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Abstract

This introduction to the R package DEoptim is an abreviated version of the manuscript
Mullen et al. (2011), published in the Journal of Statistical Software. DEoptim implements
the Differential Evolution algorithm for global optimization of a real-valued function of a
real-valued parameter vector. The implementation of Differential Evolution in DEoptim
interfaces with C code for efficiency. Moreover, the package is self-contained and does not
depend on any other packages.
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1. Introduction

Optimization algorithms inspired by the process of natural selection have been in use since
the 1950s (Mitchell 1998), and are often referred to as evolutionary algorithms. The genetic
algorithm is one such method, and was invented by John Holland in the 1960s (Holland 1975).
Genetic algorithms apply logical operations, usually on bit strings of fixed or variable length,
in order to perform crossover, mutation, and selection on a population. Over the course of suc-
cessive generations, the members of the population are more likely to represent a minimum
of an objective function. Genetic algorithms have proven themselves to be useful heuris-
tic methods for global optimization, in particular for combinatorial optimization problems.
Evolution strategies are another variety of evolutionary algorithm, in which members of the
population are represented with floating point numbers, and the population is transformed
over successive generations using arithmetic operations. See Price et al. (2006, Section 1.2.3)
for a detailed overview of evolutionary algorithms.

In the 1990s Rainer Storn and Kenneth Price developed an evolution strategy they termed
Differential Evolution (DE) (Storn and Price 1997). DE is particularly well-suited to find
the global optimum of a real-valued function of real-valued parameters, and does not require
that the function be either continuous or differentiable. In the roughly fifteen years since its
invention, DE has been successfully applied in a wide variety of fields, from computational
physics to operations research, as Price et al. (2006) catalogue.

The DEoptim (Ardia et al. 2011c) implementation of DE was motivated by our desire to extend
the set of algorithms available for global optimization in the R language and environment for
statistical computing (R Development Core Team 2011). DEoptim has been published on
the Comprehensive R Archive Network and is available at http://cran.r-project.org/

web/packages/DEoptim/. The DEoptim project is hosted on R-forge at https://r-forge.

http://cran.r-project.org/web/packages/DEoptim/
http://cran.r-project.org/web/packages/DEoptim/
https://r-forge.r-project.org/projects/deoptim/
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r-project.org/projects/deoptim/. Since becoming publicly available it has been used by
a variety of authors, e.g., Börner et al. (2007), Higgins et al. (2007), Opsina Arango (2009),
Ardia et al. (2011b) and Ardia et al. (2011a) to solve optimization problems arising in diverse
domains. Interested readers are referred to Mullen et al. (2011) for a longer version of the
present vignette.

The recently released RcppDE (Eddelbuettel 2010) package ports the C code in DEoptim to
C++. The documentation claims RcppDE is more efficient than the C-based implementation
in DEoptim version 2.0-7, but most of the increased efficiency is attributable to a non-trivial
difference in the functionality: RcppDE does not pass "..." to the objective function. DEop-
tim version 2.0-8 incorporates several language-independent improvements made in RcppDE
and compares favorably to a patched version of RcppDE that passes "...".

We hope that the R package DEoptim will be fruitful for many users. If you use R or DEoptim,
please cite the software in publications.

In the remainder of this vignette we elaborate on DEoptim’s implementation and use. In
Section 1.1, the package is introduced via a simple example. Section 2 describes the underlying
algorithm. Section 3 describes the R implementation and serves as a user manual.

1.1. An introductory example

Minimization of the Rastrigin function in x ∈ <D

f(x) =
D∑
j=1

(
x2j − 10 cos (2πxj) + 10

)
for D = 2 is a common test for global optimization algorithms.

This function is possible to represent in R as

R> rastrigin <- function(x)

+ 10*length(x)+sum(x^2-10*cos(2*pi*x))

As shown in Figure 1, for D = 2 the function has a global minimum f(x) = 0 at the point
(0, 0).

