Package ‘httpuv’

August 4, 2015

Type Package

Title HTTP and WebSocket Server Library
Version 1.3.3

Date 2015-08-03

Author RStudio, Inc.

Copyright RStudio, Inc.; Joyent, Inc.; Nginx Inc.; Igor Sysoev; Niels
Provos; Internet Systems Consortium, Inc.; Alexander Chemeris

Maintainer Joe Cheng <joe@rstudio.com>

Description Provides low-level socket and protocol support for handling
HTTP and WebSocket requests directly from within R. It is primarily
intended as a building block for other packages, rather than making it
particularly easy to create complete web applications using httpuv alone.
httpuv is built on top of the libuv and http-parser C libraries, both of
which were developed by Joyent, Inc. (See LICENSE file for libuv and
http-parser license information.)

License GPL-3 | file LICENSE
Depends R (>=2.15.1), methods
Imports Rcpp (>=0.11.0), utils
LinkingTo Rcpp

URL https://github.com/rstudio/httpuv
SystemRequirements GNU make
NeedsCompilation yes

Repository CRAN

Date/Publication 2015-08-04 00:32:50

R topics documented:

httpuv-package
encodeURIL
INEEITUPE . .« o o o o e e e e e e e e

https://github.com/rstudio/httpuv

2 httpuv-package
rawToBaseb64d e e 4
TUNSEIVEL . . . o v v o e e e e e e e e e e e e e 5
SEIVICE © v v v v v e e e e e e e e e e e 5
startDaemonizedServer e 6
StArtSEIVEr e e e e e e 7
stopDaemonizedServer e 9
SOPSEIVET o e e e e e e e e 9
WebSocket-class e e e 10

Index 11

httpuv-package HTTP and WebSocket server

Description

HTTP and WebSocket server

Details

Allows R code to listen for and interact with HTTP and WebSocket clients, so you can serve web
traffic directly out of your R process. Implementation is based on libuv and http-parser.

This

is a low-level library that provides little more than network I/O and implementations of the

HTTP and WebSocket protocols. For an easy way to create web applications, try Shiny instead.

Author(s)

Joe Cheng <joe@rstudio.com>

See Also

startServer

Examples

Not run:
demo("echo"”, package="httpuv")

End(Not run)

https://github.com/joyent/libuv
https://github.com/joyent/http-parser
http://rstudio.com/shiny/

encodeURI 3

encodeURI URI encoding/decoding

Description

Encodes/decodes strings using URI encoding/decoding in the same way that web browsers do. The
precise behaviors of these functions can be found at developer.mozilla.org: encodeURI, encodeURI-
Component, decodeURI, decodeURIComponent

Usage

encodeURI (value)
encodeURIComponent(value)
decodeURI (value)

decodeURIComponent (value)

Arguments

value Character vector to be encoded or decoded.

Details

Intended as a faster replacement for URLencode and URLdecode.

encodeURI differs from encodeURIComponent in that the former will not encode reserved charac-
ters: ;,/?7:@&=+$

decodeURI differs from decodeURIComponent in that it will refuse to decode encoded sequences
that decode to a reserved character. (If in doubt, use decodeURIComponent.)

The only way these functions differ from web browsers is in the encoding of non-ASCII charac-
ters. All non-ASCII characters will be escaped byte-by-byte. If conformant non-ASCII behavior is
important, ensure that your input vector is UTF-8 encoded before calling encodeURI or encodeURI-
Component.

Value

Encoded or decoded character vector of the same length as the input value.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent

4 rawToBase64

interrupt Interrupt httpuv runloop

Description

Interrupts the currently running httpuv runloop, meaning runServer or service will return control
back to the caller and no further tasks will be processed until those methods are called again. Note
that this may cause in-process uploads or downloads to be interrupted in mid-request.

Usage

interrupt()

rawToBase64 Convert raw vector to Base64-encoded string

Description

Converts a raw vector to its Base64 encoding as a single-element character vector.

Usage

rawToBase64(x)

Arguments

X A raw vector.

