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autocorrP Autocorrelation Function for Parenatge Assignment

Description

Function for assessing mixing of the Markov chain with respect to parentage assignment.

Usage

autocorrP(postP)
Arguments

postP JOINT posterior distribution of parentage
Details

For each offspring the proportion of transitions is calculated at lags 1, 2, 5, 10, 50 and 100 (i.e.
the proportion of times that the parentage assignment at time t is different from the parentage as-
signment at time t+lag). The difference between these proportions and the proportion at lag 1 is
then calculated, and the mean over offspring given. When the parentage assignments in successive
MCMC iterations are independent these autocorrelation metrics should be randomly distributed
about zero and should not decrease with increasing lag.

Value

matrix
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Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also
MCMCped

Examples

## Not run:
data(WarblerP)
data(WarblerG)
GdP<-GdataPed(WarblerG)

varil<-expression(varPed(c("lat”, "long"), gender="Male",
relational="OFFSPRING"))

# paternity is to be modelled as a function of distance
# between offspring and male territories

resi<-expression(varPed("offspring"”, restrict=0))
# individuals from the offspring generation are excluded as parents

res2<-expression(varPed("terr"”, gender="Female"”, relational="OFFSPRING",
restrict="=="))

# mothers not from the offspring territory are excluded

PdP<-PdataPed(formula=list(varl,resl,res2), data=WarblerP, USsire=FALSE)
tP<-tunePed(beta=30)

model1<-MCMCped (PdP=PdP, GdP=GdP, tP=tP, nitt=3000, thin=1, burnin=0, write_postP="JOINT")
autocorrP(model1$P)

## End(Not run)

beta.loglik Log-Likelihood of Beta

Description
Log-likelihood of beta given a pedigree and phenotypic data. Beta is the parameter vector for the
multinomial log-linear model. Intended to be used within the function MLE . beta

Usage

beta.loglik(X, dam_pos=NULL, sire_pos=NULL, par_pos=NULL, beta=NULL,
beta_map=NULL, merge=NULL, mergeN=NULL, nUS=c(90,0))



Arguments

X

dam_pos
sire_pos
par_pos
beta
beta_map

merge

mergeN

nuUS

Value

beta.loglik

list of design matrices for each offspring. Each element should either have dam
(D) and/or sire (S) matrices, or a composite Dam/Sire (DS) matrix. See varPed
for model types

position of each offspring’s mother in the dam design matrix
position of each offspring’s mother in the sire design matrix

position of each offspring’s parents in the composite dam/sire matrix
parameter vector

vector that maps beta onto the design matrices (see getXlist)

optional vector that indicates columns of for which the parameter is transformed
using the argument merge in varPed

optional list of matrices for each offspring the columns of which refer to merged
variables and the rows to the number of individuals that fall into each category
defined by merge)

vector of the number of unsampled females and males, respectively. Only re-
quired if unsampled individuals have known phenotype.

log-likelihood of beta given the pedigree and X.

Note

Intended to be used within MLE .beta

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Hadfield J.D. er al (2006) Molecular Ecology 15 3715-31 Smouse P.E. et al (1999) Journal of
Evolutionary Biology 12 1069-1077

See Also

MLE.beta, MCMCped, varPed, getXlist

Examples

## Not run:
data(WarblerP)
data(WarblerG)

GdP<-GdataPed(WarblerG)

resi<-expression(varPed("offspring”, relational=FALSE, restrict=0))
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vari<-expression(varPed(c("lat”, "long"), gender="Male",
relational="0OFFSPRING"))

res2<-expression(varPed("terr”, gender="Female"”, relational="OFFSPRING",
restrict="=="))

PdP<-PdataPed(formula=list(varil,resl,res2), data=WarblerP)

# probability of paternity is modelled as a function of distance

X.list<-getXlist(PdP=PdP, GdP=GdP)

ped<-MLE.ped(X.list)$P

# get ML pedigree from genetic data alone

X<-lapply(X.list$X, function(x){list(S=x$XSs)3})

# Extract Design matrices for Sires

sire_pos<-match(ped[,3]1[as.numeric(names(X))], X.list$id)
sire_pos<-mapply(function(x,y){match(x, y$sire.id)}, sire_pos, X.list$X)

# row number of each design matrix corresponding to the ML sire.

beta<-seq(-0.065,-0.0325, length=100)
beta_Loglik<-1:100
for(i in 1:100){
beta_Loglik[i]<-beta.loglik(X, sire_pos=sire_pos, beta=betal[i],
beta_map=X.list$beta_map)
}

plot(beta_Loglik~beta, type="1", main="Profile Log-likelihood for beta")

## End(Not run)

consensusG Obtains a consensus genotype from duplicate samples

Description

A function for obtaining a consensus genotype from duplicate samples. The amount of missing data
is minimised, and preference is given to samples with lower genotyping error

Usage

consensusG(GdP, cat.levels=NULL, gmax=FALSE, het=FALSE)
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Arguments

GdP a GdataPed object

cat.levels order of genotyping error rate categories, with most reliable category first

gmax logical; if a most represented genotype exists should it be saved

het logical; should heterozygotes be saved over homozygotes - overrides cat . levels
Value

GdP a GdataPed object
Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also
GdataPed

extractA Allele Frequencies

Description

extracts allele frequencies from genotype data

Usage

extractA(G, marker.type="MSW")

Arguments
G data frame or list of genotype objects
marker. type "MSW" or "MSC" for co-dominant markers with Wang’s (2004) model of genotyp-
ing error or CERVUS’s model of genotyping error (Marshall, 1998) or "AFLP"
for dominant markers.
Value

list of allele frequnecies at each loci

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

genotype.list, genotype
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Examples

## Not run:
data(WarblerG)

A<-extractA(WarblerG)
ALL1]]

## End(Not run)

fillX.G Mendelian Transition Probabilities

Description
This function is primarily intended for use within getXlist, and fills in the design matrices of the
model with the genetic likelihoods.

Usage
fillX.G(X.list, A, G, E1=0.005, E2=0.005, marker.type="MSW")

Arguments
X.list list of design matrices for each offspring derived using getXlist
A list of allele frequencies
G list of genotype objects; rows must correspond to individuals in the vector X. 1ist$id
E1 if Wang’s (2004) model of genotyping error for co-dominant markers is used

this is the probability of an allele dropping out. If CERVUS’s (Kalinowski,
2006; Marshall, 1998) model of genotyping error for co-dominant markers is
used this parameter is not used. If Hadfield’s (2009) model of genotyping error
for dominant markers is used this is the probability of a dominant allele being
scored as a recessive allele.

E2 if Wang’s (2004) or CERVUS’s (Kalinowski, 2006; Marshall, 1998) model of
genotyping error for co-dominant markers are used this is the probability of an
allele being miss-scored. In the CERVUS model errors are not independent for
the two alleles within a genotype and so if a genotyping error has occurred at
one allele then a genotyping error occurs at the other allele with probability
one. Accordingly, E2(2-E2) is the per-genotype rate defined in CERVUS. If
Hadfield’s (2009) model of genotyping error for dominant markers is used this
is the probability of a recessive allele being scored as a dominant allele.

marker.type "MSW" or "MSC" for co-dominant markers with Wang’s (2004) model of genotyp-
ing error or CERVUS’s model of genotyping error (Kalinowski, 2006; Marshall,
1998) or "AFLP" for dominant markers (Hadfield, 2009).

Value

list of design matrices of the form X.1list containing genetic likelihoods for each offspring.
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Note
If a GdataPed object is passed to getX1list then the genetic likelihoods will be calculated by de-
fault.

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

References
Marshall, T. C. et al (1998) Molecular Ecology 7 5 639-655 Kalinowski S.T. et al (2007) Molecular
Ecology 16 5 1099-1106 Hadfield J. D. et al (2009) in prep

See Also

getXlist

Examples

## Not run:
data(WarblerG)
A<-extractA(WarblerG)

ped<-matrix(NA, 5,3)

ped[,11<-1:5

ped[,2]<-c(rep(NA, 4), 1)
ped[,3]<-c(rep(NA, 4), 2)
genotypes<-simgenotypes(A, ped=ped)

sex<-c("Female”, "Male"”, "Female”, "Male"”,"Female")
offspring<-c(0,0,0,0,1)

data<-data.frame(id=ped[,1], sex, offspring)
resl<-expression(varPed(x="offspring”, restrict=0))

PdP<-PdataPed(formula=list(res1), data=data)
GdP<-GdataPed(G=genotypes$Gobs, id=genotypes$id)

X.list<-getXlist(PdP)
# creates design matrices for offspring (in this case indivdiual "5")

X.list.G<-fillX.G(X.list, A=A, G=genotypes$Gobs, E2=0.005)
# genetic likelihoods are arranged sires within dams

X.list.G$X$"5"$dam. id
X.list.G$X$"5"$sire.id

# so for this example we have parental combinations
BT T2MY (M1 TATY (M3 T2y (2T AT
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X.list.G$X$"5"$G
# The true parents have the highest likelihood in this case

## End(Not run)

GdataPed GdataPed Object

Description

An object containing genotype data and the categories over which error rates may vary.

Usage

GdataPed(G, id = NULL, categories = NULL, perlocus=FALSE, marker.type="MSW")

Arguments
G a list of genotype objects for each locus, or a data. frame to be coerced using
genotype.list
id a vector of individual identifiers associated with each genotype, individuals can
have more than one observed genotype. If G is a data. frame to be coerced and
has a column name id, this will be used.
categories an optional vector indicating subsets of genotypes that have different error rates.
If G is a data.frame to be coerced and has a column name categories, this
will be used.
perlocus if TRUE different error rates are estimated for each locus
marker.type "MSW" or "MSC" for co-dominant markers with Wang’s (2004) model of genotyp-
ing error or CERVUS’s model of genotyping error (Kalinowski, 2006; Marshall,
1998) or "AFLP" for dominant markers (Hadfield, 2009).
Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Marshall, T. C. et al (1998) Molecular Ecology 7 5 639-655 Kalinowski S.T. et al (2007) Molecular
Ecology 16 5 1099-1106 Hadfield J. D. et al (2009) in prep

See Also

MCMCped
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Examples

## Not run:
data(WarblerG)
GdP<-GdataPed(WarblerG)

## End(Not run)

genotype.list Genotype Objects for all Loci

Description

Creates a 1ist of genotype objects from a matrix or data. frame of multilocus genotypes.

