
Package ‘mosaic’
August 29, 2016

Type Package

Title Project MOSAIC Statistics and Mathematics Teaching Utilities

Version 0.14.4

Date 2016-07-29

Depends R (>= 3.0.0), dplyr, lattice (>= 0.20-21), ggplot2,
mosaicData, Matrix

Imports lazyeval (>= 0.2.0), MASS, grid, tidyr, readr, methods, utils,
splines, latticeExtra, ggdendro, gridExtra

Suggests lubridate, fastR, magrittr, NHANES, RCurl, sp, maptools, vcd,
testthat, knitr, tools, parallel, mapproj, rgl, rmarkdown

Enhances manipulate

VignetteBuilder knitr

Author Randall Pruim <rpruim@calvin.edu>, Daniel T. Kaplan

<kaplan@macalester.edu>, Nicholas J. Horton <nhorton@amherst.edu>

Maintainer Randall Pruim <rpruim@calvin.edu>

Description Data sets and utilities from Project MOSAIC (http://mosaic-web.org) used
to teach mathematics, statistics, computation and modeling. Funded by the
NSF, Project MOSAIC is a community of educators working to tie together
aspects of quantitative work that students in science, technology,
engineering and mathematics will need in their professional lives, but
which are usually taught in isolation, if at all.

License GPL (>= 2)

LazyLoad yes

LazyData yes

URL https://github.com/ProjectMOSAIC/mosaic

BugReports https://github.com/ProjectMOSAIC/mosaic/issues

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-07-29 19:07:11

1

https://github.com/ProjectMOSAIC/mosaic
https://github.com/ProjectMOSAIC/mosaic/issues

2 R topics documented:

R topics documented:
mosaic-package . 5
.polyExp . 5
adapt_seq . 6
aggregatingFunction1 . 7
aggregatingFunction1or2 . 8
aggregatingFunction2 . 9
as.xtabs . 10
ashplot . 11
bargraph . 13
binom.test . 14
Broyden . 16
cdist . 16
chisq . 17
CIAdata . 18
CIsim . 19
coef.function . 20
columns . 21
compareMean . 21
compareProportion . 22
confint . 23
confint.htest . 25
cross . 26
cull_for_do . 27
D . 28
deg2rad . 30
deltaMethod . 31
derivedVariable . 31
dfapply . 33
diffmean . 34
do . 34
docFile . 36
dotPlot . 37
dpqrdist . 38
ediff . 38
evalFormula . 39
evalSubFormula . 40
expandFun . 41
factorize . 41
fav_stats . 42
fetchData . 43
findZeros . 43
findZerosMult . 45
fitModel . 46
fitSpline . 47
formularise . 48
fortify.hclust . 49

R topics documented: 3

fortify.summary.lm . 50
freqpoly . 51
freqpolygon . 52
FunctionsFromData . 54
getVarFormula . 55
googleMap . 56
gwm . 57
inferArgs . 58
inspect . 59
integrateODE . 60
is.wholenumber . 61
joinFrames . 61
ladd . 62
linear.algebra . 63
logical2factor . 64
logit . 65
MAD . 65
MAD_ . 66
maggregate . 67
makeColorscheme . 68
makeFun . 69
makeMap . 71
mean_ . 72
mid . 74
mm . 74
modelVars . 75
mosaic.options . 76
mosaic_formula . 77
mPlot . 78
mplot . 79
MSPE . 81
mUSMap . 82
mWorldMap . 82
named . 83
nice_names . 84
ntiles . 85
numD . 85
n_missing . 88
orrr . 89
panel.levelcontourplot . 90
panel.lmbands . 91
panel.plotFun . 92
panel.plotFun1 . 93
parse.formula . 95
pdist . 96
perctable . 97
plotCumfreq . 98
plotDist . 99

4 R topics documented:

plotFun . 100
plotModel . 103
plotPoints . 105
predict.groupwiseModel . 106
print.msummary.lm . 107
project . 108
prop . 110
prop.test . 111
qdata . 112
qdata_v . 114
qdist . 115
r.squared . 116
rand . 117
read.file . 117
relm . 119
repeater-class . 119
resample . 120
rescale . 121
rflip . 122
rfun . 123
rkintegrate . 124
rlatlon . 125
rspin . 126
rsquared . 127
rstudio_is_available . 127
set.rseed . 128
sp2df . 128
standardName . 129
StatSpline . 130
statTally . 132
surround . 133
swap . 134
symbolicD . 134
symbolicInt . 135
tally . 137
theme.mosaic . 139
theme_map . 140
TukeyHSD.lm . 140
t_test . 141
update_ci . 142
value . 142
vector2df . 143
xchisq.test . 144
xhistogram . 144
xpnorm . 147
xqqmath . 148
xyz2latlon . 149
zscore . 150

mosaic-package 5

Index 151

mosaic-package mosaic: the Project MOSAIC package

Description

mosaic

Details

Data sets and utilities from Project MOSAIC (mosaic-web.org) used to teach mathematics, statis-
tics, computation and modeling. Funded by the NSF, Project MOSAIC is a community of educators
working to tie together aspects of quantitative work that students in science, technology, engineer-
ing and mathematics will need in their professional lives, but which are usually taught in isolation,
if at all.

Author(s)

Randall Pruim (<rpruim@calvin.edu>), Daniel Kaplan (<kaplan@macalester.edu>), Nicholas
Horton (<nhorton@smith.edu>)

References

http://mosaic-web.org

.polyExp Takes a call and returns its polynomial coefficients

Description

Takes a call and returns its polynomial coefficients

Takes a call and returns its polynomial coefficients as numerics.

Method for putting a polynomial together given the coefficients and power from .polyExp()

Usage

.polyExp(tree, .x., params, iterate = 1)

.polyExp.num(tree, .x.)

