population hierarchy to analyze at
the lowest population level by choosing combine = TRUE.

Default Command:

clonecorrect(pop, strata = 1, combine = FALSE, keep = 1)

• pop - a genclone object with a defined hierarchy or a genind object that has a population hierarchy
data frame in the @other slot. Note, the genind object does not necessarily require a population factor
to begin with.

• strata - A hierarchical formula (eg. ∼Pop/Subpop), representing the hierarchical levels in your data.

• combine - Do you want to combine the population hierarchy? If it’s set to FALSE (default), you will
be returned an object with the top most hierarchical level as a population factor unless the keep
argument is defined. If set to TRUE, the hierarchy will be returned combined.

• keep - This flag is to be used if you set combine = FALSE. This will tell clone correct to return a
specific combination of your hierarchy defined as integers. For example, imagine a hierarchy that needs
to be clone corrected at three levels: Population by Year by Month. If you wanted to only run an
analysis on the Population level, you would set keep = 1 since Population is the first level of the
hierarchy. On the other hand, if you wanted to run analysis on Year by Month, you would set keep =

2:3 since those are the second and third levels of the hierarchy.

32

Let’s look at ways to clone-correct our data. We’ll look at our A. euteichies data that we used in the
quickstart since that data set is known to include clonal populations (Grünwald & Hoheisel, 2006). Try
playing around with the data and see what different combinations of the hier, and keep flags produce.
Below, I will give three examples of clone corrections at the sample level with respect to field, at the field
level, and finally, at the level of the entire data set.

First, we will examine the original data set.

data(Aeut)

strata(Aeut) <- data.frame(other(Aeut)$population_hierarchy[-1])

Aeut

/// GENIND OBJECT /////////

##

// 187 individuals; 56 loci; 56 alleles; size: 70.1 Kb

##

// Basic content

@tab: 187 x 56 matrix of allele counts

@loc.n.all: number of alleles per locus (range: 56-56)

@ploidy: ploidy of each individual (range: 2-2)

@type: PA

@call: old2new_genind(object = x, donor = new(class(x)))

##

// Optional content

@pop: population of each individual (group size range: 90-97)

@strata: a data frame with 2 columns (Pop, Subpop)

@other: a list containing: population_hierarchy

When you read in data with read.genalex, the default is to represent it in a genclone object. Since
the clonecorrect function works on multilocus genotype definitions, It’s more efficient to convert it to
a genclone object first. We will also rename the strata to “field” and “sample” to make the biological
relevance of the data clearer.

aphan <- as.genclone(Aeut)

nameStrata(Aeut) <- ~field/sample

Now we correct by sample with respect to field and keep the field as the population.

clonecorrect(aphan, strata = ~Pop/Subpop)

##

This is a genclone object

Genotype information:

##

119 original multilocus genotypes

141 diploid individuals

56 dominant loci

##

Population information:

##

2 strata - Pop Subpop

2 populations defined - Athena Mt. Vernon

Your turn: Use the same stratification and use combine = TRUE and then

keep = 1:2. Is there any difference?

33

Correcting by field. Notice how the number of MLG is much closer to our census.

clonecorrect(aphan, strata = ~Pop)

##

This is a genclone object

Genotype information:

##

119 original multilocus genotypes

120 diploid individuals

56 dominant loci

##

Population information:

##

2 strata - Pop Subpop

2 populations defined - Athena Mt. Vernon

Correcting over whole data set. Our MLG is equal to our census.

clonecorrect(aphan, strata = NA)

##

This is a genclone object

Genotype information:

##

119 original multilocus genotypes

119 diploid individuals

56 dominant loci

##

Population information:

##

2 strata - Pop Subpop

2 populations defined - Athena Mt. Vernon

4.4 Permutations and bootstrap resampling {every day I’m shuffling (data
sets)}

A common null hypothesis for populations with mixed reproductive modes is panmixia, or to put it
simply: lots of sex. Poppr randomly shuffles data sets in order to calculate P-values for the index of
association (IA and r̄d) (Agapow & Burt, 2001) using 4 different methods:

method strategy units sampled
1 permutation alleles
2 simulation alleles
3 simulation alleles
4 permutation genotypes

These methods are detailed below. We will create a dummy data set to be shuffled by each example
below. Let’s assume a single diploid locus with four alleles (1, 2, 3, 4) with the frequencies of 0.1, 0.2, 0.3,
and 0.4, respectively:
The 4 methods are detailed below.

34

A1/A2
1 4/4
2 4/1
3 4/3
4 2/2
5 3/3

Table 2: Original

4.4.1 Function: shufflepop

Default Command:

shufflepop(pop, method = 1)

• pop - a genind object.

• method - a number indicating the method of sampling you wish to use. The following methods are
available for use:

1. Permute Alleles (default) This is a sampling scheme that will permute alleles within the
locus.

The example above might become tables 3 and 4.

A1/A2
1 3/4
2 2/3
3 4/4
4 2/1
5 3/4

Table 3: Permute 1

A1/A2
1 1/3
2 2/4
3 3/4
4 4/3
5 4/2

Table 4: Permute 2

As you can see, The heterozygosity has changed, yet the allelic frequencies remain the same.
Overall this would show you what would happen if the sample you had underwent panmixis
within this sample itself.

2. Parametric Bootstrap The previous scheme reshuffled the observed sample, but the parametric
bootstrap draws samples from a multinomial distribution using the observed allele
frequencies as weights. Tables 5 and 6 are examples of what I mean.

A1/A2
1 1/3
2 3/3
3 3/2
4 4/4
5 4/2

Table 5: Parametric 1

A1/A2
1 3/4
2 2/3
3 4/2
4 4/4
5 4/2

Table 6: Parametric 2

Notice how the heterozygosity has changed along with the allelic frequencies. The frequencies for
alleles 3 and 4 have switched in the first data set, and we’ve lost allele 1 in the second data set
purely by chance! This type of sampling scheme attempts to show you what the true population

35

would look like if it were panmictic and your original sample gave you a basis for estimating
expected allele frequencies. Since estimates are made from the observed allele frequencies, small
samples will produce skewed results.