In order to minimize this function using DEoptim, the R interpreter is invoked, and the
package is loaded with the command

R> library("DEoptim")

The DEoptim function of the package DEoptim searches for minima of the objective function
between lower and upper bounds on each parameter to be optimized. Therefore in the call to
DEoptim we specify vectors that comprise the lower and upper bounds; these vectors are the
same length as the parameter vector. The call to DEoptim can be made as

R> est.ras <- DEoptim(rastrigin,lower=c(-5,-5),upper=c(5,5),

+ control=list(storepopfrom=1, trace=FALSE))

Note that the vector of parameters to be optimized must be the first argument of the objective
function fn passed to DEoptim. The above call specifies the objective function to minimize,

https://r-forge.r-project.org/projects/deoptim/
https://r-forge.r-project.org/projects/deoptim/
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Figure 1: A contour plot of the two-dimensional Rastrigin function f(x). The global minimum
f(x) = 0 is at (0, 0) and is marked with an open white circle.

rastrigin, the lower and upper bounds on the the parameters, and, via the control ar-
gument, that we want to store intermediate populations from the first generation onwards
(storepopfrom = 1), and do not want to print out progress information each generation
(trace = FALSE). Storing intermediate populations allows us to examine the progress of the
optimization in detail. Upon initialization, the population is comprised of 50 vectors x of
length two (50 being the default value of NP), with xi a random value drawn from the uniform
distribution over the values defined by the associated lower and upper bound. The operations
of crossover, mutation, and selection explained in Section 2 transform the population so that
the members of successive generations are more likely to represent the global minimum of the
objective function. The members of the population generated by the above call are plotted at
the end of different generations in Figure 2. DEoptim consistently finds the minimum of the
function within 200 generations using the default settings. We have observed that DEoptim
solves the Rastrigin problem more efficiently than the simulated annealing method found in
the R function optim.

We note that as the dimensionality of the Rastrigin problem increases, DEoptim may not
be able to find the global minimum in the default number of generations. Heuristics to
help ensure that the global minimum is found include re-running the problem with a larger
population size (value of NP), and increasing the maximum allowed number of generations.

1.2. Problems suitable for DE

Differential Evolution does not require derivatives of the objective function. It is therefore
useful in situations in which the objective function is stochastic, noisy, or difficult to differen-
tiate. DE, however, may be inefficient on smooth functions, where derivative-based methods
generally are most efficient.

In the example below, a generalized Rosenbrock function is considered. This function is
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Figure 2: The population associated with various generations of a call to DEoptim as it searches
for the minimum of the Rastrigin function (marked with an open white circle). The minimum
is consistently determined within 200 generations using the default settings of DEoptim.

differentiable and has a single local minimum. It is often more efficient to apply methods
other than DE to optimization of such functions. Functions that are smooth but have many
local minima, however, may still be good candidates for optimization with DE, since alterna-
tive algorithms for local, as opposed to global, optimization may converge to a sub-optimal
solution.

A generalized Rosenbrock function is possible to represent in R as

R> genrose.f <- function(x){

+ n <- length(x)

+ fval <- 1.0 + sum (100 * (x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)

+ return(fval)

+ }

This function has a global minimum at 1, which DEoptim finds for n = 10 with a call like:

R> n <- 10
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R> ans <- DEoptim(fn=genrose.f, lower=rep(-5, n), upper=rep(5, n),

+ control=list(NP=100, itermax=4000,trace=FALSE))

The minimum can be determined with far fewer function evalutations with a gradient-based
method such as “BFGS” (Nash 1990), e.g., with the call

R> ans1 <- optim(par=runif(10,-5,5), fn=genrose.f, method="BFGS",

+ control=list(maxit=4000))

R>

Note further that users interested in exact reproduction of results should set the seed of their
random number generator before calling DEoptim. DE is a randomized algorithm, and the
results may vary between runs.

2. The Differential Evolution algorithm

We sketch the classical DE algorithm here and refer interested readers to the work of Storn
and Price (1997) and Price et al. (2006) for further elaboration. The algorithm is an evolu-
tionary technique which at each generation transforms a set of parameter vectors, termed the
population, into another set of parameter vectors, the members of which are more likely to
minimize the objective function. In order generate a new parameter vector, DE disturbs an
old parameter vector with the scaled difference of two randomly selected parameter vectors.