.makePoly(form, poly)

http://mosaic-web.org

6 adapt_seq

Arguments

tree A call that will be parsed and simplified recursively

.x. the variable name with respect to which the polynomial should be most simpli-
fied

params All names of free variables. If there are no free variables, the value should be ""

iterate The number of times the call is nested. Default and proper value when called
from the outside is 1

form original formula - provides information on which variable the polynomial was
reduced with respect to.

poly output of .polyExp()

Details

Will work on any call as long as it can be reduced to a polynomial with respect the the variable and
each of the parameters. Operates recursively, reducing each of the coefficients with respect to the
extra parameters in turn. Calls .polyExp.num when all remaining coefficients are numeric to reduce
the expression more fully.

works with the same structure as .polyExp() but will return only if all coefficients reduce to numeric
values.

Value

A list containing a list, coeffs, of coefficients ordered high to low (i.e. the list (2,3,4) would
correspond to the polynomial 2*x^2+3*x+4) and value, pow, indicating the order of the polynomial.
If the expression is not a polynomial, this method returns an empty list or an error.

A list containing a list, coeffs, of coefficients ordered high to low (i.e. the list (2,3,4) would
correspond to the polynomial 2*x^2+3*x+4) and value, pow, indicating the order of the polynomial.
If the expression is not a polynomial, this method returns an empty list or an error.

A formula whose left hand side is a polynomial that fits the description given with the input poly.

adapt_seq Adaptively generate sequences in an interval

Description

adapt_seq is similar to seq except that instead of selecting points equally spaced along an interval,
it selects points such that the values of a function applied at those points are (very) roughly equally
spaced. This can be useful for sampling a function in such a way that it can be plotted more
smoothly, for example.

Usage

adapt_seq(from, to, length.out = 200, f = function(x, ...) { 1 },
args = list(), quiet = FALSE)

aggregatingFunction1 7

Arguments

from start of interval

to end of interval

length.out desired length of sequence

f a function

args arguments passed to f

quiet suppress warnings about NaNs, etc.

Value

a numerical vector

Examples

adapt_seq(0, pi, 25, sin)

aggregatingFunction1 1-ary Aggregating functions

Description

aggregatinFuntion1 creates statistical summaries of one numerical vector that are formula aware.

Usage

aggregatingFunction1(fun, output.multiple = FALSE, envir = parent.frame(),
na.rm = getOption("na.rm", FALSE), style = c("formula1st", "formula",
"flexible"))

Arguments

fun a function that takes a numeric vector and computes a summary statistic, return-
ing a numeric vector.

output.multiple

a boolean indicating whether fun returns multiple values

envir an environment in which evaluation takes place.

na.rm the default value for na.rm in the resulting function.

style one of "formula1st", "formula2nd" or "flexible". In the first two cases, the
first argument must be a formula or evaluate to an object. In the latter case, bare
names will be converted into formulas.

Details

The logic of the resulting function is this: 1) If the first argument is a formula, use that formula and
data to create the necessary call(s) to fun; (2) Else simply pass everything to fun for evaluation.

8 aggregatingFunction1or2

Value

a function that generalizes fun to handle a formula/data frame interface.

Note

Earlier versions of this function supported a "bare name + data frame" interface. This functionality
has been removed since it was (a) ambiguous in some cases, (b) unnecessary, and (c) difficult to
maintain.

Examples

if (require(mosaicData)) {
foo <- aggregatingFunction1(base::mean)
foo(~ length, data=KidsFeet)
base::mean(KidsFeet$length)
foo(length ~ sex, data=KidsFeet)

}

aggregatingFunction1or2

1- or 2-ary aggregating functions

Description

aggregatingFunction1or2() creates statistical summaries for functions like var() that can have
either 1 or 2 numeric vector inputs.

Usage

aggregatingFunction1or2(fun, output.multiple = FALSE,
na.rm = getOption("na.rm", FALSE))

Arguments

fun a function that takes 1 or 2 numeric vectors and computes a summary statistic,
returning a numeric vector of length 1.

output.multiple

a boolean indicating whether fun returns multiple values

na.rm the default value for na.rm in the resulting function.

Details

This was designed primarily to support var which can be used to compute either the variance of
one variable or the covariance of two variables. The logic of the resulting function is this: 1) If the
first two arguments are both formulas, then those formulas are evaluated (with data) to compute
the covariance; (2) If the first argument is a formula, and the second is NULL, then the formula and
data are used to create the necessary call(s) to fun; (3) Else everything is simply passed to fun for
evaluation.

aggregatingFunction2 9

Note

Earlier versions of this function supported a "bare name + data frame" interface. This functionality
has been removed since it was (a) ambiguous in some cases, (b) unnecessary, and (c) difficult to
maintain.

aggregatingFunction2 2-ary aggregating functions

Description

aggregatinFuntion2 creates statistical summaries of two numerical vectors that are formula aware.

Usage

aggregatingFunction2(fun)

Arguments

fun a function that takes two numeric vectors and computes a summary statistic,
returning a numeric vector of length 1.

Details

This was designed to support functions like cov() which can be used to compute numerical sum-
maries from two numeric vectors. The logic of the resulting function is this: 1) If the first two
arguments are both formulas, then those formulas are evaluated (with data) to compute the covari-
ance; (2) If the first argument is a formula, and the second is NULL, then the left and ride sides of the
formula and data are used to create the vectors passed to fun; (3) Else everything is simply passed
to fun for evaluation.

Value

a function that generalizes fun to handle a formula/data frame interface.

Note

Earlier versions of this function supported a "bare name + data frame" interface. This functionality
has been removed since it was (a) ambiguous in some cases, (b) unnecessary, and (c) difficult to
maintain.

