Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the paper linked to via the URL below.
Reverse depends: |
AdapEnetClass, bapred, bigdata, BigTSP, BioMark, CAM, cosso, covTest, DivMelt, DTRlearn, elasso, EstHer, fcd, FindIt, glmnetcr, glmvsd, Grace, hdi, hdlm, HiCfeat, InvariantCausalPrediction, ipflasso, lassoscore, MESS, mht, MMMS, MMS, MNS, netgsa, oblique.tree, parcor, PAS, PRIMsrc, qut, refund.wave, relaxnet, RVtests, selectiveInference, SIMMS, SIS, SML, SparseLearner, sparsenet, SubLasso, widenet |
Reverse imports: |
anoint, c060, Causata, ComICS, CorReg, EnsemblePenReg, FADA, graphicalVAR, GWLelast, hdnom, hit, hybridEnsemble, imputeR, IsingFit, kernDeepStackNet, knockoff, metafuse, mgm, MPAgenomics, mpath, mplot, msr, parboost, polywog, RSDA, rsig, RTextTools, sparsereg, stm, SurvRank, XMRF |
Reverse suggests: |
broom, catdata, CompareCausalNetworks, emil, fbRanks, FeatureHashing, flexmix, FRESA.CAD, fscaret, ggfortify, medflex, mlr, ModelGood, nscancor, pmml, randomForestSRC, subsemble, SuperLearner |
Reverse enhances: |
stabs |