3. Non-Parametric Bootstrap The third method is sampling with replacement, again drawing
from a multinomial distribution, but with no assumption about the allele frequencies
(tables 7 and 8).

A1/A2
1 1/3
2 3/3
3 3/1
4 2/2
5 3/1

Table 7: Non-parametric 1

A1/A2
1 1/3
2 3/1
3 2/3
4 2/1
5 4/3

Table 8: Non-parametric 2

Again, heterozygosity and allele frequencies are not maintained, but now all of the alleles have a
1 in 4 chance of being chosen.

4. Multilocus permutation This is called Multilocus permutation because it does the same thing
as the permutation analysis in the program multilocus by Paul Agapow and Austin Burt (Agapow
& Burt, 2001). This will shuffle the genotypes at each locus. Using our example above, tables 9
and 10 are shuffled with method 4.

A1/A2
1 3/3
2 4/1
3 2/2
4 4/4
5 4/3

Table 9: ML 1

A1/A2
1 4/4
2 2/2
3 3/3
4 4/3
5 4/1

Table 10: ML 2

Note that you have the same genotypes after shuffling, so at each locus, you will maintain the same
allelic frequencies and heterozygosity. So, in this sample, you will only see a homozygote with
allele 2. This also ensures that the P-values associated with IA and r̄d are exactly the same. This
method assumes that alleles are not independently assorting within individuals. This
strategy is useful if you suspect the population is inbreeding (Jerome Goudet, personal
communication).

These shuffling schemes have been implemented for the index of association, but there may be other
summary statistics you can use shufflepop for. All you have to do is use the function replicate. Let’s
use average Bruvo’s distance with the first population of the data set nancycats as an example:

data(nancycats)

nan1 <- popsub(nancycats, 1)

reps <- rep(2, 9) # Assuming dinucleotide repeats.

observed <- mean(bruvo.dist(nan1, replen = reps))

observed

[1] 0.4180619

36

set.seed(9999)

bd.test <- replicate(999, mean(bruvo.dist(shufflepop(nan1, method = 2), replen = reps)))

You could use this method to replicate the resampling 999 times and then create a histogram to visualize
a distribution of what would happen under different assumptions of panmixia.

hist(bd.test, xlab = "Bruvo's Distance", main = "Average Bruvo's distance over 999 randomizations")

abline(v = observed, col = "red")

legend('topleft', legend="observed", col="red", lty = 1)

Average Bruvo's distance over 999 randomizations

Bruvo's Distance

F
re

qu
en

cy

0.30 0.35 0.40 0.45

0
50

10
0

15
0

20
0

25
0

30
0

observed

4.5 Removing uninformative loci {Cut It Out!}

Phylogenetically uninformative loci are those that have only one sample differentiating from the rest.
This can lead to biased results when using multilocus analyses such as the index of association (Brown et al.,
1980; Smith et al., 1993). These nuisance loci can be removed with the following function.

4.5.1 Function: informloci

Default Command:

informloci(pop, cutoff = 2/nInd(pop), MAF = 0.01, quiet = FALSE)

• pop - a genind object.

• cutoff - this represents the minimum fraction of individuals needed for a locus to be considered infor-
mative. The default is set to 2/n with n being the number of individuals in the data set (represented
by the adegenet function nInd). Essentially, this means that any locus with fewer than 2 observations
differing will be removed. The user can also specify a fraction of observations for the cutoff (eg. 0.05).

37

• MAF - (Minor Allele Frequency), This defaults to 0.01 indicating that loci that contain one allele
representing 1 - MAF of the data will be removed.

• quiet - if TRUE, nothing will be printed to the screen, if FALSE (default), the cutoff value in percentage
and number of individuals will be printed as well as the names of the uninfomrative loci found.

Here’s a quick example using the H3N2 virus SNP data set from section on subsetting your data.
We will only retain loci that have a minor allele frequency of ≥ 5%

H.five <- informloci(H3N2, cutoff = 0.05)

cutoff value: 5 % (95 samples).

MAF : 0.01

##

Found 49 uninformative loci

============================

47 loci found with a cutoff of 95 samples :

157, 177, 233, 243, 262, 267, 280, 303, 313, 327, 357, 382, 384, 399, 412, 418, 424, 425, 429, 433,

451, 470, 529, 546, 555, 557, 564, 576, 592, 595, 597, 602, 612, 627, 642, 647, 648, 654, 658, 663, 667,

681, 717, 806, 824, 837, 882

5 loci found with found with MAF < 0.01 :

42, 313, 433, 597, 915

Now what happens when you have all informative loci. We’ll use the nancycats data set, which has
microsatellite loci. It is important to note that this is searching for loci with a specified genotype frequency
as fixed heterozygous sites are also uninformative:

data(nancycats)

naninform <- informloci(nancycats, cutoff = 0.05)

cutoff value: 5 % (12 samples).

MAF : 0.01

##

All sites polymorphic

5 Multilocus Genotype Analysis

In populations with mixed sexual and clonal reproduction, it common to have multiple samples from
the same population that have the same set of alleles at all loci. Here, we introduce tools for tracking MLGs
within and across populations in genind objects from the adegenet package. We will be using the H3N2
data set containing SNP data from isolates of the H3N2 virus from 2002 to 2006. Note that genclone objects
are optimal for these analyses. For a more in-depth document on methods for multilocus genotypes in poppr ,
see the “Multilocus Genotype Analysis” vignette by typing

vignette("mlg", package = "poppr")

5.1 How many multilocus genotypes are in our data set? {Just a peek}

Counting the number of MLGs in a population is the first step for these analyses as they allow us to
see how many clones exist. With the genclone object, This information is already displayed when we view
the object.

38

H3N2

/// GENIND OBJECT /////////

##

// 1,903 individuals; 125 loci; 334 alleles; size: 3.9 Mb

##

// Basic content

@tab: 1903 x 334 matrix of allele counts

@loc.n.all: number of alleles per locus (range: 2-4)

@loc.fac: locus factor for the 334 columns of @tab

@all.names: list of allele names for each locus

@ploidy: ploidy of each individual (range: 1-1)

@type: codom

@call: .local(x = x, i = i, j = j, drop = drop)

##

// Optional content

@pop: population of each individual (group size range: 1-646)

@strata: a data frame with 17 columns (accession, length, host, segment, subtype, country, ...)