Examples

if(require(mosaicData)) {
foo <- aggregatingFunction2(stats::cor)
foo(length ~ width, data=KidsFeet)
stats::cor(KidsFeet$length, KidsFeet$width)

}

10 as.xtabs

as.xtabs Convert objects to xtabs format

Description

Convert a data frame or a matrix into an xtabs object.

Usage

as.xtabs(x, ...)

S3 method for class 'data.frame'
as.xtabs(x, rowvar = NULL, colvar = NULL, labels = 1,
...)

S3 method for class 'matrix'
as.xtabs(x, rowvar = NULL, colvar = NULL, ...)

Arguments

x object (typically a data frame) to be converted to xtabs format

... additional arguments to be passed to or from methods.

rowvar name of the row variable as character string

colvar name of the column variable as character string

labels column of data frame that contains the labels of the row variable.

Details

The intended use is to convert a two-way contingency table stored in a data frame or a matrix into
an xtabs object.

Value

An xtabs object.

Examples

example from example(fisher.test)
df <- data.frame(X=c('Tea','Milk'), Tea=c(3,1), Milk=c(1,3))
xt <- as.xtabs(df, rowvar="Guess", colvar="Truth"); xt
if (require(vcd)) { mosaic(xt) }

ashplot 11

ashplot Average Shifted Histograms

Description

An ASH plot is the average over all histograms of a fixed bin width.

Mainly a utility for the lattice and ggplot2 plotting functions, ash_points() returns the points to
be plotted.

Usage

ashplot(x, ..., width = NULL, adjust = NULL, panel = panel.ashplot,
prepanel = prepanel.default.ashplot)

prepanel.default.ashplot(x, darg, groups = NULL, subscripts = TRUE, ...)

panel.ashplot(x, darg = list(), plot.points = FALSE, ref = FALSE,
groups = NULL, jitter.amount = 0.01 * diff(current.panel.limits()$ylim),
type = "p", ..., identifier = "ash")

ash_points(x, binwidth = NULL, adjust = 1)

StatAsh

stat_ash(mapping = NULL, data = NULL, geom = "line",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, binwidth = NULL, adjust = 1, ...)

geom_ash(mapping = NULL, data = NULL, stat = "ash",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, binwidth = NULL, adjust = 1, ...)

Arguments

x a formula or numeric vector

... additional arguments passed to panel and prepanel functions or data, a data
frame in which to find the variales used for the plot.

width the historam bin width.

adjust a numeric adjustment to width. Primarily useful when width is not specified.
Increasing adjust makes the plot smoother.

panel a panel funtion

prepanel a prepanel function

darg a list of arguments for the function computing the ASH.

groups as in other lattice plots

12 ashplot

subscripts as in other lattice prepanel functions

plot.points One of TRUE, FALSE, "jitter", or "rug"

ref a logical indicating whether a reference line should be displayed

jitter.amount when plot.points="jitter", the value to use as the amount argument to
jitter.

type type argument used to plot points, if requested. This is not expected to be useful,
it is available mostly to protect a type argument, if specified, from affecting the
display of the ASH.

identifier A character string that is prepended to the names of i grobs that are created by
this panel function.

binwidth the width of the histogram bins. If NULL (the default) the binwidth will be chosen
so that approximately 10 bins cover the data. adjust can be used to to increase
or decrease binwidth.

mapping set of aesthetic mappings created by aes() or aes_().

data a data frame

geom a geom to use for this layer, as a string.

position position adjustment, either as a string or the result of a call to a position adjust-
ment function.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE
silently removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

stat a statistical transformation to use on the data for this layer, as a string.

Format

An object of class StatAsh (inherits from Stat, ggproto) of length 3.

Value

a data frame containing x and y coordinates of the resulting ASH plot.

Examples

ashplot(~age | substance, groups = sex, data = HELPrct)
ggplot(faithful, aes(x = eruptions)) +

geom_histogram(aes(y = ..density..),
fill = "lightskyblue", colour = "gray50", alpha = 0.2) +

geom_ash(colour = "red") +
geom_ash(colour = "forestgreen", adjust = 2) +
geom_ash(colour = "navy", adjust = 1/2) +
theme_minimal()

bargraph 13

bargraph Create bar graphs from raw data

Description

barchart from the lattice package makes bar graphs from pre-tabulated data. Raw data can be
tabulated using xtabs, but the syntax is unusual compared to the other lattice plotting functions.
bargraph provides an interface that is consistent with the other lattice functions.

Usage

bargraph(x, data = parent.frame(), groups = NULL, horizontal = FALSE,
origin = 0, ylab = ifelse(horizontal, "", type),
xlab = ifelse(horizontal, type, ""), type = c("count", "frequency",
"proportion", "percent"), ...)

Arguments

x a formula describing the plot

data a data frame in which the formula x is evaluated

groups a variable or expression used for grouping. See barchart.

horizontal a logical indicating whether bars should be horizontal

origin beginning point for bars. For the default behavior used by barchart set origin
to NULL, but 0 is often a better default. If 0 is not good, perhaps you should use
a different kind of plot as the results may be misleading.

ylab a character vector of length one used for the y-axis label

xlab a character vector of length one used for the x-axis label

type one of "frequency", "count", "percent", or "proportion" indicating what
type of scale to use. Unique prefixes are sufficient.

... additional arguments passed to barchart

Details

bargraph(formula, data=data, ...) works by creating a new data frame from xtabs(formula, data=data)
and then calling barchart using modified version of the formula and this new data frame as inputs.
This has implications on, for example, conditional plots where one desires to condition on some ex-
pression that will be evaluated in data. This typically does not work becuase the required variables
do not exist in the output of xtabs. One solution is to first add a new variable to data first and then
to condition using this new variable. See the examples.