Examples

set.seed(100)
result <- rawToBase64(as.raw(runif(19, min=0, max=256)))
stopifnot(identical(result, "TkGNDnd7z16LK5/hR2bDgzRbXA=="))

runServer 5

runServer Run a server

Description

This is a convenience function that provides a simple way to call startServer, service, and
stopServer in the correct sequence. It does not return unless interrupted or an error occurs.

Usage
runServer (host, port, app, interruptIntervalMs = ifelse(interactive(), 100,
1000))
Arguments
host A string that is a valid IPv4 address that is owned by this server, or "0.0.0.0"
to listen on all IP addresses.
port A number or integer that indicates the server port that should be listened on.
Note that on most Unix-like systems including Linux and Mac OS X, port num-
bers smaller than 1025 require root privileges.
app A collection of functions that define your application. See startServer.
interruptIntervalMs
How often to check for interrupt. The default should be appropriate for most
situations.
Details

If you have multiple hosts and/or ports to listen on, call the individual functions instead of runServer.

See Also

startServer, service, stopServer

service Process requests

Description
Process HTTP requests and WebSocket messages. Even if a server exists, no requests are serviced
unless and until service is called.

Usage

service(timeoutMs = ifelse(interactive(), 100, 1000))

6 startDaemonizedServer

Arguments
timeoutMs Approximate number of milliseconds to run before returning. If 0, then the func-
tion will continually process requests without returning unless an error occurs.
Details

Note that while service is waiting for a new request, the process is not interruptible using normal
R means (Esc, Ctrl+C, etc.). If being interruptible is a requirement, then call service in a while
loop with a very short but non-zero Sys. sleep during each iteration.

Examples

Not run:

while (TRUE) {
service()
Sys.sleep(0.001)

}

End(Not run)

startDaemonizedServer Create an HITP/WebSocket daemonized server (experimental)

Description

Creates an HTTP/WebSocket server on the specified host and port. The server is daemonized so R
interactive sessions are not blocked to handle requests.

Usage

startDaemonizedServer(host, port, app)

Arguments
host A string that is a valid IPv4 address that is owned by this server, or "0.0.0.0"
to listen on all IP addresses.
port A number or integer that indicates the server port that should be listened on.

Note that on most Unix-like systems including Linux and Mac OS X, port num-
bers smaller than 1025 require root privileges.

app A collection of functions that define your application. See Details.

startServer 7

Details

In contrast to servers created by startServer, calls to service are not needed to accept and handle
connections. If the port cannot be bound (most likely due to permissions or because it is already
bound), an error is raised.

The app parameter is where your application logic will be provided to the server. This can be a list,
environment, or reference class that contains the following named functions/methods:

call(req) Process the given HTTP request, and return an HTTP response. This method should be
implemented in accordance with the Rook specification.

onHeaders(req) Optional. Similar to call, but occurs when headers are received. Return NULL to
continue normal processing of the request, or a Rook response to send that response, stop pro-
cessing the request, and ask the client to close the connection. (This can be used to implement
upload size limits, for example.)

onWSOpen(ws) Called back when a WebSocket connection is established. The given object can be
used to be notified when a message is received from the client, to send messages to the client,
etc. See WebSocket.

The startPipeServer variant is not supported yet.

Value

A handle for this server that can be passed to stopDaemonizedServer to shut the server down.

See Also

startServer

startServer Create an HTTP/WebSocket server

Description

Creates an HTTP/WebSocket server on the specified host and port.

Usage

startServer(host, port, app)

startPipeServer(name, mask, app)

https://github.com/jeffreyhorner/Rook/blob/a5e45f751/README.md

8 startServer

Arguments
host A string that is a valid IPv4 address that is owned by this server, or "0.0.0.0"
to listen on all IP addresses.
port A number or integer that indicates the server port that should be listened on.
Note that on most Unix-like systems including Linux and Mac OS X, port num-
bers smaller than 1025 require root privileges.
app A collection of functions that define your application. See Details.
name A string that indicates the path for the domain socket (on Unix-like systems) or
the name of the named pipe (on Windows).
mask If non-NULL and non-negative, this numeric value is used to temporarily modify
the process’s umask while the domain socket is being created. To ensure that
only root can access the domain socket, use strtoi("777", 8); or to allow
owner and group read/write access, use strtoi("117", 8). If the value is
NULL then the process’s umask is left unchanged. (This parameter has no effect
on Windows.)
Details

startServer binds the specified port, but no connections are actually accepted. See service,
which should be called repeatedly in order to actually accept and handle connections. If the port
cannot be bound (most likely due to permissions or because it is already bound), an error is raised.