@other: a list containing: x xy epid

If we need to store the number of MLGs as a variable, we can simply run the mlg command.

H3N2_mlg <- mlg(H3N2)

#############################

Number of Individuals: 1903

Number of MLG: 752

#############################

H3N2_mlg

[1] 752

Since the number of individuals exceeds the number of multilocus genotypes, we conclude that this data
set contains clones. Let’s examine what populations these clones belong to.

5.2 MLGs across populations {clone-ing around}

Since you have the ability to define hierarchical levels of your data set freely, it is quite possible to see
some of the same MLGs across different populations. Tracking them by hand can be a nightmare with large
data sets. Luckily, mlg.crosspop has you covered in that regard.

5.2.1 Function: mlg.crosspop

Analyze the MLGs that cross populations within your data set. This has three output modes. The
default one gives a list of MLGs, and for each MLG, it gives a named numeric vector indicating the abundance
of that MLG in each population. Alternate outputs are described with indexreturn and df.

Default Command:

mlg.crosspop(gid, strata = NULL, sublist = "ALL", blacklist = NULL,

mlgsub = NULL, indexreturn = FALSE, df = FALSE, quiet = FALSE)

• pop - a genind object.

39

• sublist - Populations to include (Defaults to “ALL”). see popsub.

• blacklist - Populations to exclude. see popsub.

• mlgsub - see mlg.table. Only analyze specified MLGs. The vector for this flag can be produced by
this function as you will see later in this vignette.

• indexreturn - return a vector of indices of MLGs. (You can use these in the mlgsub flag, or you can
use them to subset the columns of an MLG table).

• df - return a data frame containing the MLGs, the populations they cross, and the number of copies
you find in each population. This is useful for making graphs in ggplot2.

• quiet - TRUE or FALSE. Should the populations be printed to screen as they are processed? (will print
nothing if indexreturn is TRUE)

We can see what MLGs cross different populations and then give a vector that shows how many popu-
lations each one of those MLGs crosses.

setPop(H3N2) <- ~country

v.dup <- mlg.crosspop(H3N2, quiet=TRUE)

Here is a snippet of what the output looks like when quiet is FALSE. It will print out the MLG name, the
total number of individuals that make up that MLG, and the populations where that MLG can be found.

MLG.3: (12 inds) USA Denmark

MLG.9: (16 inds) Japan USA Finland Denmark

MLG.31: (9 inds) Japan Canada

MLG.75: (23 inds) Japan USA Finland Norway Denmark Austria Russia Ireland

MLG.80: (2 inds) USA Denmark

MLG.86: (7 inds) Denmark Austria

MLG.95: (2 inds) USA Bangladesh

MLG.97: (8 inds) USA Austria Bangladesh Romania

MLG.104: (3 inds) USA France

MLG.110: (16 inds) Japan USA China

The output of this function is a list of MLGs, each containing a vector indicating the number of copies
in each population. We’ll count the number of populations each MLG crosses using the function sapply to
loop over the data with the function length.

head(v.dup)

$MLG.3

USA Denmark

4 8

##

$MLG.9

Japan USA Finland Denmark

1 13 1 1

##

$MLG.31

Japan Canada

2 7

##

40

$MLG.75

Japan USA Finland Norway Denmark Austria Russia Ireland

2 8 2 1 6 2 1 1

##

$MLG.80

USA Denmark

1 1

##

$MLG.86

Denmark Austria

3 4

v.num <- sapply(v.dup, length) # count the number of populations each MLG crosses.

head(v.num)

MLG.3 MLG.9 MLG.31 MLG.75 MLG.80 MLG.86

2 4 2 8 2 2

5.3 Producing MLG tables and graphs {bringing something to the table}

We can also create a table of MLGs per population as well as bar graphs to give us a visual representation
of the data. This is achieved through the function mlg.table

5.3.1 Function: mlg.table

This function will produce a matrix containing counts of MLGs (columns) per population (rows). If
there are not populations defined in your data set, a vector will be produced instead.

Default Command:

mlg.table(gid, strata = NULL, sublist = "ALL", blacklist = NULL,

mlgsub = NULL, bar = TRUE, plot = TRUE, total = FALSE, quiet = FALSE)

• pop - a genind object.

• sublist - Populations to include (Defaults to “ALL”). see popsub.

• blacklist - Populations to exclude. see popsub.

• mlgsub - a vector containing the indices of MLGs you wish to subset your table with.

• plot - TRUE or FALSE. If TRUE, a bar plot will be printed for each population with more than one
individual.

• total - When set to TRUE, the pooled data set will be added to the table. Defaults to FALSE.

• quiet - Defaults to FALSE: population names will be printed to the console as they are processed.

v.tab <- mlg.table(H3N2, plot = TRUE)

v.tab[1:10, 1:10] # Showing the first 10 columns and rows of the table.

41

MLG.1 MLG.2 MLG.3 MLG.4 MLG.5 MLG.6 MLG.7 MLG.8 MLG.9 MLG.10

Japan 0 0 0 0 0 0 1 2 1 0

USA 0 2 4 1 1 0 0 0 13 0

Finland 0 0 0 0 0 0 0 0 1 0

China 0 0 0 0 0 0 0 0 0 0

South Korea 0 0 0 0 0 1 0 0 0 0

Norway 1 0 0 0 0 0 0 0 0 0

Taiwan 0 0 0 0 0 0 0 0 0 0

France 0 0 0 0 0 0 0 0 0 0

Latvia 0 0 0 0 0 0 0 0 0 0

Netherlands 0 0 0 0 0 0 0 0 0 0

Figure 4: An example of a bar-chart produced by mlg.table. Note that this data set would produce several such charts but
only the chart for Norway is shown here.

mlg.table(H3N2, sublist = "Norway", plot = TRUE)

Norway

1

2

3

M
LG

.1

M
LG

.7
5

M
LG

.2
07

M
LG

.2
19

M
LG

.2
46

M
LG

.2
50

M
LG

.3
04

M
LG

.3
16

M
LG

.3
31

M
LG

.3
50

M
LG

.4
17

M
LG

.5
70

M
LG

.6
20

M
LG

.7
42

M
LG

.7
44

M
LG

.7
45

M
LG

.7
46

M
LG

.7
47

M
LG

.7
49

M
LG

.7
50

M
LG

.3
15

M
LG

.7
43

M
LG

.7
48

M
LG

.2
53

M
LG

.3
17

M
LG

.4
05

M
LG

.7
41

MLG

co
un

t

Data: H3N2
N = 38 MLG = 752

42

The MLG table is not limited to use with poppr . In fact, one of the main advantages of mlg.table is
that it allows easy access to diversity functions present in the package vegan (Oksanen et al., 2012). One
example is to create a rarefaction curve for each population in your data set giving the number of expected
MLGs for a given sample size. For more information, type help("diversity", package="vegan") in your
R console.