Value

a trellis object describing the plot

14 binom.test

See Also

barchart

Examples

if (require(mosaicData)) {
data(HELPrct)
bargraph(~ substance, data = HELPrct)
bargraph(~ substance, data = HELPrct, horizontal = TRUE)
bargraph(~ substance | sex, groups = homeless, auto.key = TRUE, data = HELPrct)
bargraph(~ substance, groups = homeless, auto.key=TRUE,

data = HELPrct %>% filter(sex == "male"))
HELPrct2 <- mutate(HELPrct, older = age > 40)
bargraph(~ substance | older, data = HELPrct2)
bargraph(~ rbinom(1000, 10, 0.5))
}

binom.test Exact Tests for Proportions

Description

The binom.test function performs an exact test of a simple null hypothesis about the probability of
success in a Bernoulli experiment from summarized data or from raw data. The mosaic binom.test
provides wrapper functions around the function of the same name in stats. These wrappers provide
an extended interface (including formulas).

Usage

binom.test(x, n = NULL, p = 0.5, alternative = c("two.sided", "less",
"greater"), conf.level = 0.95, ci.method = c("Clopper-Pearson",
"binom.test", "Score", "Wilson", "prop.test", "Wald", "Agresti-Coull",
"Plus4"), data = NULL, success = NULL, ...)

Arguments

x count of successes, length 2 vector of success and failure counts, a formula, or a
character, numeric, or factor vector containing raw data.

n sample size (successes + failures) or a data frame (for the formula interface)
p probability for null hypothesis
alternative type of alternative hypothesis
conf.level confidence level for confidence interval
ci.method a method to use for computing the confidence interval (case insensitive and may

be abbreviated). See details below.
data a data frame (if missing, n may be a data frame)
success level of variable to be considered success. All other levels are considered failure.
... additional arguments (often ignored)

binom.test 15

Details

binom.test is a wrapper around binom.test from the base package to simplify its use when the
raw data are available, in which case an extended syntax for binom.test is provided. See the
examples.

Also, five confidence interval methods are provided:

Clopper-Pearson, binom.test This is the interval produced when using binom.test from the
stats package. It guarantees a coverage rate at least as large as the nominal coverage rate,
but may produce wider intervals than some of the methods below, which may either under- or
over-cover depending on the data.

Score, Wilson, prop.test This is the usual method used by prop.test and is computed by invert-
ing p-values from score tests. It is often atrributed to Edwin Wilson.

Wald This is the interval traditionally taught in entry level statistics courses. It uses the sample pro-
portion to estimate the standard error and uses normal theory to determine how many standard
deviations to add and/or substract from the sample proportion to determine an interval.

Agresti-Coull This is the Wald method after setting n′ = n + z2 and p′ = (x + z2/2)/n’ and
using x′ = n′p′ and n′ in place of x and n.

Plus4 This is Wald after adding in two artifical success and two artificial failures. It is nearly the
same as the Agresti-Coull method when the confidence level is 95 z2 is approximately 4 and
z2/2 is approximately 2.

Value

an object of class htest

Note

When x is a 0-1 vector, 0 is treated as failure and 1 as success. Similarly, for a logical vector TRUE
is treated as success and FALSE as failure.

See Also

prop.test, binom.test

Examples

Several ways to get a confidence interval for the proportion of Old Faithful
eruptions lasting more than 3 minutes.
data(faithful)
binom.test(faithful$eruptions > 3)
binom.test(97, 272)
binom.test(c(97, 272-97))
faithful$long <- faithful$eruptions > 3
binom.test(faithful$long)
binom.test(resample(1:4, 400), p=.25)
binom.test(~ long, data = faithful)
binom.test(~ long, data = faithful, ci.method = "Wald")
binom.test(~ long, data = faithful, ci.method = "Plus4")
with(faithful, binom.test(~long))

16 cdist

with(faithful, binom.test(long))

Broyden Multi-Dimensional Root Finding

Description

Implementation of Broyden’s root finding function to numerically compute the root of a system of
nonlinear equations

Usage

Broyden(system, vars, x = 0, tol = .Machine$double.eps^0.4,
maxiters = 10000)

Arguments

system A list of functions

vars A character string list of variables that appear in the functions

x A starting vector

tol The tolerance for the function specifying how precise it will be

maxiters maximum number of iterations.

cdist Central portion of a distribution

Description

This function determines the critial values for isolating a central portion of a distribution with a
specified probability. This is designed to work especially well for symmteric distributions, but it
can be used with any distribution.

Usage

cdist(dist, p, ..., verbose = FALSE)

Arguments

dist a character string naming a distribution family (e.g., "norm"). This wil work for
any family for which the usual d/p/q functions exist.

p the proportion to be in the central region, with equal proportions in either "tail".

... additional arguments passed to the distribution functions. Typically these spec-
ify the parameters of the particular distribution desired. See the examples.

verbose a logical indicating whether a more verbose output value should be returned.

chisq 17

Value

a pair of numbers indicating the upper and lower bounds, unless verbose is TRUE, in which case a
1-row data frame is returned containing these bounds, the central probability, the tail probabilities,
and the name of the distribution.

Note

This function is still experimental and changes the input or output formats are possible in future
versions of the package.

Examples

cdist("norm", .95)
cdist("t", c(.90, .95, .99), df=5)
cdist("t", c(.90, .95, .99), df=50)
cdist("t", .95, df=c(3,5,10,20))
cdist("t", .95, df=c(3,5,10,20), verbose = TRUE)
cdist("norm", .95, mean=500, sd=100)
cdist("chisq", c(.90, .95), df=3)
CI
x <- rnorm(23, mean = 10, sd = 2)
cdist("t", p = 0.95, df=22)
mean(x) + cdist("t", p = 0.95, df=22) * sd(x) / sqrt(23)
confint(t.test(x))
cdist("t", p = 0.95, df=22, verbose = TRUE)

chisq Extract Chi-squared statistic

Description

Extract Chi-squared statistic

Usage

chisq(x, ...)