Usage

genotype.list(G, marker.type="MSW")

Arguments
G matrix or data.frame of multilocus genotypes with individuals down the rows
and loci across columns. Adjacent columns are taken to be the same locus
marker. type "MSW" or "MSC" for co-dominant markers with Wang’s (2004) model of genotyp-
ing error or CERVUS’s model of genotyping error (Kalinowski, 2006; Marshall,
1998) or "AFLP" for dominant markers (Hadfield, 2009).
Value

list of genotype objects for all loci

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Marshall, T. C. et al (1998) Molecular Ecology 7 5 639-655 Kalinowski S.T. et al (2007) Molecular
Ecology 16 5 1099-1106 Hadfield J. D. et al (2009) in prep

See Also

genotype
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Examples

## Not run:
data(WarblerG)

G<-genotype.list(WarblerG[,-1])
summary (GLL111)

## End(Not run)

genotypeD genotypeD Object

Description

Extends the genotype class for dominant marker data

Usage

genotypeD(al, locus=NULL)

Arguments
al vector of scored genotypes (0 or 1) for dominant markers
locus object of class locus, gene, or marker, holding information about the source of
this genotype.
further arguments to be passed
Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

genotype, summary.genotypeD

Examples

## Not run:
11<-rbinom(100,1,0.5)
11<-genotypeD(11)

## End(Not run)
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getXlist

getXlist

Design Matrices for the Multinomial Log-Linear Model

Description

Forms design matrices for each offspring, and stores other relevant information.

Usage

getXlist(PdP, GdP=NULL, A=NULL, E1=0.005, E2=0.005, mm.tol=999)

Arguments

PdP
GdP
A

E1

E2

mm. tol

Details

PdataPed object
optional GdataPed object

optional list of allele frequencies. If not specified and GdP exists, allele frequen-
cies are taken from GdP$G using extractA

if Wang’s (2004) model of genotyping error for co-dominant markers is used
this is the probability of an allele dropping out. If CERVUS’s (Kalinowski,
2006; Marshall, 1998) model of genotyping error for co-dominant markers is
used this parameter is not used. If Hadfield’s (2009) model of genotyping error
for dominant markers is used this is the probability of a dominant allele being
scored as a recessive allele.

if Wang’s (2004) or CERVUS’s (Kalinowski, 2006; Marshall, 1998) model of
genotyping error for co-dominant markers are used this is the probability of an
allele being miss-scored. In the CERVUS model errors are not independent for
the two alleles within a genotype and so if a genotyping error has occurred at
one allele then a genotyping error occurs at the other allele with probability
one. Accordingly, E2(2-E2) is the per-genotype rate defined in CERVUS. If
Hadfield’s (2009) model of genotyping error for dominant markers is used this
is the probability of a recessive allele being scored as a dominant allele.

maximum number of genotype mismatches tolerated for potential parents

This is the main R routine for setting up design matrices for the various models that may be defined
in the formula argument of PdataPed. If a GdataPed object is passed to getX1list design matrices
of genetic likelihoods are calculated (see fillX.G), and the number of mismatches between off-
spring and parental genotypes are stored (see mismatches). mm. tol specifies the maximum number
of mismatches that are tolerated between an offspring and a parent. Parents that exceed this number
of mismatches are excluded, and the design matrices for non-excluded parents are reordered by the
number of mismatches. This increases the efficiency of sampling from the multinomial distribution
of parents, because high probability parents appear first.
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Value
id vector of unique identifiers taken from PdP
beta_map index relating the vector of unique parameters to the columns of the design ma-
trices
X list of design matrices and other information.
Note

Each element of X refers to an offspring (names (X)) and contains vectors for the set of potential par-
ents (restdam. id and restsire. id) of each offspring. Also included are the set of individuals that
may have been parents but have been excluded for certain reasons (dam.id and sire.id). Exclu-
sion may have been based on the number of genotype mismatches, or it may have been on biological
grounds (See the keep argument of varPed). Parental id’s are stored as integers which correspond
to the actual id’s stored in id. Parental id’s greater than the length of id refer to unsampled parents.

Six types of design matrix are used (XDus, XDs, XSus, XSs, XDSus, XDSs). XD. . are the design ma-
trices for dams, and XS. . are the design matrices for sires. The rows of each design matrix are asso-
ciated with individuals in dam.id and sire.id, respectively. When interactions between dam and sire
variables are modelled, or a varPed variable is created using the argument relational="MATE",
the design matrices vary over parental combinations. XDS.. are the design matrices for parental
combinations with sire’s varying the fastest. Each of these three types of design matrix have two
subclasses: s and us. s are design matrices which are fully observed, either because unsampled
parents do not exist or because unsampled parents have known phenotypes (see argument USvar in
varPed). us are for design matrices where the phenotypes of unsampled parents are unknown. The
matrices XDus and Xsus have a row of NA’s which correspond to the unsampled parent category.
The design matrix XDSus will typically have many rows of NA’s because each sampled parent may
be paired to an unsampled individual.

When the argument gender=NULL is passed to varPed the respective columns in the dam and sire
design matrices are associated with a single parameter. Because of this the number of parameters
to be estimated may be less than the total number of columns in the 6 design matrices. beta_map
relates a parameter vector to the columns of the design matrices. The columns of the design matrices
are numbered in the order they are introduced in the preceding paragraph (i.e XDus through to
XDSs). The parameter vector is ordered identically except parameters associated with genderless
variables are omitted for males. par_order is similar to beta_map but relates the order of the
parameters specified in the formula argument to PdataPed to the respective columns of the design
matrices.

If the argument relational="OFFSPRING" is specified in varPed, or the set of potential parents
varies over offspring, the design matrices will vary across offspring. For this reason I create a design
matrix for each offspring irrespective of whether the matrices vary or not. The design matrices for
the genetic likelihoods will always vary over offspring.

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Hadfield J.D. et al (2006) Molecular Ecology 15 3715-31 Kalinowski S.T. et al (2006) Molecular
Ecology in press Hadfield J. D. et al (2007) in prep
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See Also
varPed, MCMCped

Examples

## Not run:

id<-1:20

sex<-sample(c("Male", "Female"),20, replace=TRUE)
offspring<-c(rep(0,18),1,1)

lat<-rnorm(20)

long<-rnorm(20)

mating_type<-gl(2,10, label=c("+", "-"))

test.data<-data.frame(id, offspring, lat, long, mating_type, sex)

resl1<-expression(varPed("offspring”, restrict=0))
varil<-expression(varPed(c("lat”, "long"), gender="Male",
relational="0OFFSPRING"))
var2<-expression(varPed(c("mating_type"), gender="Female”,
relational="MATE"))
var3<-expression(varPed("mating_type"”, gender="Male"))

PdP<-PdataPed(formula=list(res1, varl, var2, var3), data=test.data)

X.list<-getXlist(PdP)
X.1list$X$"19"$XSs

# For the first offspring we have the design matrix for sires
# The first column represents the distance between each male
# and each offspring. The second column indicates the male's
# mating type. Note that contrasts are set up with the first
# male so the indicator variables may be negative.

matrix(X.1list$X$"19"$XDSs, ncol=length(X.list$X$"19"$dam.id),
nrow=length(X.list$X$"19"$sire.id))

# incidence matrix indicating whether Females (columns) and Males (rows)
# are the same mating type. Again this is a contrast with the first

# parental combination (which is +/+) so @ actually represents parents
# with the same mating type.

## End(Not run)

insertPed Inserts Founders into a Pedigree

Description

Inserts Founders into a Pedigree
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Usage

insertPed(ped, founders=NULL)

Arguments
ped pedigree with id, dam and sire in ech column
founders optional vector of founder id’s. If not specified, then parents without their own
pedigree row are inserted
Value

a pedigree pedigree with id, dam and sire in each column

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

MCMCped

Examples

## Not run:
pedigree<-matrix(NA, 7,3)
pedigree[,1]<-2:8
pedigree[,2]1[4:71<-c(1,1,2,2)
pedigree[,31[4:7]1<-c(3,3,4,4)

pedigree2<-insertPed(pedigree)

## End(Not run)

legalG Legal Genotype Configurations

Description

A function for checking whether a set of genotypes have a positive probability given the pedigree.
If not, a legal configuration is found using heuristic methods. Missing genotypes are also replaced
with compatible genotypes.

Usage

legalG(G, A, ped, time_born=NULL, marker.type="MSW")
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Arguments

G
A
ped

time_born

marker. type

Value

G
legal

Author(s)

legalG

list of genotype objects
list of allele frequencies

pedigree with id in the first column, dam in the second, and sire in the third. The
genotypes must be in the same order as the id column

an optional vector for ordering a pedigree more efficiently (see orderPed)

"MSW" or "MSC" for co-dominant markers with Wang’s (2004) model of genotyp-
ing error or CERVUS’s model of genotyping error (Kalinowski, 2006; Marshall,
1998) or "AFLP" for dominant markers (Hadfield, 2009).

a list of genotype objects with positive likelihood given the pedigree

logical; TRUE if the the genotype configuration passed to legalG had a positive
likelihood

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Marshall, T. C. et al (1998) Molecular Ecology 7 5 639-655 Kalinowski S.T. et al (2007) Molecular
Ecology 16 5 1099-1106 Hadfield J. D. et al (2009) in prep

See Also
MCMCped

Examples

## Not run:

data(WarblerG)

A<-extractA(WarblerG[,16:171])

pedigree<-matrix(NA, 8,3)

pedigree[,1]<-1:8

pedigree[,2]1[5:81<-c(1,1,2,2)
pedigree[,3]1[5:81<-c(3,3,4,4)

G<-simgenotypes(A, E1=0, E2=0.3, ped=pedigree, no_dup=1)

newG<-legalG(G=G$Gobs, A=A, ped=pedigree)

newG$valid

# The input genotypes had a zero probability given the pedigree
# (because of genotype error) but the output genotypes have
# positive probability
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legalG(newG$G, A, pedigree)$valid

## End(Not run)

MasterBayes Maximum Likelihood and Markov chain Monte Carlo methods for
Pedigree Reconstruction, Analysis and Simulation.