For the sake of this example, instead of drawing a curve for each of the 37 countries represented in this
sample, let’s set the hierarchical level to year.

setPop(H3N2) <- ~year

summary(H3N2) # Check the data to make sure it's correct.

##

Total number of genotypes: 1903

##

Population sample sizes:

2002 2003 2004 2005 2006

158 415 399 469 462

##

Number of alleles per locus:

6 17 39 42 45 51 60 72 73 90 108 123 129 134 145 148 149 157 168 171 177 225

3 3 4 2 4 2 3 2 4 3 4 2 4 3 2 2 3 3 2 2 3 3

233 243 247 262 267 280 303 313 317 327 334 345 351 357 376 382 384 391 396 399 412 418

3 2 2 2 2 2 2 2 2 2 2 4 4 3 3 3 4 2 2 2 4 3

424 425 429 430 433 434 435 451 463 464 468 470 476 483 490 517 529 546 555 557 561 562

2 3 4 2 3 2 3 2 2 2 4 2 2 2 2 2 2 2 4 4 4 3

564 566 576 577 578 582 592 594 595 597 600 602 604 612 627 642 647 648 654 658 663 664

3 2 3 4 3 2 3 3 3 3 2 3 2 4 2 3 2 2 3 3 3 3

666 667 673 674 676 679 681 685 717 763 806 807 824 837 882 897 906 910 915 929 933 936

2 2 2 2 3 2 3 2 3 2 3 2 3 3 2 2 2 3 2 2 2 3

939 940 957 961 962 963 966 967 969 973 975 977 978 979 980

3 3 2 2 3 3 3 3 4 2 3 3 4 3 2

##

Number of alleles per population:

2002 2003 2004 2005 2006

203 255 232 262 240

##

Percentage of missing data:

[1] 2.363426

##

Observed heterozygosity:

[1] 0

##

Expected heterozygosity:

[1] 0

library("vegan")

H.year <- mlg.table(H3N2, plot = FALSE)

rarecurve(H.year, ylab="Number of expected MLGs", sample=min(rowSums(H.year)),

border = NA, fill = NA, font = 2, cex = 1, col = "blue")

43

Figure 5: An example of a rarefaction curve produced using a MLG table.

0 100 200 300 400

0
50

10
0

15
0

20
0

Sample Size

N
um

be
r

of
 e

xp
ec

te
d

M
LG

s

2002

2003

2004

2005

2006

The minimum value from the base function rowSums() of the table represents the minimum common
sample size of all populations defined in the table. Setting the “sample” flag draws the horizontal and
vertical lines you see on the graph. The intersections of these lines correspond to the numbers you would
find if you ran the function poppr on this data set (under the column “eMLG”).

5.4 Combining MLG functions {getting into the mix}

Alone, the different functionalities are neat. Combined, we can create interesting data sets. Let’s say
we wanted to know which MLGs were duplicated across the regions of the United Kingdom, Germany,
Netherlands, and Norway. All we have to do is use the sublist flag in the function:

setPop(H3N2) <- ~country

UGNN.list <- c("United Kingdom", "Germany", "Netherlands", "Norway")

UGNN <- mlg.crosspop(H3N2, sublist=UGNN.list, indexreturn=TRUE)

OK, the output tells us that there are three MLGs that are crossing between these populations, but we
do not know how many are in each. We can easily find that out if we subset our original table, v.tab.

UGNN # Note that we have three numbers here. This will index the columns for us.

[1] 315 317 620

UGNN.list # And let's not forget that we have the population names.

[1] "United Kingdom" "Germany" "Netherlands" "Norway"

v.tab[UGNN.list, UGNN]

MLG.315 MLG.317 MLG.620

United Kingdom 1 0 0

Germany 0 1 1

Netherlands 0 0 0

Norway 2 3 1

44

Now we can see that Norway has a higher incidence of nearly all of these MLGs. We can investigate the
incidence of these MLGs throughout our data set. One thing that the genclone object keeps track of is
a single vector defining the unique multilocus genotypes within the data. These are represented as integers
and can be accessed with mlg.vector. This is useful for finding MLGs that correspond to certain individuals
or populations. Let’s use mlg.vector to find individuals corresponding to the MLGs. First we’ll investigate
what the output of this function looks like.

v.vec <- mlg.vector(H3N2)

str(v.vec) # Analyze the structure.

int [1:1903] 605 605 672 675 674 673 670 671 670 678 ...

The integers produced are the MLG assigment of each individual in the same order as the data set. This
means that the first two individuals have the exact same set of alleles at each locus, so they have the same
MLG: 605. If we look at the number of unique integers in the vector, it corresponds to the number of
observed multilocus genotypes:

length(unique(v.vec)) # count the number of MLGs

[1] 752

H3N2 # equal to the first number in this output.

/// GENIND OBJECT /////////

##

// 1,903 individuals; 125 loci; 334 alleles; size: 3.9 Mb

##

// Basic content

@tab: 1903 x 334 matrix of allele counts

@loc.n.all: number of alleles per locus (range: 2-4)

@loc.fac: locus factor for the 334 columns of @tab

@all.names: list of allele names for each locus

@ploidy: ploidy of each individual (range: 1-1)

@type: codom

@call: .local(x = x, i = i, j = j, drop = drop)

##

// Optional content

@pop: population of each individual (group size range: 1-646)

@strata: a data frame with 17 columns (accession, length, host, segment, subtype, country, ...)