S3 method for class 'htest'
chisq(x, ...)

S3 method for class 'table'
chisq(x, correct = FALSE, ...)

Default S3 method:
chisq(x, correct = FALSE, ...)

18 CIAdata

Arguments

x An object of class "htest" a coming from a Chi-squared test, an object of class
"table", or the inputs to tally.

... additional arguments passed on to tally or chisq.test.

correct a logical indicating whether a continuity correction should be applied.

See Also

stat

Examples

if(require(mosaicData)) {
Mites.table <- tally(~ outcome + treatment, data=Mites)
Mites.table
chisq.test(Mites.table)
chisq(Mites.table)
chisq(chisq.test(Mites.table))
Randomization test. Increase replications to decrease Monte Carlo error.
do(3) * chisq(tally(~ outcome + shuffle(treatment), data=Mites))
Mites.rand <- do(1000) * chisq(tally(~ outcome + shuffle(treatment), data=Mites))
tally(~(X.squared >= chisq(Mites.table)), data=Mites.rand, format="proportion")

}

CIAdata Return a dataset based on the CIA World Factbook

Description

This function can be used in two different ways. Without an argument, it returns a reference table
that includes information about all the CIA World Factbook tables that are available through this
function. Note the Name column that indicates a unique name for each available dataset. If this
name is passed as an argument to the function, the function will return the corresponding dataset.

Usage

CIAdata(name = NULL)

Arguments

name An optional parameter specifying the name of the desired dataset. If multiple
names are given, a merge will be attempted on the individual data sets.

CIsim 19

Examples

head(CIAdata())
Population <- CIAdata("pop")
nrow(Population)
head(Population)

PopArea <- CIAdata(c("pop","area")) %>% mutate(density = pop / area)
nrow(PopArea)
head(PopArea)
PopArea %>%

filter(!is.na(density)) %>%
arrange(density) %>%
tail

CIsim Compute confidence intervals from (multiple) simulated data sets

Description

This function automates the calculation of coverage rates for exploring the robustness of confidence
interval methods.

Usage

CIsim(n, samples = 100, rdist = rnorm, args = list(), plot = if (samples
<= 200) "draw" else "none", estimand = 0, conf.level = 0.95,
method = t.test, method.args = list(), interval = function(x) {
do.call(method, c(list(x, conf.level = conf.level), method.args))$conf.int },
estimate = function(x) { do.call(method, c(list(x, conf.level =
conf.level), method.args))$estimate }, verbose = TRUE)

Arguments

n size of each sample

samples number of samples to simulate

rdist function used to draw random samples

args arguments required by rdist

plot one of "print", "return", "horizontal", or "none" describing whether a plot
should be printed, returned, printed with horizontal intervals, or not generated
at all.

estimand true value of the parameter being estimated

conf.level confidence level for intervals

method function used to compute intervals. Standard functions that produce an object
of class htest can be used here.

method.args arguments required by method

20 coef.function

interval a function that computes a confidence interval from data. Function should return
a vector of length 2.

estimate a function that computes an estimate from data

verbose print summary to screen?

Value

A data frame with variables lower, upper, estimate, cover (’Yes’ or ’No’), and sample is returned
invisibly. See the examples for a way to use this to display the intervals graphically.

Examples

1000 95% intervals using t.test; population is N(0,1)
CIsim(n=10, samples=1000)
this time population is Exp(1); fewer samples, so we get a plot
CIsim(n=10, samples=100, rdist=rexp, estimand=1)
Binomial treats 1 like success, 0 like failure
CIsim(n=30, samples=100, rdist=rbinom, args=list(size=1, prob=.7),

estimand = .7, method = binom.test, method.args=list(ci = "Plus4"))

coef.function Extract coefficients from a function

Description

coef will extract the coefficients attribute from a function. Functions created by applying link{makeFun}
to a model produced by lm, glm, or nls store the model coefficients there to enable this extraction.

Usage

S3 method for class 'function'
coef(object, ...)

Arguments

object a function

... ignored

Examples

if (require(mosaicData)) {
model <- lm(width ~ length, data=KidsFeet)
f <- makeFun(model)
coef(f)
}

columns 21

columns return a vector of row or column indices

Description

return a vector of row or column indices

Usage

columns(x, default = c())

rows(x, default = c())

Arguments

x an object that may or may not have any rows or columns

default what to return if there are no rows or columns

Value

if x has rows or columns, a vector of indices, else default

Examples

columns(iris)
if (require(mosaicData)) {
dim(HELPrct)
columns(HELPrct)
rows(HELPrct)
}
columns(NULL)
columns("this doesn't have columns")

compareMean Compare means between 2 groups

Description

A function to calculate the difference between the means of a continuous variable for two groups.

Usage

compareMean(formula, data = parent.frame(), ...)

22 compareProportion

Arguments

formula a formula

data a data frame in which x is evaluated if x is a formula. Note that the default is
data=parent.frame(). This makes it convenient to use this function interac-
tively by treating the working envionment as if it were a data frame. But this
may not be appropriate for programming uses. When programming, it is best to
use an explicit data argument – ideally supplying a data frame that contains the
variables mentioned

... other arguments

Value

the difference in means between the second and first group

Note

This funciton has been deprecated. Use diffmean instead.