Description

The primary aim of MasterBayes is to use MCMC techniques to integrate over uncertainty in pedi-
gree configurations estimated from molecular markers and phenotypic data. Emphasis is put on the
marginal distribution of parameters that relate the phenotypic data to the pedigree. All simulation is
done in compiled C++ using the Scythe Statistical Library. More detailed information can be found
invignette("Tutorial”, "MasterBayes").

Details

The motivation behind the package is to approximate the following probability distribution using
Markov chain Monte Carlo techniques:

p(BlG,y)

where 3 is the vector of parameters of primary interest, G are the genetic data and y are phenotypic
data. Generally, it is not possible to simulate from the posterior distribution of 3 when the problem
is in this form and so I augment the parameter space with the pedigree, P:

/ p(8,P|G,y)dP

P

This simplifies the problem because the likelihood can be expressed more simply:
L(G,y|3,P) = L(G[P)L(y|P, )

This simplification rests on the assumption that the genetic and non-genetic data are independent
after conditioning on the pedigree. This will generally be true when markers are not linked to QTL’s.
The first likelihood, L(G|P), is easily calculated for arbitrary pedigrees using the Elston-Stewart
algorithm (Elston, 1971), and is based around the Mendelian transition probability. The second
likelihood is obtained by fitting the multinomial log-linear model:

L(y|B,P) x p(P|B,y)p(P).

Assuming that the set of possible pedigrees have equal prior probability, and that offspring are
independently distributed after conditioning on the predictor variables:
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MasterBayes

No exi’i B

Ly|8,P) < || =15+
=1 241 Gl

where XJi. denotes the j* row of offspring i’s design matrix formed from the phenotypic data y.
Each row of the design matrix corresponds to a parental combination. 7, and n,, denote the number
of offspring and the number of potential parental combinations, respectively. p; denotes the actual
parents of individual ¢ (Smouse, 1999).

This likelihood is evaluated over the probability distribution of the pedigree, P:

p(P|G,y, ).

Most other techniques approximate this distribution as p(P|G), and even then tend to use the mode
rather than the complete distribution, leading to inferential problems (See the information boxes in
Hadfield et al. 2006).

Unfortunately, genotype data are rarely observed with out error and the parents of some offspring
may not be sampled. If the genetic markers are co-dominant then genotyping errors can be handled
following either the model of Wang (2004) or CERVUS (Marshall 1998). When the markers are
dominant I model the probabilities of a dominant allele being miss-scored as a recessive and vice
versa. Denoting the parameters associated with these two forms of genotyping error as €1 and o,
and the vector of parental allele frequencies as w, two solutions are implemented.

An exact solution:

/////p(ﬁ,RG,gl,gz.w|G<°bS>,y)deGdelds2dw
PJG Jeg Jeg Jw

where the posterior probability distribution of the error rates, the allele frequencies and the true
unobserved genotypes, G, are estimated and integrated out. The conditional distribution of the true
genotypes in the exact form is given by:

p(GObS|Ga €1, <\E\Z)p(G"u:.v LU)

The second solution is an approximation to the above equation, and uses point estimates for w, €1
and e5. The conditional distribution of G is derived ignoring the information present in P:

p(GObS|G7 €1, 82)1)(C""|W)

The approximation can be derived analytically, whereas the exact solution requires the Markov
chain to be augmented with the true genotypes of all individuals. This becomes very computer
intensive but the approximation breaks down for dominant markers, or models in which the number
of unsampled males and/or females is to be estimated. Unsampled parents are dealt with, and their
number estimated using an approximation originally due to Nielsen (2001). An exact solution to
the problem has been proposed by Emery et.al. (2001) but becomes impractical as the number of
unsampled parents gets large. Nielsen’s approximation is based around the Mendelian transition
probability when a parental genotype is unknown. This probability is derived using estimates of the
allele frequencies at that locus and the assumption of Hardy-Weinberg equilibrium.
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I deal with the fact that unsampled individuals have missing phenotype data by approximating the
distribution of the sum of linear predictors across unsampled parents. This approximation relies on
the assumption that the unsampled individuals come from the same statistical population as sampled
individuals, and that population sizes are large enough so that the distribution for the sum tends to
a normal distribution under the central limit theorem.

Taking n and N as the number of sampled individuals, and the total number of individuals in the
population respectively:

N—n n
~ (miss) | (obs N-n ~ (obs N(N_n)
p(D_ P ) m N(——— ) pl*, ————87,)

where p are vectors of linear predictors for the unsampled ("**%) and sampled (°**) individuals,
respectively (Gelman et al., 2004). S, _ is the sample variance of the observed linear predictors.

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Elston, R. C. \& Stewart, J. Human Heredity (1971) 21 523-542 Emery, A. M. et.al Molecular
Ecology (2001) 10 1265-1278 Gelman, A. et.al Bayesian Data Analysis Edition II (2004) Chapman
and Hall Hadfield J.D. et al (2006) Molecular Ecology 15 3715-31 Marshall, T. C. et al (1998)
Molecular Ecology 7 5 639-655 Nielsen. R. et.al Genetics (2001) 157 4 1673-1682 Smouse P.E. et
al (1999) Journal of Evolutionary Biology 12 1069-1077 Wang J.L. Genetics (2004) 166 4 1963-
1979

See Also
MCMCped
MCMCped Markov chain Monte Carlo Methods for Pedigree Reconstruction and
Analysis
Description

Markov chain Monte Carlo methods for estimating the joint posterior distribution of a pedigree and
the parameters that predict its structure using genetic and non-genetic data. These parameters can
be associated with covariates of fecundity such as a sexually selected trait or age, or can be asso-
ciated with spatial or heritable traits that relate parents to specific offspring. Population size, allele
frequencies, allelic dropout rates, and stochastic genotyping error rates can also be simultaneously
estimated.
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Usage

MCMCped

MCMCped (PdP=PdataPed(), GdP=GdataPed(), sP=startPed(), tP=tunePed(),
pP=priorPed(), mm.tol=999, nitt = 13000, thin = 10, burnin =
3000, write_postG = FALSE, write_postA=FALSE, write_postP =
"MARGINAL", checkP = FALSE, jointP = TRUE, DSapprox=FALSE, verbose=TRUE)

Arguments

PdP
GdP
sP
tP

pP

mm. tol

nitt

thin

burnin
write_postG
write_postA

write_postP

checkP

jointP

DSapprox

verbose

Value

beta

USdam

USsire

optional PdataPed object containing phenotypic data
optional GdataPed object containing genetic data
optional startPed object containing starting parameterisation

optional tunePed object containg tuning parameters for Metropolis Hastings
updates

optional priorPed object containg prior specifications

maximum number of mismatches tollerated

number of MCMC iterations

thinning interval of the Markov chain

the number of initial iterations to be discarded

if TRUE the marignal posterior distribution of true genotypes is stored
if TRUE the joint posterior distribution of allele frequencies is stored

if "MARGINAL" the marginal distribution of parents is stored. If "JOINT" the joint
distribution of parents (the pedigree) is stored.

if TRUE the pedigree is checked for legality, and illegal pedigrees rejected. If
FALSE it is assumed that any potential parent would produce a legal pedigree, i.e
one without circuits, in the terminology of graph theory.

if TRUE both parents are sampled simultaneously, if FALSE each parent is sam-
pled conditional on the other. TRUE should mix faster, but FALSE should iterate
faster, especially when relational="MATE" is passed to varPed

if TRUE the likelihood for models in which a relational="MATE" variable is
passed is approximated. This can be much more efficient because the denom-
inator of the multinomial is the summed linear pedictors for combinations in
which i=m or j=m where m referes to the "MATE" at the current iteration.

if TRUE posterior samples and the Metropolis Hastings accpetance rates of beta,
USdam, USsire, E1, E2 are printed to the screen every 1000 iterations.

an mcmc object containing samples from the posterior distribution of the popula-
tion level parameters

an mcmc object containing samples from the posterior distribution of the number
of unsampled females

an mcme object containing samples from the posterior distribution of the number
of unsampled males
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E1 an mcmc object containing samples from the posterior distribution of allelic
dropout rates for codominant markers or the probability of mis-scoring a domi-
nant allele as recessive for dominant markers

E2 an mcmc object containing samples from the posterior distribution of stochasting
genotyping error rates for codominant markers or the probability of mis-scoring
a recessive allele as dominant for dominant markers
list of marginal distributions of true genotypes at each locus

A list of memc objects containing samples from the posterior distribution of the
base population allele frequencies at each locus

P either samples from the posterior distribution of the pedigree, or the marginal
distribution of parents

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Hadfield J.D. et al (2006) Molecular Ecology 15 3715-31

See Also

getXlist

Examples

data(WarblerP)
data(WarblerG)

GdP<-GdataPed(WarblerG)

varil<-expression(varPed(c("lat”, "long"), gender="Male",
relational="0OFFSPRING"))

# paternity is to be modelled as a function of distance
# between offspring and male territories

res1<-expression(varPed("offspring”, restrict=0))

# indivdiuals from the offspring generation are excluded as parents

res2<-expression(varPed("terr"”, gender="Female", relational="OFFSPRING",
restrict="=="))

# mothers not from the offspring territory are excluded

PdP<-PdataPed(formula=list(varl,resl,res2), data=WarblerP, USsire=FALSE)
tP<-tunePed(beta=30)
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model1<-MCMCped (PdP=PdP, GdP=GdP, tP=tP, nitt=300, thin=1, burnin=0)

plot(modeli$beta)

mismatches Parent-Offspring Genotype Mismatches

Description

Calculates the number of mismatches between parental and offspring genotypes, assuming the geno-
types of spouses are unknown. Primarily intended to be used inside the function getX1list where
potential parents can be excluded based on the number of mismatches. Dominant markers do not
produce mismatches.