@other: a list containing: x xy epid

We will take UGNN (MLGs crossing UK, Germany, Netherlands, and Norway) and compare its elements to
the MLG vector (v.vec) to see where else they occur.

UGNN # Show what we are looking for

[1] 315 317 620

UGNN_match <- v.vec %in% UGNN

table(UGNN_match) # How many individuals matched to those three MLGs?

UGNN_match

FALSE TRUE

1881 22

22 individuals matched to those three MLGs. We can use this vector to show us the 22 individuals.

45

indNames(H3N2)[UGNN_match]

0329 0330 0331 0332 0341 0342 0345 0556

"CY026119" "CY026120" "CY026121" "CY026122" "CY026131" "CY026132" "CY026135" "EU502462"

0557 0558 0870 0974 1112 1113 1114 1122

"EU502463" "EU502464" "EU501513" "AB243868" "DQ883618" "DQ883619" "DQ883620" "DQ883628"

1193 1209 1210 1281 1288 1426

"EU501609" "EU501642" "EU501643" "EU501735" "EU501742" "EU502513"

Note that there is an alternative way to list individuals matching specific MLGs using the function
mlg.id. This function will return a list where each element represents a unique MLG. You can use this data
to find out which individuals correspond to specific MLGs. Each element in the list is named with the MLG,
but the index does not necessarily match up, so it is important to convert your query MLGs to strings:

H3N2.id <- mlg.id(H3N2)

H3N2.id[as.character(UGNN)]

$`315`

0974 1112 1122 1209 1210 1281 1288

"AB243868" "DQ883618" "DQ883628" "EU501642" "EU501643" "EU501735" "EU501742"

##

$`317`

0870 1113 1114 1193 1426

"EU501513" "DQ883619" "DQ883620" "EU501609" "EU502513"

##

$`620`

0329 0330 0331 0332 0341 0342 0345 0556

"CY026119" "CY026120" "CY026121" "CY026122" "CY026131" "CY026132" "CY026135" "EU502462"

0557 0558

"EU502463" "EU502464"

We can also use the vector of MLGs to subset mlg.table with the mlgsub flag.

mlg.table(H3N2, mlgsub = UGNN)

That showed us exactly which populations these three MLGs came from in our data set.

46

Figure 6: All populations that contain these MLGs

Japan Norway United Kingdom

Austria Germany Greece

1

2

3

4

5

6

7

1

2

3

4

5

6

7

M
LG

.3
17

M
LG

.3
15

M
LG

.6
20

M
LG

.3
15

M
LG

.3
17

M
LG

.3
15

M
LG

.6
20

M
LG

.3
17

M
LG

.6
20

M
LG

.6
20

MLG

co
un

t

Data: H3N2
N = 22 MLG = 3

A Appendix

A.1 Manipulating Graphics

Poppr utilizes ggplot2 to produce many of its graphs. One advantage it gives the user is the ability to
manipulate these graphs. With base R graphs, the only manipulation that can be performed is by adding
elements to the graph. It is a static image. The ggplot graphs are actually represented as objects in your
R environment. We can use the function last plot() from ggplot2 to be able to grab the plot that was
plotted last in our window. Let’s illustrate this using a MLG bar graph from the Aeut data set.

library("poppr")

library("ggplot2")

data(Aeut)

Aeut.tab <- mlg.table(Aeut)

47

Athena Mt. Vernon

0

2

4

6

8

10

M
LG

.1
M

LG
.7

M
LG

.8
M

LG
.9

M
LG

.1
0

M
LG

.1
1

M
LG

.1
2

M
LG

.1
5

M
LG

.1
8

M
LG

.1
9

M
LG

.2
1

M
LG

.2
2

M
LG

.2
5

M
LG

.2
6

M
LG

.2
7

M
LG

.2
8

M
LG

.2
9

M
LG

.3
0

M
LG

.3
3

M
LG

.3
4

M
LG

.3
7

M
LG

.3
8

M
LG

.3
9

M
LG

.4
0

M
LG

.4
1

M
LG

.4
2

M
LG

.4
3

M
LG

.4
4

M
LG

.4
5

M
LG

.4
6

M
LG

.4
7

M
LG

.4
8

M
LG

.4
9

M
LG

.5
0

M
LG

.5
1

M
LG

.5
3

M
LG

.5
7

M
LG

.5
9

M
LG

.6
1

M
LG

.6
2

M
LG

.6
4

M
LG

.6
5

M
LG

.6
7

M
LG

.6
8

M
LG

.9
3

M
LG

.9
4

M
LG

.1
08

M
LG

.1
09

M
LG

.1
10

M
LG

.1
11

M
LG

.1
12

M
LG

.1
13

M
LG

.1
14

M
LG

.1
18

M
LG

.1
19

M
LG

.1
3

M
LG

.1
6

M
LG

.1
7

M
LG

.2
3

M
LG

.2
4

M
LG

.3
1

M
LG

.3
2

M
LG

.3
6

M
LG

.5
2

M
LG

.6
0

M
LG

.6
3

M
LG

.1
4

M
LG

.3
5

M
LG

.6
6

M
LG

.2
0

M
LG

.3
M

LG
.4

M
LG

.5
M

LG
.6

M
LG

.5
4

M
LG

.5
5

M
LG

.5
6

M
LG

.5
8

M
LG

.5
9

M
LG

.7
1

M
LG

.7
3

M
LG

.7
9

M
LG

.8
2

M
LG

.8
3

M
LG

.8
4

M
LG

.8
5

M
LG

.8
6

M
LG

.8
9

M
LG

.9
2

M
LG

.9
5

M
LG

.9
8

M
LG

.1
00

M
LG

.1
02

M
LG

.1
04

M
LG

.1
05

M
LG

.1
06

M
LG

.1
07

M
LG

.1
15

M
LG

.1
16

M
LG

.1
17

M
LG

.2
M

LG
.7

2
M

LG
.7

6
M

LG
.7

8
M

LG
.8

1
M

LG
.8

7
M

LG
.8

8
M

LG
.9

0
M

LG
.9

1
M

LG
.9

6
M

LG
.9

9
M

LG
.1

01
M

LG
.1

03
M

LG
.7

4
M

LG
.7

7
M

LG
.6

9
M

LG
.9

7
M

LG
.7

0
M

LG
.7

5
M

LG
.8

0

MLG

co
un

t

Data: Aeut
N = 187 MLG = 119

p <- last_plot()