See Also

do, compareProportion and shuffle

Examples

if (require(mosaicData)) {
data(HELPrct)
calculate the observed difference
mean(age ~ sex, data=HELPrct)
obs <- diffmean(age ~ sex, data=HELPrct); obs
calculate the permutation distribution
nulldist <- do(100) * diffmean(age ~ shuffle(sex),
data=HELPrct)

histogram(~ diffmean, groups=(diffmean >= obs), nulldist,
xlab="difference in means")

}

compareProportion Compare proportions between 2 groups

Description

A function to facilitate 2 group permutation tests for a categorical outcome variable

Usage

compareProportion(formula, data = NULL, ...)

confint 23

Arguments

formula a formula

data a data frame in which x is evaluated if x is a formula.

... other arguments

Value

the difference in proportions between the second and first group

Note

This funciton has been deprecated. Use diffprop instead.

Examples

if (require(mosaicData)) {
data(HELPrct)
calculate the observed difference
mean(homeless=="housed" ~ sex, data=HELPrct)
obs <- diffprop(homeless=="housed" ~ sex, data=HELPrct); obs
calculate the permutation distribution
nulldist <- do(100) * diffprop(homeless=="housed" ~ shuffle(sex), data=HELPrct)
histogram(~ diffprop, groups=(diffprop>= obs), nulldist,
xlab="difference in proportions")

}

confint Confidence interval methods for output of resampling

Description

Methods for confint to compute confidence intervals on numerical vectors and numerical compo-
nents of data frames.

Usage

S3 method for class 'numeric'
confint(object, parm, level = 0.95, ...,
method = "percentile", margin.of.error = "stderr" %in% method ==
"stderr")

S3 method for class 'do.tbl_df'
confint(object, parm, level = 0.95, ...,
method = "percentile", margin.of.error = "stderr" %in% method,
df = NULL)

S3 method for class 'do.data.frame'

24 confint

confint(object, parm, level = 0.95, ...,
method = "percentile", margin.of.error = "stderr" %in% method,
df = NULL)

S3 method for class 'data.frame'
confint(object, parm, level = 0.95, ...)

S3 method for class 'summary.lm'
confint(object, parm, level = 0.95, ...)

Arguments

object and R object

parm a vector of parameters

level a confidence level

... additional arguments

method a character vector of methods to use for creating confidence intervals. Choices
are "percentile" (or "quantile") which is the default, "stderr" (or "se"), "bootstrap-
t", and "reverse" (or "basic"))

margin.of.error

if true, report intervals as a center and margin of error.

df degrees for freedom. This is required when object was produced using link{do}
when using the standard error to compute the confidence interval since typically
this information is not recorded in these objects. The default (Inf) uses a normal
critical value rather than a one derived from a t-distribution.

Details

The methods of producing confidence intervals from bootstrap distributions are currently quite
naive. In particular, when using the standard error, assistance may be required with the degrees
of freedom, and it may not be possible to provide a correct value in all situations. None of the
methods include explicit bias correction. Let qa be the a quantile of the bootstrap distribution, let
ta, df be the a quantile of the t distribution with df degrees of freedom, let SEb be the standard
deviation of the bootsrap distribution, and let θ̂ be the estimate computed from the original data.
Then the confidence intervals with confidence level 1− 2a are

quantile (qa, q1−a)

reverse (2θ̂ − q1−a, 2θ̂ − qa)

stderr (θ̂−t1−a,dfSEb, θ̂+t1−a,dfSEb). When df is not provided, at attempt is made to determine
an appropriate value, but this should be double checked. In particular, missing data an lead to
unreliable results.
The bootstrap-t confidence interval is computed much like the reverse confidence interval
but the bootstrap t distribution is used in place of a theoretical t distriubiton. This interval
has much better properties than the reverse (or basic) method, which is here for comparison
purposes only and is not recommended.

confint.htest 25

Value

When applied to a data frame, returns a data frame giving the confidence interval for each variable
in the data frame using t.test or binom.test, unless the data frame was produced using do, in
which case it is assumed that each variable contains resampled statistics that serve as an estimated
sampling distribution from which a confidence interval can be computed using either a central
proportion of this distribution or using the standard error as estimated by the standard deviation of
the estimated sampling distribution. For the standard error method, the user must supply the correct
degrees of freedom for the t distribution since this information is typically not available in the output
of do.

When applied to a numerical vector, returns a vector.

References

Tim C. Hesterberg (2015): What Teachers Should Know about the Bootstrap: Resampling in the
Undergraduate Statistics Curriculum, The American Statistician, http://dx.doi.org/10.1080/
00031305.2015.1089789.

Examples

if (require(mosaicData)) {
bootstrap <- do(500) * diffmean(age ~ sex, data=resample(HELPrct))
confint(bootstrap)
confint(bootstrap, method = "percentile")
confint(bootstrap, method = "boot")
confint(bootstrap, method = "se", df=nrow(HELPrct) - 1)
confint(bootstrap, margin.of.error = FALSE)
confint(bootstrap, margin.of.error = TRUE, level=0.99, method=c("boot", "se", "perc"))
bootstrap2 <- do(500)*mean(resample(1:10))
confint(bootstrap2)

}
confint(summary(lm(width ~ length * sex, data=KidsFeet)))

confint.htest Extract summary statistics

Description

Extract confidence intervals, test statistics or p-values from an htest object.

Usage

S3 method for class 'htest'
confint(object, parm, level, ...)

pval(x, ...)

S3 method for class 'htest'

http://dx.doi.org/10.1080/00031305.2015.1089789
http://dx.doi.org/10.1080/00031305.2015.1089789

26 cross

pval(x, digits = 4, verbose = FALSE, ...)

stat(x, ...)

S3 method for class 'htest'
stat(x, ...)

Arguments

object a fitted model object or an htest object.

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

x An object of class htest.

digits number of digits to display in verbose output

verbose a logical

... Additional arguments.