The variable NP represents the number of parameter vectors in the population. At generation
0, NP guesses for the optimal value of the parameter vector are made, either using random
values between upper and lower bounds for each parameter or using values given by the user.
Each generation involves creation of a new population from the current population members
xi,g, where i indexes the vectors that make up the population and g indexes generation.
This is accomplished using differential mutation of the population members. A trial mutant
parameter vector vi,g is created by choosing three members of the population, xr0,g, xr1,g and
xr2,g, at random. Then vi,g is generated as

vi,g
.
= xr0,g + F · (xr1,g − xr2,g) (1)

where F is a positive scale factor. Effective values of F are typically less than 1.

After the first mutation operation, mutation is continued until either length(x) mutations
have been made or rand > CR, where CR is a crossover probability CR ∈ [0, 1], and where
here and throughout rand is used to denote a random number from U(0, 1). The crossover
probability CR controls the fraction of the parameter values that are copied from the mutant.
CR approximates but does not exactly represent the probability that a parameter value will
be inherited from the mutant, since at least one mutation always occurs. Mutation is applied
in this way to each member of the population.

If an element vj of the parameter vector is found to violate the bounds after mutation and
crossover, it is reset, where here and throughout we use j to index into a parameter vector. In
the implementation of DEoptim, if vj > upperj , it is reset as vj

.
= upperj − rand · (upperj −

lowerj), and if vj < lowerj , it is reset as vj
.
= lowerj + rand · (upperj − lowerj). This ensures

that candidate population members found to violate the bounds are set some random amount
away from them, in such a way that the bounds are guaranteed to be satisfied. Then the
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objective function values associated with the children v are determined. If a trial vector
vi,g has equal or lower objective function value than the vector xi,g, vi,g replaces xi,g in the
population; otherwise xi,g remains.

The algorithm stops after some set number of generations, or after the objective function
value associated with the best member has been reduced below some set threshold, or if it is
unable to reduce the best member by a certain value over over set number of iterations.

Variations on this theme are possible, some of which are described in the following section.
Values of NP and CR that have been found to be most effective for a variety of problems are
described in Price et al. (2006, Section 2). Reasonable default values for many problems are
given in the following section.

3. Implementation

DEoptim was first published on the Comprehensive R Archive Network (CRAN) in 2005 by
David Ardia. Early versions were written in pure R. Since version 2.0-0 (published to CRAN
in 2009 by Katharine Mullen) the package has relied on an interface to a C implementation
of DE, which is significantly faster on most problems as compared to the implementation in
pure R. Since version 2.0-3 the C implementation dynamically allocates the memory required
to store the population, removing limitations on the number of members in the population
and length of the parameter vectors that may be optimized.

The implementation is used by calling the R function DEoptim, the arguments of which are:

� fn: The objective function to be minimized. This function should have as its first
argument the vector of real-valued parameters to optimize, and return a scalar real
result.

� lower, upper: Vectors specifying scalar real lower and upper bounds on each parameter
to be optimized, so that the ith element of lower and upper applies to the ith parameter.
The implementation searches between lower and upper for the global optimum of fn.

� control: A list of control parameters, discussed below.

� ...: allows the user to pass additional arguments to the function fn.

The control argument is a list, the following elements of which are currently interpreted:

� VTR: The value to reach. Specify the global minimum of fn if it is known, or if you wish
to cease optimization after having reached a certain value. The default value is -Inf.

� strategy: This defines the Differential Evolution strategy used in the optimization
procedure, described below in the terms used by Price et al. (2006):

– 1: DE / rand / 1 / bin (classical strategy). This strategy is the classical approach
described in Section 2.

– 2: DE / local-to-best / 1 / bin. In place of the classical DE mutation given in (1),
the expression

vi,g
.
= oldi,g + F · (bestg − oldi,g) + F · (xr1,g − xr2,g)
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is used, where oldi,g and bestg are the ith member and best member, respectively,
of the previous population. This strategy is currently used by default.

– 3: DE / best / 1 / bin with jitter. In place of the classical DE mutation given
in (1), the expression

vi,g
.
= bestg + jitter + F · (xr1,g − xr2,g)

is used, where jitter is defined as 0.0001 · rand + F .

– 4: DE / rand / 1 / bin with per vector dither. In place of the classical DE mutation
given in (1), the expression

vi,g
.
= xr0,g + dither · (xr1,g − xr2,g)

is used, where dither is calculated as dither
.
= F + rand · (1− F ).

– 5: DE / rand / 1 / bin with per generation dither. The strategy described for 4 is
used, but dither is only determined once per-generation.