We’ve captured our plot using last plot() and now we can manipulate it. One common need is to change
the title. We can easily do that with the function ggtitle(). Let’s say we wanted to label it “Aphanomyces
euteiches multilocus genotype distribution”. We would use ggtitle("Aphanomyces euteiches multilocus

genotype distribution"). Unfortunately, we need italics for a latin binomial. One way to acheive this is
by using the expression() function and declaring which text needs to be italicized.

myTitle <- expression(paste(italic("Aphanomyces euteiches"), " multilocus genotype distribution"))

(pt <- p +

ggtitle(myTitle) +

xlab("Multilocus genotype")) # We can label the x axis, too

Athena Mt. Vernon

0

2

4

6

8

10

M
LG

.1
M

LG
.7

M
LG

.8
M

LG
.9

M
LG

.1
0

M
LG

.1
1

M
LG

.1
2

M
LG

.1
5

M
LG

.1
8

M
LG

.1
9

M
LG

.2
1

M
LG

.2
2

M
LG

.2
5

M
LG

.2
6

M
LG

.2
7

M
LG

.2
8

M
LG

.2
9

M
LG

.3
0

M
LG

.3
3

M
LG

.3
4

M
LG

.3
7

M
LG

.3
8

M
LG

.3
9

M
LG

.4
0

M
LG

.4
1

M
LG

.4
2

M
LG

.4
3

M
LG

.4
4

M
LG

.4
5

M
LG

.4
6

M
LG

.4
7

M
LG

.4
8

M
LG

.4
9

M
LG

.5
0

M
LG

.5
1

M
LG

.5
3

M
LG

.5
7

M
LG

.5
9

M
LG

.6
1

M
LG

.6
2

M
LG

.6
4

M
LG

.6
5

M
LG

.6
7

M
LG

.6
8

M
LG

.9
3

M
LG

.9
4

M
LG

.1
08

M
LG

.1
09

M
LG

.1
10

M
LG

.1
11

M
LG

.1
12

M
LG

.1
13

M
LG

.1
14

M
LG

.1
18

M
LG

.1
19

M
LG

.1
3

M
LG

.1
6

M
LG

.1
7

M
LG

.2
3

M
LG

.2
4

M
LG

.3
1

M
LG

.3
2

M
LG

.3
6

M
LG

.5
2

M
LG

.6
0

M
LG

.6
3

M
LG

.1
4

M
LG

.3
5

M
LG

.6
6

M
LG

.2
0

M
LG

.3
M

LG
.4

M
LG

.5
M

LG
.6

M
LG

.5
4

M
LG

.5
5

M
LG

.5
6

M
LG

.5
8

M
LG

.5
9

M
LG

.7
1

M
LG

.7
3

M
LG

.7
9

M
LG

.8
2

M
LG

.8
3

M
LG

.8
4

M
LG

.8
5

M
LG

.8
6

M
LG

.8
9

M
LG

.9
2

M
LG

.9
5

M
LG

.9
8

M
LG

.1
00

M
LG

.1
02

M
LG

.1
04

M
LG

.1
05

M
LG

.1
06

M
LG

.1
07

M
LG

.1
15

M
LG

.1
16

M
LG

.1
17

M
LG

.2
M

LG
.7

2
M

LG
.7

6
M

LG
.7

8
M

LG
.8

1
M

LG
.8

7
M

LG
.8

8
M

LG
.9

0
M

LG
.9

1
M

LG
.9

6
M

LG
.9

9
M

LG
.1

01
M

LG
.1

03
M

LG
.7

4
M

LG
.7

7
M

LG
.6

9
M

LG
.9

7
M

LG
.7

0
M

LG
.7

5
M

LG
.8

0

Multilocus genotype

co
un

t

Aphanomyces euteiches multilocus genotype distribution

Let’s say we wanted to remove the grey background. We could use the theme() function to do this, or
we could use a theme already implemented in ggplot2 called theme bw().

(ptt <- pt + theme_bw())

48

Athena Mt. Vernon

0

2

4

6

8

10

MLG.1MLG.7MLG.8MLG.9MLG.10MLG.11MLG.12MLG.15MLG.18MLG.19MLG.21MLG.22MLG.25MLG.26MLG.27MLG.28MLG.29MLG.30MLG.33MLG.34MLG.37MLG.38MLG.39MLG.40MLG.41MLG.42MLG.43MLG.44MLG.45MLG.46MLG.47MLG.48MLG.49MLG.50MLG.51MLG.53MLG.57MLG.59MLG.61MLG.62MLG.64MLG.65MLG.67MLG.68MLG.93MLG.94MLG.108MLG.109MLG.110MLG.111MLG.112MLG.113MLG.114MLG.118MLG.119MLG.13MLG.16MLG.17MLG.23MLG.24MLG.31MLG.32MLG.36MLG.52MLG.60MLG.63MLG.14MLG.35MLG.66MLG.20 MLG.3MLG.4MLG.5MLG.6MLG.54MLG.55MLG.56MLG.58MLG.59MLG.71MLG.73MLG.79MLG.82MLG.83MLG.84MLG.85MLG.86MLG.89MLG.92MLG.95MLG.98MLG.100MLG.102MLG.104MLG.105MLG.106MLG.107MLG.115MLG.116MLG.117MLG.2MLG.72MLG.76MLG.78MLG.81MLG.87MLG.88MLG.90MLG.91MLG.96MLG.99MLG.101MLG.103MLG.74MLG.77MLG.69MLG.97MLG.70MLG.75MLG.80
Multilocus genotype

co
un

t

Aphanomyces euteiches multilocus genotype distribution

Uh-oh. The x axis labels are now horizontal when they should be vertical. Since it’s the overall distribu-
tion we’re interested in, we don’t really need them anyways. We can remove them with axis.text.x and
axis.ticks.x.