Value

the extracted p-value, confidence interval, or test statistic

Examples

confint(t.test(rnorm(100)))
pval(t.test(rnorm(100)))
stat(t.test(rnorm(100)))
confint(var.test(rnorm(10,sd=1), rnorm(20, sd=2)))
pval(var.test(rnorm(10,sd=1), rnorm(20, sd=2)))
if (require(mosaicData)) {
data(HELPrct)
stat(t.test (age ~ shuffle(sex), data=HELPrct))
Compare to test statistic computed with permuted values of sex.
do(10) * stat(t.test (age ~ shuffle(sex), data=HELPrct))
}

cross Factor cross products

Description

Construct a product of factors.

Usage

cross(..., sep = ":", drop.unused.levels = FALSE)

cull_for_do 27

Arguments

sep separator between levels
drop.unused.levels

should levels that do not appear in cross product be dropped?
... factors to be crossed.

Value

a factor

Examples

x <- letters[1:3]
y <- c(1,2,1,1,3,1,3)
cross(x, y)
cross(x, y, drop.unused.levels=TRUE)

cull_for_do Cull objects used with do()

Description

The do function facilitates easy repliaction for randomization tests and bootstrapping (among other
things). Part of what makes this particularly useful is the ability to cull from the objects produced
those elements that are useful for subsequent analysis. cull_for_do does this culling. It is generic,
and users can add new methods to either change behavoir or to hanlde additional classes of objects.

Usage

cull_for_do(object, ...)

Arguments

object an object to be culled
... additional arguments (currently ignored)

Details

When do(n) * expression is evaluated, expression is evaluated n times to produce a list of
n result objects. cull_for_do is then applied to each element of this list to extract from it the
information that should be stored. For example, when applied to a object of class "lm", the default
cull_for_do extracts the coefficients, coefficient of determinism, an the estimate for the variance,
etc.

Examples

cull_for_do(lm(length ~ width, data = KidsFeet))
do(1) * lm(length ~ width, data = KidsFeet)

28 D

D Derivative and Anti-derivative operators

Description

Operators for computing derivatives and anti-derivatives as functions.

Usage

D(formula, ..., .hstep = NULL, add.h.control = FALSE)

Default S3 method:
D(formula, ..., .hstep = NULL, add.h.control = FALSE)

S3 method for class 'formula'
D(formula, ..., .hstep = NULL, add.h.control = FALSE)

antiD(formula, ..., lower.bound = 0, force.numeric = FALSE)

makeAntiDfun(.function, .wrt, from, .tol = .Machine$double.eps^0.25)

numerical_integration(f, wrt, av, args, vi.from, ciName = "C", .tol)

Arguments

formula A formula. The right side of a formula specifies the variable(s) with which
to carry out the integration or differentiation. On the left side should be an
expression or a function that returns a numerical vector of the same length as
its argument. The expression can contain unbound variables. Functions will be
differentiated as if the formula f(x) ~ x were specified but with x replaced by the
first argument of f.

.hstep horizontal distance between points used for secant slope calculation in numerical
derivatives.

add.h.control logical indicating whether the returned derivative function should have an addi-
tional parameter for setting .hstep. Meaningful only for numerical derivatives.

lower.bound for numerical integration only, the lower bound used

force.numeric If TRUE, a numerical integral is performed even when a symbolic integral is
available.

.function function to be integrated

.wrt character string naming the variable of integration

from default value for the lower bound of the integral region

.tol Numerical tolerance. See stats::integrate

f a function

wrt character string naming a variable: the var. of integration

D 29

av a list of the arguments passed to the function calling this

args default values (if any) for parameterss

vi.from the the lower bound of the interval of integration

ciName character string giving the name of the symbol for the constant of integration

... Default values to be given to unbound variables in the expression expr. See
examples.#’ Note that in creating anti-derivative functions, default values of
"from" and "to" can be assigned. They are to be written with the name of the
variable as a prefix, e.g. y.from.

Details

D attempts to find a symbolic derivative for simple expressions, but will provide a function that
is a numerical derivative if the attempt at symbolic differentiation is unsuccessful. The symbolic
derivative can be of any order (although the expression may become unmanageably complex). The
numerical derivative is limited to first or second-order partial derivatives (including mixed partials).
antiD will attempt simple symbolic integration but if it fails it will return a numerically-based
anti-derivative.

antiD returns a function with the same arguments as the expression passed to it. The returned
function is the anti-derivative of the expression, e.g., antiD(f(x)~x) -> F(x). To calculate the integral
of f(x), use F(to) - F(from).

Value

For derivatives, the return value is a function of the variable(s) of differentiation, as well as any
other symbols used in the expression. Thus, D(A*x^2 + B*y ~ x + y) will compute the mixed
partial with respect to x then y (that is, d2f

dy dx). The returned value will be a function of x and y, as
well as A and B. In evaluating the returned function, it’s best to use the named form of arguments,
to ensure the order is correct.

a function of the same arguments as the original expression with a constant of integration set to zero
by default, named "C", "D", ... depending on the first such letter not otherwise in the argument list.

Note

numerical_integration is not intended for direct use. It packages up the numerical anti-differentiation
process so that the contents of functions produced by antiD look nicer to human readers.