Usage

mismatches(X.list, G, mm.tol=999)

Arguments
X.list list of design matrices for each offspring derived using getX1list
G list of genotype objects, the rows of which must refer to the id vector X. list$id
mm. tol maximum number of mismatches that are tolerated before exclusion

Value

list of design matrices of the form X.list, but containing the number of mismatches between
parents and offspring. Potential parents that exceed the number of mismatches specified by mm. tol
are removed from the vectors of potential parents: restdam.id and restsire.id.

Note
If a GdataPed object is passed to getX1list then the number of mismatches will be calculated by
default.

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

MCMCped
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Examples

## Not run:
data(WarblerG)
A<-extractA(WarblerG)

ped<-matrix(NA, 5,3)
ped[,11<-1:5
ped[,2]<-c(rep(NA, 4), 1)
ped[,3]<-c(rep(NA, 4), 2)

genotypes<-simgenotypes(A, ped=ped)

sex<-c("Female”, "Male"”, "Female”, "Male","Female")
offspring<-c(0,0,0,0,1)

data<-data.frame(id=ped[,1], sex, offspring)

resl1<-expression(varPed(x="offspring”, restrict=0))
PdP<-PdataPed(formula=list(res1), data=data)

X.list<-getXlist(PdP)
# creates design matrices for offspring (in this case indivdiual "5")

X.list.MM<-mismatches(X.list, G=genotypes$Gobs, mm.tol=0)
# genetic likelihoods are arranged sires within dams

X.list.MM$X$"5" $mmD
# number of mismatches between offspring "5" and dams "1" and "3"

X.list.MM$X$"5" $mmS
# number of mismatches between offspring "5"” and sires "4" and "5"

X.list.MM$X$"5"$restdam.id
X.list.MM$X$"5"$dam.id
# dams with mismatches are excluded mismatch (mm.tol=0)

X.list.MM$X$"5"$restsire.id
.list .MM$X$"5"$sire.id
# sires with mismatches are excluded mismatch (mm.tol=0)

>

## End(Not run)

MLE.beta Maximum Likelihood Estimation of Beta

Description

Finds MLE for beta given a pedigree, via a call to optim. Beta is the paramater vector of a multino-
mial log-linear model.
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Usage

MLE.beta

MLE.beta(X.list, ped, beta=NULL, nUSdam=NULL, nUSsire=NULL)

Arguments

X.list
ped
beta
nUSdam

nUSsire

Value

beta

Author(s)

list of design matrices for each offspring derived using getX1list
pedigree with id, dam and sire in ech column
optional starting vector for beta

optional number of unsampled females. Only required if unsampled females
have known phenotype.

optional number of unsampled males. Only required if unsampled males have
known phenotype.

vector of MLE’s for beta

large sample variance-covariance matrix of beta MLE’s

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Hadfield J.D. et al (2006) Molecular Ecology 15 3715-31 Smouse P.E. et al (1999) Journal of
Evolutionary Biology 12 1069-1077

See Also

MCMCped, beta.loglik

Examples

## Not run:
data(WarblerP)
data(WarblerG)

GdP<-GdataPed(WarblerG)

resi<-expression(varPed("offspring"”, restrict=0))

vari<-expression(varPed(c("lat”, "long"), gender="Male",
relational="0FFSPRING"))

res2<-expression(varPed("terr"”, gender="Female"”, relational="OFFSPRING",

restrict="=="))

PdP<-PdataPed(formula=list(varl,resl,res2), data=WarblerP, USsire=FALSE)

X.list<-getXlist(PdP=PdP, GdP=GdP, E2=0.005)
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ped<-MLE.ped(X.list)$P
beta<-MLE.beta(X.list, ped)

beta

## End(Not run)

MLE . ped

Maximum Likelihood Estimation of the Pedigree

Description

Finds the MLE pedigree using the genetic data only. An approximation is used for genotyping error.

Usage

MLE.ped(X.list, ped=NULL, USdam=FALSE, nUSdam=NULL, USsire=FALSE,
nUSsire=NULL, threshold=0, checkP)

Arguments

X.list
ped
USdam

nUSdam

USsire

nUSsire
threshold
checkP

Details

list of design matrices for each offspring derived using getX1list
optional pedigree with id, dam and sire in ech column

logical or character; if TRUE a single undiferentiated population of unsampled
females exists. If USdam is a character vector it must have the same length as
id with factor levels representing sub-populations (in time or space) over which
the number of unsampled females vary.

numeric vector for number of unsampled females

logical or character; if TRUE a single undiferentiated population of unsampled
males exists. If USsire is a character vector it must have the same length as id
with factor levels representing sub-populations (in time or space) over which the
number of unsampled males vary.

numeric vector for number of unsampled males
threshold probability under which ML parents are replaced by NA

if TRUE the pedigree is checked for legality, and illegal pedigrees rejected. If
FALSE it is assumed that any potential parent would produce a legal pedigree, i.e
one without circuits, in the terminology of graph theory. Legality is checked

ML estimation of the pedigree is based on the Mendelian transition probabilities in the presence
of genotyping error as outlined in Kalinwoski (2006). The probability that the ML parents are the
true parents is simply the Mendelian transition probability for those parents divided by the sum
of the transition probabilities for the remaining potential parents, both sampled and unsampled. If
ped exists and the dam column contains known dam assignemnts and the sire column contains only
NA’s, then the ML sires will be returned conditional on the dam assignements being true. ML dam
estimation with known sires can be performed in the same way. Individuals whose parents cannot
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be assigned with the required level of certainty (threshold), or whose parents belong to the base or
unsampled population, have NA in the dam and sire columns. If each indiviual’s potential parents
are such that an illegal pedigree could be sampled then checkP=TRUE can be used to ensure legality.
This is recommended if the pedigree is to be passed as a starting pedigree to MCMCped. It should
be noted that under these circumstances it is possible that multiple pedigrees max exist with the
same likelihood and this may not be obvious from the MLE.ped output since assignments are made
conditional on earlier assignement being true. As an example, if there are two indiviuals both of
which could potentially be each others parents then assigning both to be each others parent is illegal
(since each indiviual would be its own grandparent). In simple situations, the parent-offspring and
offspring-parent assignements have equal probability, but when checkP=TRUE the first indiviual
would have zero probability of being the second individual’s parent if the second individual was
already assigned as the first individual’s parent.

Value
P pedigree with id in the first column, and dam and sire in the second and third
columns
prob probability of the most likely parental combination
Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Hadfield J.D. et al (2006) Molecular Ecology 15 3715-31 Marshall I.D. et al (1998) Molecular
Ecology 7 639-655 Kalinowski S.T. et al, Molecular Ecology in press

See Also

MCMCped

Examples

## Not run:

data(WarblerP)

data(WarblerG)

GdP<-GdataPed(WarblerG)

res1<-expression(varPed("offspring”, restrict=0))

res2<-expression(varPed("terr"”, gender="Female", relational="OFFSPRING",
restrict="=="))

PdP<-PdataPed(formula=list(resl1,res2), data=WarblerP, USsire=TRUE)

X.list<-getXlist(PdP=PdP, GdP=GdP, E2=0.005)

ped<-MLE.ped(X.list, USsire=TRUE, nUSsire=10, threshold=0.75)

## End(Not run)
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MLE.popsize Maximum Likelihood Estimation of the Unsampled Population Size

Description

Finds the MLE for the number of unsampled males and/or females following Nielsen et al. (2001).
The size of the unsampled population can vary over time and space, and genotyping error is acco-
modated using the CERVUS model of genotyping error (Kalinwoski et al. 2006).

Usage

MLE.popsize(X.list, USdam=FALSE, USsire=FALSE, nUS=NULL,

ped=NULL)
Arguments

X.list list of design matrices for each offspring derived using getXlist

USdam logical or character; if TRUE a single undiferentiated population of unsampled
females exists. If USdam is a character vector it must have the same length as the
number of offspring (length(X.1list$X)) with factor levels representing sub-
populations (in time or space) over which the number of unsampled females
vary.

USsire logical or character; if TRUE a single undiferentiated population of unsampled
males exists. if USsire is a character vector it must either have the same length
as the number of offspring (length(X.1ist$X)) with factor levels representing
sub-populations (in time or space) over which the number of unsampled males
vary, or alternatively "USdam”, in which case the unsampled male and female
populations are constrained to be equal.

nUS optional starting vector for the size of the unsampled population. Parmeters for
the unsampled female population come before the male population.

ped optional pedigree with id, dam and sire in ech column

Value

nus vector of MLE’s for the size of the unsampled population. Lower bound is le-5
for numerical stability.

C large sample variance-covariance matrix of nUS MLE’s

Note

Nielsen’s original model does not account for genotyping error, and estimation of the unsampled
population size is VERY sensitive to the level of genotyping error. This function implements a
commonly used approxiamtion for genotyping error that ignores pedigree information. For many
problems this approximation seems valid, but appears to break down when estimating the size of the
unsampled population size. Bayesian estimation of the unsampled population size (see MCMCped)
that uses an exact solution for genotyping error is more robust.
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Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Nielsen. R. et.al Genetics (2001) 157 4 1673-1682

See Also

MCMCped, popsize.loglik

Examples

## Not run:
data(WarblerP)
data(WarblerG)

GdP<-GdataPed(WarblerG)
res1<-expression(varPed("offspring”, restrict=0))

PdP<-PdataPed(formula=list(res1), data=WarblerP, USsire=TRUE, USdam=TRUE)
X.list<-getXlist(PdP=PdP, GdP=GdP, E2=0.02)

nUS<-MLE.popsize(X.list, USsire=TRUE, USdam=TRUE)
nuUS

## End(Not run)

modeG Posterior Mode of Genotypes

Description

Finds the mode of the posterior marginal distribution of genotypes

Usage
modeG(postG, threshold=0)

Arguments
postG posterior distribution of genotypes from an MCMCped model with argument write_postG=TRUE
threshold threshold probability under which ML genotypes are replaced by NA

Value
G list of genotype objects

id id vector
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Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Hadfield J.D. et al, Molecular Ecology

See Also

MCMCped, genotype

Examples

## Not run:
data(WarblerP)
data(WarblerG)
GdP<-GdataPed(WarblerG)

varil<-expression(varPed(c("lat”, "long"”), gender="Male",
relational="OFFSPRING"))

# paternity is to be modelled as a function of distance
# between offspring and male territories

resi<-expression(varPed("offspring"”, restrict=0))
# indivdiuals from the offspring generation are excluded as parents

res2<-expression(varPed("terr"”, gender="Female", relational="OFFSPRING",
restrict="=="))

# mothers not from the offspring territory are excluded

PdP<-PdataPed(formula=list(varl,resl,res2), data=WarblerP, USsire=FALSE)
tP<-tunePed(beta=30)

model1<-MCMCped (PdP=PdP, GdP=GdP, tP=tP, nitt=3000, thin=2, burnin=1000, write_postG=TRUE)

G<-modeG(modell1$G)$G
summary (GL[11])

## End(Not run)

modeP Posterior Mode of Parents

Description

Finds the mode of the posterior marginal distribution of parents
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Usage

modeP (postP, threshold=0, marginal=FALSE, USasNA=TRUE)

Arguments
postP posterior distribution of parentage
threshold threshold probability under which ML parents are replaced by NA
marginal logical; should the marginal mode be calculated from the joint distribution?
USasNA logical; should usampled parents be replaced by NA?