(ptta <- ptt + theme(axis.text.x = element_blank(), axis.ticks.x = element_blank()))

Athena Mt. Vernon

0

2

4

6

8

10

Multilocus genotype

co
un

t

Aphanomyces euteiches multilocus genotype distribution

And, if for some bizzarre reason, you liked the color gradient in poppr version 1, you can get that back
by adding the fill aesthetic:

(ptttaf <- ptta + aes(fill = count))

Athena Mt. Vernon

0

2

4

6

8

10

Multilocus genotype

co
un

t

2.5

5.0

7.5

10.0
count

Aphanomyces euteiches multilocus genotype distribution

49

This allows you to produce publication quality graphs directly in R. Please see Hadley Wickham’s ggplot2
package for more details (Wickham, 2009). Note that if you don’t like using ggplot2, you can access the data
in the ggplot2 object and plot the data yourself:

head(p$data)

Source: local data frame [6 x 4]

##

Population MLG count fac

1 Athena MLG.1 1 120

2 Athena MLG.7 1 119

3 Athena MLG.8 1 118

4 Athena MLG.9 1 117

5 Athena MLG.10 1 116

6 Athena MLG.11 1 115

A.2 Exporting Graphics

R has the ability to produce nice graphics from most any type of data, but to get these graphics into a
report, presentation, or manuscript can be a bit challenging. It’s no secret that the R Documentation pages
are a little difficult to interpret, so I will give the reader here a short example on how to export graphics from
R. Note that any code here that will produce images will also be present in other places in this vignette.
The default installation of the R GUI is quite minimal, and for an easy way to manage your plots and code,
I strongly encourage the user to use Rstudio http://www.rstudio.com/.

A.2.1 Basics

Before you export graphics, you have to ask yourself what they will be used for. If you want to use the
graphic for a website, you might want to opt for a low-resolution image so that it can load quickly. With
printing, you’ll want to make sure that you have a scalable or at least a very high resolution image. Here, I
will give some general guidelines for graphics (note that these are merely suggestions, not defined rules).

• What you see is not always what you get I have often seen presentations where the colors were
too light or posters with painfully pixellated graphs. Think about what you are going to be using a
graphic for and how it will appear to the intended audience given the media type.

• ≥ 300 dpi unless its for a web page For any sort of printed material that requires a raster based
image, 300dpi (dots per inch) is the absolute minimum resolution you should use. For simple black
and white line images, 1200dpi is better. This will leave you with crisp, professional looking images.

• If possible, save to SVG, then rasterize Raster images (bmp, png, jpg, etc...) are based off of the
number of pixels or dots per inch it takes to render the image. This means that the raster image is
more or less a very fine mosaic. Vector images (SVG) are built upon several interconnected polygons,
arcs, and lines that scale relative to one another to create your graphic. With vector graphics, you can
produce a plot and scale it to the size of a building if you wanted to. When you save to an SVG file
first, you can also manipulate it in programs such as Adobe Illustrator or Inkscape.

• Before saving, make sure the units and dimensions are correct Unless you really wanted to
save a graph that’s over 6 feet wide.

A.2.2 Image Editors

Often times, fine details such as labels on networks need to be tweaked by hand. Luckily, there are a
wide variety of programs that can help you do that. Here is a short list of image editors (both free and for
a price) that you can use to edit your graphics.

50

http://www.rstudio.com/

• Bitmap based editors (for jpeg, bmp, png, etc...)

The GIMP Free, cross-platform. http://www.gimp.org

Paint.net Free, Windows only. http://www.getpaint.net

Adobe Photoshop Pricey, Windows and Mac. http://www.adobe.com/products/photoshop.html

• Scalable Vector Graphics based editors (for svg, pdf)

Inkscape Free, cross-platform http://inkscape.org

Adobe Illustrator Pricey, Windows and Mac. http://www.adobe.com/products/illustrator.html

A.2.3 Exporting ggplot2 graphics

ggplot2 is a fantastic package that poppr uses to produce graphs for the mlg.table, poppr, and ia
functions. Saving a plot with ggplot2 is performed with one command after your plot has rendered:

data(nancycats) # Load the data set.

poppr(nancycats, sample=999) # Produce a single plot.

ggsave("nancycats.pdf")

Note that you can name the file anything, and ggsave will save it in that format for you. The details are
in the documentation and you can access it by typing help("ggsave") in your R console. The important
things to note are that you can set a width, height, and unit. The only downside to this function is that
you can only save one plot at a time. If you want to be able to save multiple plots, read on to the next
section.

A.2.4 Exporting any graphics

Some of the functions that poppr offers will give you multiple plots, and if you want to save them all,
using ggsave will require a lot of tedious typing and clicking. Luckily, R has Functions that will save any
plot you generate in nearly any image format you want. You can save in raster images such as png, bpm,
and jpeg. You can also save in vector based images such as svg, pdf, and postscript. The important thing
to remember is that when you are saving in a raster format, the default units of measurement are “pixels”,
but you can change that by specifying your unit of choice and a resolution.

For raster images and svg files, you can only save your plots in multiple files, but pdf and postscript
plots can be saved in one file as multiple pages. All of these functions have the same basic form. You call
the function to specify the file type you want (eg. pdf("myfile.pdf")), create any graphs that you want to
create, and then make sure to close the session with the function dev.off(). Let’s give an example saving
to pdf and png files.

data(nancycats)

####

png("nancy_pair%02d.png", width = 14, height = 14, units = "in", res = 300)

poppairs <- lapply(seppop(nancycats), pair.ia, limits = c(-0.25, 1))

dev.off()

####

Since this data set is made up of 30 populations with more than 1 individual, this will save 30 files to
your working directory named “nancy pair barchart01.png...nancy pair barchart30.png”. The way R knows
how to number these files is because of the %02d part of the command. That’s telling R to use a number
that is two digits long in place of that expression. All of these files will be 14x14” and will have a resolution
of 300 dots per inch. If you wanted to do the same thing, but place them all in one file, you should use the
pdf option.

51

http://www.gimp.org
http://www.getpaint.net
http://www.adobe.com/products/photoshop.html
http://inkscape.org
http://www.adobe.com/products/illustrator.html

pdf("nancy_pair.png", width = 14, height = 14, compress = FALSE)

poppairs <- lapply(seppop(nancycats), pair.ia, limits = c(-0.25, 1))

dev.off()

Remember, it is important not to forget to type dev.off() when you are done making graphs. Note
that I did not have to specify a resolution for this image since it is based off of vector graphics.