– 6: DE / current-to-p-best / 1. The top (100 ∗ p) percent best solutions are used in
the mutation, where p is defined in (0, 1].

– any value not above: variation to DE / rand / 1 / bin: either-or algorithm. In the
case that rand < 0.5, the classical strategy described for 1 is used. Otherwise, the
expression

vi,g
.
= xr0,g + 0.5 · (F + 1.0) · (xr1,g + xr2,g − 2 · xr0,g)

is used.

� bs: If FALSE then every mutant will be tested against a member in the previous gen-
eration, and the best value will survive into the next generation. This is the standard
trial vs. target selection described in Section 2. If TRUE then the old generation and
NP mutants will be sorted by their associated objective function values, and the best NP
vectors will proceed into the next generation (this is best-of-parent-and-child selection).
The default value is FALSE.

� NP: Number of population members. The default value is 50.

� itermax: The maximum iteration (population generation) allowed. The default value
is 200.

� CR: Crossover probability from interval [0,1]. The default value is 0.5.

� F: Stepsize from interval [0,2]. The default value is 0.8.

� trace: Positive integer or logical value indicating whether printing of progress occurs
at each iteration. The default value is TRUE. If a positive integer is specified, printing
occurs every trace iterations.

� initialpop: An initial population used as a starting population in the optimization
procedure, specified as a matrix in which each row represents a population member.
May be useful to speed up convergence. Defaults to NULL, so that the initial population
is generated randomly within the lower and upper boundaries.
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� storepopfrom: From which generation should the following intermediate populations
be stored in memory. Default to itermax + 1, i.e., no intermediate population is stored.

� storepopfreq: The frequency with which populations are stored. The default value is
1, i.e., every intermediate population is stored.

� checkWinner: Logical value indicating whether to re-evaluate the objective function us-
ing the winning parameter vector if this vector remains the same between generations.
This may be useful for the optimization of a noisy objective function. If checkWinner
= TRUE and avWinner = FALSE then the value associated with re-evaluation of the ob-
jective function is used in the next generation. Default to FALSE.

� avWinner: Logical value. If checkWinner = TRUE and avWinner = TRUE then the ob-
jective function value associated with the winning member represents the average of
all evaluations of the objective function over the course of the ‘winning streak’ of the
best population member. This option may be useful for optimization of noisy objective
functions, and is interpreted only if checkWinner = TRUE. The default value is TRUE.

The default value of control is the return value of DEoptim.control(), which is a list with
the above elements and specified default values.

The return value of the DEoptim function is a member of the S3 class DEoptim. Members
of this class have a plot method that accepts the argument plot.type. When retVal is
an object returned by DEoptim, calling plot(retVal, plot.type = "bestmemit") results
in a plot of the parameter values that represent the lowest value of the objective function
each generation. Calling plot(retVal, plot.type = "bestvalit") plots the best value of
the objective function each generation. Calling plot(retVal, plot.type = "storepop")

results in a plot of stored populations (which are only available if these have been saved by
setting the control argument of DEoptim appropriately). A summary method for objects
of S3 class DEoptim also exists, and returns the best parameter vector, the best value of the
objective function, the number of generations optimization ran, and the number of times the
objective function was evaluated.

A note on recommended settings: We have set the default values to the methods recommended
by Price et al. (2006) as starting points. We use strategy = 2 by default; the user should
consider trying as alternatives strategy = 6 and strategy = 1, though the best method
will be highly problem-dependent. Generally, the user should set the lower and upper bounds
to exploit the full allowable numerical range, i.e., if a parameter is allowed to exhibit values
in the range [-1, 1] it is typically a good idea to pick the initial values from this range instead
of unnecessarily restricting diversity. Increasing the value for NP will mean greater likelihood
of finding the minimum, but run-time will be longer.

DEoptim relies on repeated evaluation of the objective function in order to move the popula-
tion toward a global minimum. Users interested in making DEoptim run as fast as possible
should ensure that evaluation of the objective function is as efficient as possible. Using pure
R code, this may often be accomplished using vectorization. Writing parts of the objective
function in a lower-level language like C or Fortran may also increase speed.
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Disclaimer

The views expressed in this vignette are the sole responsibility of the authors and do not
necessarily reflect those of NIST and aeris CAPITAL AG.
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