Details

Individuals that do not have a parent assignment with a posterior probability exceeding the threshold,

or whose parents belong to the base or unsampled population (if USasNA=TRUE), have NA as their

parents. Please bear in mind that the mode of the marginal distribution (returned by MCMCped if
write_postP="MARGINAL") may be different from the mode of the joint distribution (write_postP="JOINT").
For example the male that has the highest marginal probability (marginal with respect to potential

mothers) may not be the male that is in the parental category (i.e. dam/sire combination) with the

highest probability. If write_postP="JOINT" was sepcified, then the mode of the marginal distri-

bution can be obtained by specifying marginal=TRUE. The modes are marginal with respect to other

offspring and with multigenerational pedigrees may not coincide with the mode of the distribution

of pedigrees.

Value
P pedigree with id in the first column, and dam and sire in the second and third
columns
prob marginal posterior probability of the most likely parental combination (joint) or
the most likely mother (marginal)
prob.male marginal posterior probability of the most likely father (marginal)
Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also
MCMCped

Examples

## Not run:
data(WarblerP)
data(WarblerG)
GdP<-GdataPed(WarblerG)

varil<-expression(varPed(c("lat”, "long"), gender="Male",
relational="0OFFSPRING"))
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# paternity is to be modelled as a function of distance
# between offspring and male territories

resi<-expression(varPed("offspring"”, restrict=0))
# indivdiuals from the offspring generation are excluded as parents

res2<-expression(varPed("terr"”, gender="Female"”, relational="OFFSPRING",
restrict="=="))

# mothers not from the offspring territory are excluded

PdP<-PdataPed(formula=list(varl,resl,res2), data=WarblerP, USsire=FALSE)
tP<-tunePed(beta=30)

model1<-MCMCped (PdP=PdP, GdP=GdP, tP=tP, nitt=3000, thin=2, burnin=1000)

ped<-modeP(model1$P, threshol=0.9)
ped

## End(Not run)

orderPed Orders a Pedigree

Description

Orders a pedigree so parents come before offspring

Usage

orderPed(ped, time_born=NULL)

Arguments

ped pedigree with id, dam and sire in ech column

time_born an optional vector of birth dates by which the pedigree can be ordered)
Value

an ordered pedigree pedigree with id, dam and sire in each column

Note

This function has changed name from order.ped in earler versions <2.42. order.ped did not
always (rarely) ordered the pedigree correctly. This new function uses the kindepth function from
the kinship2 package
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Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also
MCMCped

Examples

## Not run:
pedigree<-matrix(NA, 8,3)
pedigree[,11<-1:8
pedigree[,2][5:8]<-c(1,1,2,2)
pedigree[,3]1[5:8]<-c(3,3,4,4)

pedigree<-pedigree[sample(1:8),]
pedigree2<-orderPed(pedigree)

## End(Not run)

PdataPed PdataPed Object

Description

PdataPed creates an object of class PdataPed, which typically contains the phenotype data to be
passed to MCMCped and the formula that defines the model to be fitted. is.PdataPed returns TRUE
if x is of class PdataPed

Usage

PdataPed(formula, data=NULL, id=data$id, sex=data$sex,
offspring=data$offspring, timevar=data$timevar,
USdam=FALSE, USsire=FALSE)

Arguments
formula list of model predictors of the form expression(varPed(...))
data data frame containing the predictor variables
id vector of individual identifiers. If not specified, data must have an id column
sex vector of individual sexes (either "Male’ or ’Female’ or NA). If not specified

individuals are assumed to be hermpahroditic unless data has a sex column

offspring binary vector indicating whether records belong to offspring (1) or not (0)
timevar an optional vector indicating cohorts for multigenerational pedigree reconstruc-

tion
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USdam logical or character; if TRUE a single undiferentaited population of unsampled
females exists. If USdam is a character vector it must have the same length as
id with factor levels representing sub-populations (in time or space) over which
the number of unsampled females vary.

USsire logical or character; if TRUE a single undiferentaited population of unsampled
males exists. If USsire is a character vector it must have the same length as id
with factor levels representing sub-populations (in time or space) over which the
number of unsampled males vary.

further arguments to be passed

Details

If the number of unsampled individuals varies over subpopulations, and the parentage of an off-
spring is not restricted to ceratin subpopulations then the parameters will not be idenifiable. This
can be resolved by using an informative prior (see priorPed) for the number of unsampled individ-
uals in each sub-population, or using the restrict argument in varPed.

Value

list containing the arguments passed

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also
MCMCped

Examples

id<-1:20

sex<-sample(c("Male", "Female"),20, replace=TRUE)
offspring<-c(rep(0,18),1,1)

lat<-rnorm(20)

long<-rnorm(20)

mating_type<-gl(2,10, label=c("+", "-"))

test.data<-data.frame(id, offspring, lat, long, mating_type, sex)

res1<-expression(varPed("offspring”, restrict=0))
vari<-expression(varPed(c("lat”, "long"), gender="Male",
relational="OFFSPRING"))
var2<-expression(varPed(c("mating_type"”), gender="Female",
relational="MATE"))
var3<-expression(varPed("mating_type"”, gender="Male"))

PdP<-PdataPed(formula=list(resl1, varl, var2, var3), data=test.data)
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popsize.loglik Log-Likelihood of Unsampled Population Size

Description

Log-likelihood of the number of unsampled individuals given the genotypes of offspring and poten-
tial parents

Usage

popsize.loglik(X, USdam=FALSE, USsire=FALSE, nUS=NULL, ped=NULL, USsiredam=FALSE)

Arguments

X list for each offspring with elements N and G. N is a vector conatining the number
of parental combinations in each of 4 classes. G is a vector conatining the sum of
the Mendelian transition probabilities over parental combinations in each class.
The 4 classes are parental combinations where a) both parents are sampled b)
only sires are sampled, c) only dams are sampled d) neither parent is sampled.

USdam logical or character; if TRUE a single undiferentiated population of unsampled
females exists. if USdam is a character vector it must have the same length as
id with factor levels representing sub-populations (in time or space) over which
the number of unsampled females vary.

USsire logical or character; if TRUE a single undiferentiated population of unsampled
males exists. if USsire is a character vector it must have the same length as id
with factor levels representing sub-populations (in time or space) over which the
number of unsampled males vary.

nUS vector for the size of the unsampled populations. Parmeters for the unsampled
female populations come before the male populations.

ped optional pedigree with id, dam and sire in ech column

USsiredam logical; if TRUE male and female unsampled populations sizes are constrained to
be equal

Value

log-likelihood of the number of unsampled individuals given the genotype data.

Note

Intended to be used within MLE . popsize

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>
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References

Nielsen. R. et.al Genetics (2001) 157 4 1673-1682

See Also

MCMCped, MLE . popsize

Examples

## Not run:
data(WarblerG)
A<-extractA(WarblerG)

sex<-c(rep(”"Male”, 50), rep("Female”, 100))

offspring<-c(rep(0,100), rep(1, 50))

terr<-as.factor(rep(1:50, 3))

id<-1:150

resi<-expression(varPed(x="offspring”, restrict=0))

res2<-expression(varPed(x="terr", gender="Female", relational="OFFSPRING",
restrict="=="))

test.data<-data.frame(id, sex, offspring, terr)

PdP<-PdataPed(formula=list(res1, res2), data=test.data)

simped<-simpedigree(PdP)
G<-simgenotypes(A, E1=0, E2=0, ped=simped$ped, no_dup=1)

# remove 25 males at random, leaving 25

rm.males<-sample(1:50, 25, replace=FALSE)

data.rm<-test.datal[-rm.males,]

GdPrm<-GdataPed(G=lapply(G$Gobs, function(x){x[-rm.males]}),
id=G$id[-rm.males])

# delete genotype and phenotype records

PdPrm<-PdataPed(formula=list(resl1, res2), data=data.rm, USsire=TRUE)

X.listrm<-getXlist(PdP=PdPrm, GdP=GdPrm, A=A, E2=0)

X<-lapply(X.listrm$X, function(x){list(N=c(25,90,1,0),
G=c(sum(x$G[1:25]), @, x$G[26], @))})

# each offspring has 1 mother and 25 sampled fathers so the 4 classes are:
# a) 1%25 categories with both parents sampled, 0%25 categries with only
# sires sampled b) 1*1 categories with only dams sired and 0*@ categories
# with both sexes unsampled.

nUS<-seq(10,40, length=100)

35
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nUS_Loglik<-1:100

for(i in 1:100){

nUS_Loglik[iJ<-popsize.loglik(X, USsire=TRUE, nUS=nUS[i])

}

plot(nUS_Loglik~nUS, type="1", main="Profile Log-likelihood
for number of unsampled males™)

## End(Not run)

post.pairs Returns pairs of individuals that fall into specific relatedness cate-
gories

Description

Computes posterior probabilities of pairs of indiviuals falling into specific relatedness categories
(parent-offsping, sibs, full-sibs, half-sibs). Returns those pairs that have a posterior probability
greater than some threshold.