References

Agapow, Paul-Michael, & Burt, Austin. 2001. Indices of multilocus linkage disequilibrium. Molecular Ecology
Notes, 1(1-2), 101–102.

Brown, A.H.D., Feldman, M.W., & Nevo, E. 1980. MULTILOCUS STRUCTURE OF NATURAL POPU-
LATIONS OF Hordeum spontaneum. Genetics, 96(2), 523–536.

Bruvo, Ruzica, Michiels, Nicolaas K., D’Souza, Thomas G., & Schulenburg, Hinrich. 2004. A simple method
for the calculation of microsatellite genotype distances irrespective of ploidy level. Molecular Ecology,
13(7), 2101–2106.

Everhart, Sydney, & Scherm, Harald. 2015. Fine-scale genetic structure of Monilinia fructicola during brown
rot epidemics within individual peach tree canopies. Phytopathology, 105(4), 542–549.

Goss, Erica M, Larsen, Meg, Chastagner, Gary A, Givens, Donald R, & Grünwald, Niklaus J. 2009. Popula-
tion genetic analysis infers migration pathways of Phytophthora ramorum in US nurseries. PLoS Pathog,
5(9), e1000583.

Goss, Erica M., Tabima, Javier F., Cooke, David E. L., Restrepo, Silvia, Fry, William E., Forbes, Gregory A.,
Fieland, Valerie J., Cardenas, Martha, & Grünwald, Niklaus J. 2014. The Irish potato famine pathogen
Phytophthora infestans originated in central Mexico rather than the Andes. Proceedings of the National
Academy of Sciences, 111(24), 8791–8796.

Grünwald, N. J., & Hoheisel, G. 2006. Hierarchical Analysis of Diversity, Selfing, and Genetic Differentiation
in Populations of the Oomycete Aphanomyces euteiches. Phytopathology, 96(10), 1134–1141.

Grünwald, Niklaus J., Goodwin, Stephen B., Milgroom, Michael G., & Fry, William E. 2003. Analysis of
genotypic diversity data for populations of microorganisms. Phytopathology, 93(6), 738–46.

Heck, Kenneth L.Jr., Belle, Gerald van, & Simberloff, Daniel. 1975. Explicit Calculation of the Rarefaction
Diversity Measurement and the Determination of Sufficient Sample Size. Ecology, 56(6), pp. 1459–1461.

Hurlbert, S H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology,
52(4), 577–586.

Jombart, Thibaut. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinfor-
matics, 24(11), 1403–1405.

Kamvar, Zhian N., Tabima, Javier F., & Grünwald, Niklaus J. 2014. Poppr : an R package for genetic
analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2(3), e281.

Kamvar, Zhian N, Brooks, Jonah C, & Grünwald, Niklaus J. 2015a. Novel R tools for analysis of genome-wide
population genetic data with emphasis on clonality. Frontiers in Genetics, 6, 208.

Kamvar, ZN, Larsen, MM, Kanaskie, AM, Hansen, EM, & Grünwald, NJ. 2015b. Spatial and temporal
analysis of populations of the sudden oak death pathogen in Oregon forests. Phytopathology, PHYTO–12.

52

Ludwig, J.A., & Reynolds, J.F. 1988. Statistical Ecology. A Primer on Methods and Computing. New York
USA: John Wiley and Sons.

Nei, Masatoshi. 1978. ESTIMATION OF AVERAGE HETEROZYGOSITY AND GENETIC DISTANCE
FROM A SMALL NUMBER OF INDIVIDUALS. Genetics, 89(3), 583–590.

Oksanen, Jari, Blanchet, F. Guillaume, Kindt, Roeland, Legendre, Pierre, Minchin, Peter R., O’Hara, R. B.,
Simpson, Gavin L., Solymos, Peter, Stevens, M. Henry H., & Wagner, Helene. 2012. vegan: Community
Ecology Package. R package version 2.0-5.

Peakall, R., & Smouse, P. E. 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for
teaching and research. Molecular Ecology Notes, 6(1), 288–295+.

Peakall, Rod, & Smouse, Peter E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software
for teaching and research—an update. Bioinformatics, 28(19), 2537–2539.

Peng, Bo, & Amos, Christopher I. 2008. Forward-time simulations of non-random mating populations using
simuPOP. Bioinformatics, 24(11), 1408–1409.

Pielou, E.C. 1975. Ecological Diversity. Wiley.

Shannon, Claude Elwood. 1948. A mathematical theory of communication. Bell Systems Technical Journal,
27, 379–423,623–656.

Smith, J M, Smith, N H, O’Rourke, M, & Spratt, B G. 1993. How clonal are bacteria? Proceedings of the
National Academy of Sciences, 90(10), 4384–4388.

Stoddart, J.A., & Taylor, J.F. 1988. Genotypic diversity: estimation and prediction in samples. Genetics,
118(4), 705–11.

Wickham, Hadley. 2009. ggplot2: elegant graphics for data analysis. Springer New York.

53

	Table of Functions
	Introduction
	Purpose
	A note about poppr version 2.0.2
	Resources
	Getting Help
	Acknowledgments
	Citation
	Installation and Quick Start
	Installation
	Quick start

	Import and Data types
	Importing data into poppr {Get out of my dreams and into my R}
	Getting to know adegenet's genind object
	The genclone object {send in the clones}
	About polyploid data

	Data Manipulation
	Replace or remove missing data {Inside the golden days of missing data}
	Extract populations {Divide (populations) and conquer (your analysis)}
	Clone-censor data sets {Attack of the clone correction}
	Permutations and bootstrap resampling {every day I'm shuffling (data sets)}
	Removing uninformative loci {Cut It Out!}

	Multilocus Genotype Analysis
	How many multilocus genotypes are in our data set? {Just a peek}
	MLGs across populations {clone-ing around}
	Producing MLG tables and graphs {bringing something to the table}
	Combining MLG functions {getting into the mix}

	Appendix
	Manipulating Graphics
	Exporting Graphics