The app parameter is where your application logic will be provided to the server. This can be a list,
environment, or reference class that contains the following named functions/methods:

call(req) Process the given HTTP request, and return an HTTP response. This method should be
implemented in accordance with the Rook specification.

onHeaders(req) Optional. Similar to call, but occurs when headers are received. Return NULL to
continue normal processing of the request, or a Rook response to send that response, stop pro-
cessing the request, and ask the client to close the connection. (This can be used to implement
upload size limits, for example.)

onWSOpen(ws) Called back when a WebSocket connection is established. The given object can be
used to be notified when a message is received from the client, to send messages to the client,
etc. See WebSocket.

The startPipeServer variant can be used instead of startServer to listen on a Unix domain
socket or named pipe rather than a TCP socket (this is not common).

Value

A handle for this server that can be passed to stopServer to shut the server down.

See Also

runServer

https://github.com/jeffreyhorner/Rook/blob/a5e45f751/README.md

stopDaemonizedServer 9

stopDaemonizedServer Stop a running daemonized server in Unix environments

Description

Given a handle that was returned from a previous invocation of startDaemonizedServer, closes
all open connections for that server, removes listeners in the R event loop and unbinds the port. Be
careful not to call stopDaemonizedServer more than once on a handle, as this will cause the
R process to crash!

Usage

stopDaemonizedServer(server)

Arguments
server A handle that was previously returned from startDaemonizedServer.
stopServer Stop a running server
Description

Given a handle that was returned from a previous invocation of startServer, closes all open con-
nections for that server and unbinds the port. Be careful not to call stopServer more than once
on a handle, as this will cause the R process to crash!

Usage

stopServer(handle)

Arguments

handle A handle that was previously returned from startServer.

10 WebSocket-class

WebSocket-class WebSocket object

Description

An object that represents a single WebSocket connection. The object can be used to send messages
and close the connection, and to receive notifications when messages are received or the connection
is closed.

Arguments

For internal use only.

Details

WebSocket objects should never be created directly. They are obtained by passing an onWSOpen
function to startServer.

Fields

request The Rook request environment that opened the connection. This can be used to inspect
HTTP headers, for example.

Methods

onMessage(func) Registers a callback function that will be invoked whenever a message is re-
ceived on this connection. The callback function will be invoked with two arguments. The
first argument is TRUE if the message is binary and FALSE if it is text. The second argument is
either a raw vector (if the message is binary) or a character vector.

onClose(func) Registers a callback function that will be invoked when the connection is closed.

send(message) Begins sending the given message over the websocket. The message must be
either a raw vector, or a single-element character vector that is encoded in UTF-8.

close() Closes the websocket connection.

Index

+Topic package
httpuv-package, 2

decodeURI (encodeURI), 3
decodeURIComponent (encodeURI), 3

encodeURI, 3
encodeURIComponent (encodeURI), 3

httpuv (httpuv-package), 2
httpuv-package, 2

interrupt, 4

rawToBase64, 4
runServer, 4,5, 8

service, 4, 5,5,7, 8
startDaemonizedServer, 6, 9
startPipeServer (startServer), 7
startServer, 5,7,7,9, 10
stopDaemonizedServer, 7,9
stopServer, 5, 8,9

Sys.sleep, 6

URLdecode, 3
URLencode, 3

WebSocket, 7, 8
WebSocket (WebSocket-class), 10
WebSocket-class, 10

11

	httpuv-package
	encodeURI
	interrupt
	rawToBase64
	runServer
	service
	startDaemonizedServer
	startServer
	stopDaemonizedServer
	stopServer
	WebSocket-class
	Index