Usage

post.pairs(postP, threshold=0, rel="P0")

Arguments
postP joint posterior distribution of parentage
threshold threshold probability over which related pairs are returned
rel relatedness category. Currently "PO" (Parent-Offspring), "S" (Sibs), "FS" (Full-
Sibs) and "HS" (Half-Sibs) are supported.
Value
P pairs of indiviuals that fall into the rel category with posterior probability >
threshold
prob posterior probability
Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also

modeP
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Examples

## Not run:
data(WarblerP)
data(WarblerG)
GdP<-GdataPed(WarblerG)

vari<-expression(varPed(c("lat”, "long"), gender="Male",
relational="0OFFSPRING"))

# paternity is to be modelled as a function of distance
# between offspring and male territories

resl<-expression(varPed("offspring”, restrict=0))
# indivdiuals from the offspring generation are excluded as parents

res2<-expression(varPed("terr"”, gender="Female"”, relational="OFFSPRING",
restrict="=="))

# mothers not from the offspring territory are excluded

PdP<-PdataPed(formula=list(varl,resl,res2), data=WarblerP, USsire=FALSE)
tP<-tunePed(beta=30)

model1<-MCMCped (PdP=PdP, GdP=GdP, tP=tP, nitt=3000, thin=2, burnin=1000, write_postP="JOINT")

fsib<-post.pairs(model1$P, threshol=0.9, rel="FS")
fsib$P

## End(Not run)

priorPed priorPed Object

Description

An object containing the prior specifiactions for a model fitted using MCMCped. If prior distribu-
tions are not specified then improper priors are used, and a proper posterior distribution cannot be
gauranteed.

Usage

priorPed(E1=999, E2=999, beta=list(mu=999, sigma=999),
USdam=1ist(mu=999, sigma=999),
USsire=list(mu=999, sigma=999))
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Arguments

E1

E2

beta

USdam

USsire

Value

priorPed

matrix of parameters for the beta distribution specifying the prior distribution. If
Wang’s (2004) model of genotyping error for co-dominant markers is used this
is the probability of an allele dropping out. If CERVUS’s (Kalinowski, 2006;
Marshall, 1998) model of genotyping error for co-dominant markers is used
this parameter is not used. If Hadfield’s (2009) model of genotyping error for
dominant markers is used this is the probability of a dominant allele being scored
as a recessive allele. Rows correspond to error rate categories, columns to the
beta shape parameters. The order of rows in El are the order in which the error
rate categories appear in the categories argument of GdataPed (see dbeta).
If perlocus=TRUE was passed to GdataPed, then the error rate categories are
replicated across loci

matrix of parameters for the beta distribution specifying the prior distribution.
If Wang’s (2004) or CERVUS’s (Kalinowski, 2006; Marshall, 1998) model of
genotyping error for co-dominant markers are used this is the probability of an
allele being miss-scored. In the CERVUS model errors are not independent for
the two alleles within a genotype and so if a genotyping error has occurred at
one allele then a genotyping error occurs at the other allele with probability
one. Accordingly, E2(2-E2) is the per-genotype rate defined in CERVUS. If
Hadfield’s (2009) model of genotyping error for dominant markers is used this
is the probability of a recessive allele being scored as a dominant allele. Rows
correspond to error rate categories, columns to the beta shape parameters. The
order of rows in E1 are the order in which the error rate categories appear in the
categories argument of GdataPed (see dbeta). If perlocus=TRUE was passed
to GdataPed, then the error rate categories are replicated across loci

list containing a vector for the mean, and a matrix for the variance-covariances
of a multivariate normal distribution, that specifies the prior distribution for the
population level parameters. The order of beta is the order in which the param-
eters appear in the MCMC ouput.

list containing vectors of means and standard deviations for log normal distri-
butions that specify the prior distribution for the number of unsampled females.
The order of USdam is the order in which the unsampled dam populations appear
in the USdam argument of PdataPed (see dlnorm)

list containing vectors of means and standard deviations for log normal distribu-
tions that specify the prior distribution for the number of unsampled males. The
order of USsire is the order in which the unsampled sire populations appear in
the USsire argument of PdataPed (see dlnorm)

list containing the arguments passed

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>
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See Also
MCMCped

Examples

## Not run:

# When each individual has only been genotyped once, and no pedigree
# information exists, there is virtually no information available

# to estimate error rates. The tiny amount of information comes

# (dangerously) from the assumption of Hardy-Weinburg equilibrium.

# The posterior distribution is similar to the prior:

data(WarblerG)
A<-extractA(WarblerG)

ped<-matrix(NA, 100, 3)
ped[,11<-1:100

G<-simgenotypes(A, E1=0.01, E2=0.01, ped=ped, no_dup=1)

GdP<-GdataPed (G=G$Gobs, id=G$id)

pP<-priorPed(El1=matrix(c(40,1600), nrow=1), E2=matrix(c(40,1600), nrow=1))
model1<-MCMCped (GdP=GdP, pP=pP)

#The posterior distribution recovers the prior distribution

summary (model1$E1)
quantile(rbeta(1000, 40, 1600), prob=c(0.025, 0.25, 0.5, 0.75, 0.975))

## End(Not run)

reordXlist Reorders Design Matrices

Description

Reorders design matrices so excluded parents appear last, and high probability parents appear first,
thus increasing computational efficiency.

Usage

reordXlist(X.list, marker.type="MSW")

Arguments
X.list list of design matrices for each offspring derived using getXlist. Mismatch
information must be present (see mismatches)
marker. type "MSW" or "MSC" for co-dominant markers with Wang’s (2004) model of genotyp-

ing error or CERVUS’s model of genotyping error (Kalinowski, 2006; Marshall,
1998) or "AFLP" for dominant markers (Hadfield, 2009).
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Details

The design matrices are reordered by the number of mismatches between a parent and offspring
for codominant markers, and by the probability of the offspring genotype conditional on parent
genotype for dominant markers.

Value

X.list for which parents are reordered

Note

If a GdataPed object is passed to getX1list then the design matrices will be reordered by default.

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also
MCMCped

Examples

## Not run:
data(WarblerG)
A<-extractA(WarblerG)

ped<-matrix(NA, 5,3)

ped[,11<-1:5

ped[,2]1<-c(rep(NA, 4), 3)
ped[,31<-c(rep(NA, 4), 4)
genotypes<-simgenotypes(A, ped=ped)

sex<-c("Female”, "Male", "Female", "Male"”,"Female")
offspring<-c(0,0,0,0,1)

data<-data.frame(id=ped[,1], sex, offspring)

vari<-expression(varPed(x="offspring”, restrict=0))
PdP<-PdataPed(formula=list(varl), data=data)

X.list<-getXlist(PdP)
# creates design matrices for offspring (in this case indivdiual "5")

>

.list<-mismatches(X.list, G=genotypes$Gobs)
X.list<-fillX.G(X.list, A=A, G=genotypes$Gobs)

X.list.reord<-reordXlist(X.list)

H

The design matrices for the genetic likelihoods are reordered
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# by the number of mismatches. The true parental combination
# now appears first rather than last.

X.1list$X$"5"$G
X.list.reord$x$"5"$G

## End(Not run)

simgenotypes Genotype and Genotyping Error Simulation

Description

Simulates genotypes given a pedigree and allele frequencies. Option exists to simulate observed

genotypes given Wangs’s (2004) or CERVUS’s model (Marshall 1998) of genotyping error for

codominat markers or an asymmetric allele based model for dominant markers (Hadfield, 2009).
Usage

simgenotypes(A, E1 = @, E2 = 0, ped, no_dup = 1, prop.missing=0, marker.type="MSW")

Arguments
A list of allele frequencies at each locus
E1 if Wang’s (2004) model of genotyping error for co-dominant markers is used

this is the probability of an allele dropping out. If CERVUS’s (Kalinowski,
2006; Marshall, 1998) model of genotyping error for co-dominant markers is
used this parameter is not used. If Hadfield’s (2009) model of genotyping error
for dominant markers is used this is the probability of a dominant allele being
scored as a recessive allele.

E2 if Wang’s (2004) or CERVUS’s (Kalinowski, 2006; Marshall, 1998) model of
genotyping error for co-dominant markers are used this is the probability of an
allele being miss-scored. In the CERVUS model errors are not independent for
the two alleles within a genotype and so if a genotyping error has occurred at
one allele then a genotyping error occurs at the other allele with probability
one. Accordingly, E2(2-E2) is the per-genotype rate defined in CERVUS. If
Hadfield’s (2009) model of genotyping error for dominant markers is used this
is the probability of a recessive allele being scored as a dominant allele.

ped pedigree in 3 columns: id, dam, sire. Base individuals have NA as parents. All
parents must be in id.

no_dup integer: number of times genotypes are to be observed
prop.missing  proportion of observed genotypes that are missing

marker. type "MSW" or "MSC" for co-dominant markers with Wang’s (2004) model of genotyp-
ing error or CERVUS’s model of genotyping error (Kalinowski, 2006; Marshall,
1998) or "AFLP" for dominant markers (Hadfield, 2009).
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Value
G list of genotype objects; true genotypes for each locus
Gid vector of id names indexing G
Gobs list of genotype objects; observed genotypes for each locus
id vector of id names indexing Gobs
Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Marshall, T. C. et al (1998) Molecular Ecology 7 5 639-655 Kalinowski S.T. et al (2007) Molecular
Ecology 16 5 1099-1106 Hadfield J. D. et al (2009) in prep

See Also

genotype
Examples
pedigree<-cbind(1:10, rep(NA,10), rep(NA, 10))

gen_data<-simgenotypes(A=list(loc_1=c(0.5, 0.2, 0.1, 0.075, 0.025)),
E1=0.1, E2=0.1, ped=pedigree, no_dup=1)

summary (gen_data$GL[11]1)
summary (gen_data$Gobs[[1]1])

simpedigree Simulates a Pedigree given a Log-Linear Model

Description
Given a PdataPed object simulates a pedigree according to the linear model defined by formula
and user specified parameter values for the given model.

Usage
simpedigree(PdP, beta=NULL, nUS=NULL)

Arguments
PdP a PdataPed object
beta parameter vector for the model defined by the formula argument in PdataPed
nus vector for the size of the unsampled population(s) defined in the USdam and

USsire arguments passed to PdataPed. Parmeters for the unsampled female
population come before the male population.
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Value
ped pedigree in 3 columns: id, dam, sire. Base individuals have NA as parents
USsire.data binary vector indicating unsampled sire records (1)

USsire.formula variable of the form expression(varPed(...)) that can be included in the
formula argument of PdataPed so that unobserved male records are effectively
hidden

USdam.data binary vector indicating unsampled dam records (1)

USdam.formula variable of the form expression(varPed(...)) that can be included in the
formula argument of PdataPed so that unobserved male records are effectively
hidden

Author(s)

Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Hadfield J.D. et al (2006) Molecular Ecology 15 3715-31

See Also

MCMCped

startPed startPed Object

Description

An object containing the starting parameterisation of a model, and logical variables indicating
wether parameters should be estimated or fixed at the starting parameterisation. By default the
starting parameterisation is obtained through a mixture of Maximum Likelihood and heuristic tech-
niques.

Usage

startPed(G=NULL, id=NULL, estG=TRUE, A=NULL, estA=TRUE, E1=NULL,
estE1=TRUE, E2=NULL, estE2=TRUE, ped=NULL, estP=TRUE,
beta=NULL, estbeta=TRUE, USdam=NULL, estUSdam=TRUE,
USsire=NULL, estUSsire=TRUE)
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Arguments

G
id
estG

estA
E1

estE1
E2

estE2
ped

estP
beta
estbeta
USdam
estUSdam
USsire

estUSsire

Details

startPed

list of genotype objects

vector of indivual id’s for G

logical; should genotypes be estimated?

list of allele frequencies

logical; should base-population allele frequencies be estimated?

if Wang’s (2004) model of genotyping error for co-dominant markers is used this
is a vector of probabilities of an allele dropping out. If CERVUS’s (Kalinowski,
2006; Marshall, 1998) model of genotyping error for co-dominant markers is
used this parameter is not used. If Hadfield’s (2009) model of genotyping error
for dominant markers is used this is a vector of probabilities of a dominant allele
being scored as a recessive allele. Default=0.005.

logical; should E1 estimated?

if Wang’s (2004) or CERVUS’s (Kalinowski, 2006; Marshall, 1998) model of
genotyping error for co-dominant markers are used this is a vector of proba-
bilities of an allele being miss-scored. In the CERVUS model errors are not
independent for the two alleles within a genotype and so if a genotyping er-
ror has occurred at one allele then a genotyping error occurs at the other allele
with probability one. Accordingly, E2(2-E2) is the per-genotype rate defined in
CERVUS. If Hadfield’s (2009) model of genotyping error for dominant markers
is used this is a vector of probabilities of a recessive allele being scored as a
dominant allele. Default=0.005.

logical; should E2 be estimated?

pedigree in 3 columns: id, dam, sire. Base individuals have NA as parents.
logical; should the pedigree be estimated?

vector of population-level parameters

logical; should the population-level parameters be estimated?

vector of unsampled female population sizes

logical; should the female population sizes be estimated?

vector of unsampled male population sizes

logical or character; if TRUE the male population size is estimated separately
from the female population size, if "USdam” male and female population sizes
are constrained to be the same.

If estG=FALSE an approximation is used for genotyping error. In this case error rates and allele fre-
quencies are not estimated but fixed at the starting parameterisation. If indivdiuals have been typed
more than once, then the approxiamtion only uses the genotype that first appears in the GAP$G object
passed to MCMCped. If A is not specified estimates are taken directly from GdP$G using extractA. If
E1 and E2 are not specified they are set to 0.005. Note that if the approximation for genotyping error
is used with codominant markers, Wang’s (2005) model is not used, and the CEVUS model (Mar-
shall 1998) is adopted. In this case E2 is the per-allele error rate and E2(2-E2) is the per-genotype
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error rate used by CERVUS. If dam and sire are not specified the most likely set of parents given
the genetic data are used (see MLE . ped). The starting value of beta, if not given, is the MLE of beta
given the starting pedigree (see MLE . beta). The starting values of USdam and USsire, if not given,
are the MLE based on the genotype data (see MLE . popsize).

Value

list containing the arguments passed

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also
MCMCped

Examples

## Not run:
# In this example we simulate a pedigree and then fix the
# pedigree and estimate the population level paarmeters

data(WarblerP)

varil<-expression(varPed(c("lat”, "long"), gender="Male",
relational="OFFSPRING"))

# paternity is to be modelled as a function of distance
# between offspring and male territories

resi<-expression(varPed("offspring"”, restrict=0))
# indivdiuals from the offspring generation are excluded as parents

res2<-expression(varPed("terr"”, gender="Female", relational="OFFSPRING",
restrict="=="))

# mothers not from the offspring territory are excluded

PdP<-PdataPed(formula=list(varl,resl,res2), data=WarblerP, USsire=FALSE)
simped<-simpedigree(PdP, beta=-0.25)

# simulate a pedigree where paternity drops with distance (beta=-0.25)
sP<-startPed(ped=simped$ped, estP=FALSE)

model1<-MCMCped (PdP=PdP, sP=sP, nitt=3000, thin=2, burnin=1000)
plot(modell$beta)

# The true underlying value is -0.25

## End(Not run)
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summary . genotypeD genotypeD Object

Description

creates and object containing allele and genotype frequency for genotypeD objects

Usage
## S3 method for class 'genotypeD'
summary (object, ...)

Arguments
object genotypeD object

other arguments to be passed

Value

locus locus information field (if present)
allele.names vector of allele names: 0 and 1

allele.freq estimated allele frequencies with finite sample size correction (Lynch \& Milli-
gan 1994)

genotype.freq frequencies of observed genotypes (phenotypes)

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Lynch M. \& Milligan B.G. (1994) Molecular Ecology 3 91-99

See Also

genotype, summary . genotypeD

Examples

## Not run:
11<-rbinom(100,1,0.5)
11<-genotypeD(11)
summary (11)

## End(Not run)
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tunePed tunePed Object

Description

An object containing scaling constants for the tuning parameters used in the Metropolis-Hastings
updates. The tuning parameters should be set so that the Metropolis-Hastings acceptance rates
lie between 0.2 and 0.5. Initial tuning parameters for beta and the unsampled population size are
obtained from the large sample variance-covariances of the Maximum Likelihood estimates.

Usage

tunePed(ET = NULL, E2 = NULL, beta = NULL, USdam = NULL,
USsire = NULL)

Arguments
E1 vector of scaling parameters for E1
E2 vector of scaling parameters for E2
beta vector which is multiplied by sqrt(10) to get scaling parameters for beta
USdam vector which is multiplied by 10 to get scaling parameters for the number of
unsampled females
USsire vector which is multiplied by 10 to get scaling parameters for the number of
unsampled males
Details

The proposal distribution for all parameters is the multivariate normal, the variances of which are the
large sample variance covariances of the Maximum Likelihood estimates multiplied by the scaling
constants. For all parameters except beta, the covariance matrix for the proposal distribution has all
off-diagonal elements set to zero. These parameters must be positive and so the proposal distribution
is reflected at zero. A diagonal covariance matrices ensures that the proposal distribution remains
symetric. For beta the covariances are not constrained at zero, and so the matrices are multiplied by
the scaling constants in a way that preserves the correlational structure. The tuning parameters for
the error rates are the scaling constants multiplied by 3e-5.

Value

list containing the arguments passed

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

See Also
MCMCped
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Examples

## Not run:
data(WarblerG)
A<-extractA(WarblerG)

ped<-matrix(NA, 100, 3)
ped[,11<-1:100

G<-simgenotypes(A, ped=ped, E1=0.1, E2=0.001, no_dup=2)
GdP<-GdataPed(G=G$Gobs, id=G$id)

model1<-MCMCped (GdP=GdP, nitt=1500, thin=1, burnin=500)

# The proposal distribution is to conservative for E1
# and the update is accepted about 70% of the time

plot(model1$E1)
autocorr(model1$E1)

# Succesive samples from the posterior distribution are

# strongly autocorrelated. Should of course run the chain
# for longer with a larger thinning interval, but a greater
# tuning parameter helps (now 3e-4, rather than 3e-5):

model2<-MCMCped (GdP=GdP, tP=tunePed(E1=10), nitt=1500,
thin=1, burnin=500)

plot(model2$ET)
autocorr(model2$E1)

## End(Not run)

varPed Transforms Variables for a Multinomial Log-Linear Model

Description

Creates offspring specific design matrices the columns of which refer to the explanatory variables
of the liner model.

Usage

varPed(x, gender=NULL, lag=c(@,0), relational=FALSE,
lag_relational=c(@,0), restrict=NULL, keep=FALSE,
USvar=NULL, merge=FALSE, NAvar=NULL)
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Arguments

X
gender

lag

relational

lag_relational

restrict

keep

USvar

merge

NAvar
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predictor variable; numeric or factor
the gender of the parent to which x applies

numeric vector of length 2. The time interval over which x is evaluated relative
to a record of the offspring.

a character string. If "OFFSPRING", the Euclidean distance between x in the
parents and x in the offspring is calculated. If "MATE", the Euclidean distance
between x in the two parental sexes is calculated. Specifying "OFFSPRINGV"
and "MATEV" is similar, although the signed vector is calculated rather than
the Euclidean distance. The signed vector is calculated by substracting offspring
phenotype from parental phenotype in the case of "OFFSPRINGV", and by sub-
stacting the phenotype of the sex NOT specified in gender from the phenotype
of the sex specified in gender, in the case of "MATEV". If x is a factor then
both the Euclidean distance and the signed vector are 1 if the factor levels for
offspring and parent (or the two parental sexes) match, and zero otherwise. If
FALSE, x is untransformed.

numeric vector of length 2. If relational is not FALSE then the time inter-
val over which x is evaluated in the relational category relative to the offspring
record.

character string designating parents with a zero prior probability of parentage.
Only parents for which x matches restrict have non-zero probabilities of
parentage. When relational="OFFSPRING" is specified, then restrict can
take on the inequalities "==", "1="_">" ">="_"<" and "<=". Parents for which
the inequalities are satisfied have non-zero probabilities of parentage, with the
parental value of x on the left hand side of the inequality and the offspring
value on the right hand side. If a number appears on the right hand side of
the inequality (e.g. "<=10") then the distance between parent and offspring ap-
pears on the left-hand side of the inequality. Restrict is not implemented when
relational="MATE"

logical; if TRUE then the design matrices for parents excluded using the argument
restrict are retained in the estimation of beta

if NULL, the phenotypes of unsampled parents are assumed to be drawn from the
same statistaical population as the sampled parents. If x is a factor then USvar
can be a level of that factor to which unsampled parents belong. If x is numeric
then USvar can be the value for unsampled parents. Sampled individuals for
which there are missing covariate data will also take on USvar if specified.

logical; if TRUE then beta is the log odds ratio of an offspring’s parent belong-
ing to category A compared to category B, where A and B are levels of x.
If FALSE then beta is the log odds ratio of an individual belonging to category
A being the parent of an offspring compared to an individual of category B.
When relational=="MATE", relational=="MATEV" or male and female vari-
ables are interacted keep must be FALSE.

numeric; replacement for missing values in the predictors.

further arguments to be passed
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Details

The design matrix for each offspring represents the state of each parental (dam/sire) combination
for each explanatory variable. The number of rows in the design matrix (the number of parental
combinations) is free to vary across offspring, but the number of explanatory variables remain the
same. As with standard generalised linear modelling the columns of the design matrices take on
numerical values or inidicator values for continuous and categorical variables, respectively. When
relational=FALSE, elements of the design matrices refering to specific parental combinations will
not vary across offspring (unless longitudinal data are being used) and the associated vector of
parameters will relate the explanatory variables to overall fecundity. For these variables the model
is essentially the multinomial analogue of the more familiar Poisson model often used to analyse
such data. However, the counts of the multinomial are not known with certainty because uncertainty
exists around the maternity and/or paternity of each offspring.

Additional variables can be fitted that relate specific parental combinations to specific offspring,

or specific dams to specific sires. Elements of the design matrices refering to specific parental
combinations are then free to vary across offspring. The most obvious variable of this type is the
mendelian transition probability obtained from the genetic data themsleves. However, by specifying
relational="0FFSPRING", relational="0FFSPRINGV", relational="MATE" or relational="MATEV",
non-genetic variables are free to vary across offspring. When x is numeric the Euclidean distances
between parents and offspring, or between mates enter into the design matrix, when relational="0FFSPRING"
or relational="MATE" respectively. When relational="OFFSPRINGV" or relational="MATEV"

are specified a signed vector is calculated rather than a distance. When x is a factor then an
indicator variable is set up indicating whether parent and offspring, or mate, factor levels match.

Often, each offspring will have a variable number of candidate parents as some parents may be
excluded a priori. When x is a factor and both relational="OFFSPRING" and restrict="==",

only those potential parents that have factor levels matching the offspring factor level are retained.

When relational=FALSE, restrict can take on factor levels which exclude parents that have
non-matching factor levels.

If a time variable (timevar) is not passed to PdataPed the data are assumed to be cross-sectional
and each indivdiual only respresented once. If a time variable (timevar) is passed to PdataPed
then lag and lag_relational can be set so that time specific covariates are used. lag designates
time units relative to the offspring record when relational=FALSE; for example, if lag=c(0,0)
the value of x is taken for that parent during the same time period as the offspring record. If
relational="0FFSPRING" or relational="MATE" then lag determines the time units relative to
the record of the offspring or mate to which the focal inidvidual is being compared. This record can
be specified by using lag_relational, which is always relative to the offspring record. Negative
lags refer to previous time intervals (e.g. lag=c(-1,-1) takes x from the previous time step), and
if the elements of lag or lag_relational differ then the average value of x during this period is
taken (e.g lag=c(-1, @) averages x in the record matching and preceding the offspring record). This
is not applicable when x is a factor unless restrict takes one of the logical values (e.g."==") in
which case parents are retained when the logical value is TRUE at least once in the specified interval.

Below are models that can be fitted using varPed, where x is a univariate continuous variable:
varPed(x, gender="Female")
pl(f’j) o« exp(Bi;...)

varPed(x, gender="Male")
pz(o]) x exp(fiz;...)
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varPed(x)
pgoj) o exp(fr(z; + xj)...)

varPed(x, gender="Female"”, relational="OFFSPRING")

pl(-f)j) o exp(B1(|zs — o))
varPed(x, gender="Female"”, relational="OFFSPRINGV")

PE? o exp(B1(zi — @o)--.)
varPed(x, gender="Female"”, relational="MATE")

Pl ocexp(Ba (i — w1)...)
varPed(x, gender="Female"”, relational="MATEV")

pS-f? oc exp(Bi(zi — xj)...)
varPed(x, gender="Female", lag=c(-1,-1))

pgo]) o exp(f1ei—1...)
varPed(x, gender="Female"”, lag=c(-1,-1), relational="OFFSPRING")
Py o exp(Bi(|zs,0-1 — o))

varPed(x, gender="Female", lag=c(-2,-2), relational="MATE",
lag_relational=c(-1,-1))

P o< exp(B(wis—2 — wia-1)-)

varPed(x, gender="Male”, lag=c(-2,-2), relational="OFFSPRING",
lag_relational=c(-1,-1))
(0) ) _
pi; < exp(Bi(|zji—2 — Tor—1)-.)

Where pgf)j) is the probability that dam ¢ and sire j are the parents of an offspring 0. x and (8 are
the variable of interest and the associated parameter, and ¢ is the time period to which the offspring
record belongs.

For a categorical variable with two levels (A and B) the model specified by varPed(x, gender="Female")
takes on the form

pE? o exp(B16;...)

where ¢; is an indicator variable taking the value 1 if x; is equal to the first level of x and zero oth-
erwise. [3; is then the log odds ratio of the two levels of x with respect to maternity. If merge=TRUE
is specified then 57 may vary across offspring, and /3,,, is estimated. /3, is related to 31:
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ON A
ONA+ (1—6)Np

Bm = logit

where 6 is the inverse logit transformation of 31, and N4 and Np are the number of potential
mothers that have level A and B for x. If N4 and Np are invariant over offspring the models are
functionally equivalent.

The denominator of the multinomial likelihood is the summed linear predictors of all possible par-
ents (after setting up a contrast with the baseline parents). Designating the first set of parents as
baseline, the contrast for each set of parents is simply:

(o)
(o) _ Pi;
771',]' - 10g [ (0)]
1,1
and the likelihood of (3 is

exp(1;))

P?“(QSW) = H NE) ()
o >0k ZjJ:1 exp(n.

(@)

where n,, 7 (0)

; and n; are the number of offspring, the number of potential mothers for offspring
o, and the number of potential fathers for offspring o, respectively. d and s are the actual parents of
offspring o. The set of possible parents in the denominator of the multinomial likelihood are those
that are not excluded using the argument restrict. However, if the argument keep=TRUE is used
then the denominator of the likelihood will include excluded parents depsite the fact that d = ¢ and
s # j.

In version 2.31-2.42 DSapprox=TRUE can be passed to MCMCped which approximates the likelihood
of  when a variable specifies the distance between mates (i.e relational="MATE"). This approx-
imation reduces the computational burden by fixing ¢ = d or j = s in the denominator of the
multinomial likelihood. The parent defined as the "MATE" is fixed, so that a varPed expression with
gender="Male" has the approximated likelihood:

n (o)
o exp(n,5)
Pri®)~ ]| —& 0)
° Zji1 eXP(Ud,j)

For certain types of problem this approximation does not work well. In version 2.43 and after,
another approximation is used which seems to work better:

e exp(n)

Prieio) =11 nf (0 ng? (0) (0)
o |2 exp(n;g) + 2252, exp(ng ;) — exp(ng ;)

Value

list containing the design matrix for variable x, the identity of retained parents and the gender of the
parents
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Note

Versions >=2.1 accept different arguments for restrict than earlier versions. When relational="0FFSPRING",
earlier versions accepted restrict=TRUE and restrict=FALSE, but these have now been replaced

with restrict="==" and restrict="!=", respectively. In addition, restrict now also accepts

"> om>=r ot and "<=" with parental values on the LHS and offspring values on the RHS.

Also, versions >=2.1 also accept "OFFSPRINGV" and "MATEV" for relational in addition to "OFFSPRING"
and "MATE". "V" specifies that the signed vector should be used rather than the Euclidean distance.

Author(s)
Jarrod Hadfield <j.hadfield@ed.ac.uk>

References

Hadfield J.D. et al (2006) Molecular Ecology 15 3715-31

See Also
MCMCped

WarblerG Seychelles Warbler Genotypes

Description

Genetype data collected by David Richardson from Cousin Island in 1999.

Usage
WarblerG

Format
a data frame with 307 rows and 29 columns. The first column are the unique idenitifiers for each
bird, and the following columns are genotype data. Adjacent columns beolng to the same locus.
Source

Richardson D.S.

References

Richardson et.al. (2001) Molecular Ecology 10 2263-2273 Hadfield J.D. et al (2006) Molecular
Ecology 15 3715-31
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WarblerP Seychelles Warbler Phenotypes

Description
Phenotypic data collected by David Richardson from Cousin Island in 1999. The data are almost a
complete sample of those birds that existed in the population at that time.

Usage
WarblerP

Format

a table with 307 rows and 7 columns. The columns, from left to right are: 1) a unique identifier for
each bird; 2) a binary variable inbdicating whether the record belongs to an offspring; 3) the sex of
each bird; 4) the territory on which the bird was recorded; 5 and 6) the latitude and longitude of that
territory; 7) the behavioural status of each bird (Dominant or Subordinate)

Source

Richardson D.S.

References

Richardson et.al. (2001) Molecular Ecology 10 2263-2273 Hadfield J.D. et al (2006) Molecular
Ecology 15 3715-31
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