Examples

D(sin(t) ~ t)
D(A*sin(t) ~ t)
D(A*sin(2*pi*t/P) ~ t, A=2, P=10) # default values for parameters.
f <- D(A*x^3 ~ x + x, A=1) # 2nd order partial -- note, it's a function of x
f(x=2)
f(x=2,A=10) # override default value of parameter A
g <- D(f(x=t, A=1)^2 ~ t) # note: it's a function of t
g(t=1)
gg <- D(f(x=t, A=B)^2 ~ t, B=10) # note: it's a function of t and B
gg(t=1)

30 deg2rad

gg(t=1, B=100)
f <- makeFun(x^2~x)
D(f(cos(z))~z) #will look in user functions also
antiD(a*x^2 ~ x, a = 3)
antiD(A/x~x) # This gives a warning about no default value for A
F <- antiD(A*exp(-k*t^2) ~ t, A=1, k=0.1)
F(t=Inf)
one = makeFun(1 ~ x + y)
by.x = antiD(one(x=x, y=y) ~ x, y=1)
by.xy = antiD(by.x(x = sqrt(1-y^2), y = y) ~ y)
4 * by.xy(y = 1) # area of quarter circle

deg2rad Convert between degrees and radians

Description

Facilitates conversion between degrees and radians.

Usage

deg2rad(x)

rad2deg(x)

Arguments

x a numeric vector

Value

a numeric vector

See Also

latlon2xyz, googleMap, and rgeo.

Examples

deg2rad(180)
rad2deg(2*pi)

deltaMethod 31

deltaMethod deltaMethod has moved to a separate package

Description

deltaMethod has moved to its own separate package.

Usage

deltaMethod(...)

Arguments

... arguments (ignored, since this is defunct)

derivedVariable Create new variables from logicals

Description

Utility functions for creating new variables from logicals describing the levels

Usage

derivedVariable(..., .ordered = FALSE, .method = c("unique", "first",
"last"), .debug = c("default", "always", "never"), .sort = c("given",
"alpha"), .default = NULL, .asFactor = FALSE)

derivedFactor(..., .asFactor = TRUE)

Arguments

.ordered a logical indicating whether the resulting factored should be ordered Ignored if
.asFactor is FALSE.

.method one of "unique", "first", and "last". If "unique", exactly one rule must
be TRUE for each position. If "first", the first TRUE rule defines the level. If
"last", the last TRUE rule defines the level.

.debug one of "default", "always", and "never", indicating whehter debugging in-
formation should be printed. If "default", debugging information is printed
only when multiple rules give conflicting definitions for some positions.

.sort One of "given" (the default) or "alpha" or a vector of integers the same length
as the number of levels indicating the order in which the levels should appear in
the resulting factor. Ignored if .asFactor is FALSE.

.default character vector of length 1 giving name of default level or NULL for no default.

.asFactor A logical indicating whether the returned value should be a factor.

... named logical "rules" defining the levels.

32 derivedVariable

Details

Each logical "rule" corresponds to a level in the resulting variable. If .default is defined, an
implicit rule is added that is TRUE whenever all other rules are FALSE. When there are multiple TRUE
rules for a slot, the first or last such is used or an error is generated, depending on the value of
method.

derivedVariable is designed to be used with transform or mutate to add new variables to a data
frame. derivedFactor() is the same but that the default value for .asFactor is TRUE. See the
examples.

Examples

Kf <- mutate(KidsFeet, biggerfoot2 = derivedFactor(
dom = biggerfoot == domhand,
nondom = biggerfoot != domhand)
)

tally(~ biggerfoot + biggerfoot2, data = Kf)
tally(~ biggerfoot + domhand, data = Kf)

Three equivalent ways to define a new variable
Method 1: explicitly define all levels
modHELP <- mutate(HELPrct, drink_status = derivedFactor(

abstinent = i1 == 0,
moderate = (i1>0 & i1<=1 & i2<=3 & sex=='female') |

(i1>0 & i1<=2 & i2<=4 & sex=='male'),
highrisk = ((i1>1 | i2>3) & sex=='female') |

((i1>2 | i2>4) & sex=='male'),
.ordered = TRUE)

)
tally(~ drink_status, data = modHELP)

Method 2: Use .default for last level
modHELP <- mutate(HELPrct, drink_status = derivedFactor(

abstinent = i1 == 0,
moderate = (i1<=1 & i2<=3 & sex=='female') |

(i1<=2 & i2<=4 & sex=='male'),
.ordered = TRUE,
.method = "first",
.default = "highrisk")

)
tally(~ drink_status, data = modHELP)

Method 3: use TRUE to catch any fall through slots
modHELP <- mutate(HELPrct, drink_status = derivedFactor(

abstinent = i1 == 0,
moderate = (i1<=1 & i2<=3 & sex=='female') |

(i1<=2 & i2<=4 & sex=='male'),
highrisk=TRUE,
.ordered = TRUE,
.method = "first"
)

)

dfapply 33

tally(~ drink_status, data = modHELP)
is.factor(modHELP$drink_status)

modHELP <- mutate(HELPrct, drink_status = derivedVariable(
abstinent = i1 == 0,
moderate = (i1<=1 & i2<=3 & sex=='female') |

(i1<=2 & i2<=4 & sex=='male'),
highrisk=TRUE,
.ordered = TRUE,
.method = "first"
)

)
is.factor(modHELP$drink_status)

dfapply apply-type function for data frames

Description

An apply-type function for data frames.

Usage

dfapply(data, FUN, select = TRUE, ...)

Arguments

data data frame

FUN a function to apply to (some) variables in the data frame

select a logical, character (naming variables), or numeric vector or a function used to
select variables to which FUN is applied. If a function, it should take a vector as
input and return a single logical. See examples.

... arguments passed along to FUN

See Also

apply, sapply, tapply, lapply, inspect

Examples

dfapply(iris, favstats, select = is.numeric)
dfapply(iris, favstats, select = c(TRUE, TRUE, FALSE, FALSE, FALSE))
dfapply(iris, favstats, select = c(1,2))
dfapply(iris, favstats, select = c("Sepal.Length", "Petal.Length"))
dfapply(HELPrct, table, select = is.factor)
do.call(rbind, dfapply(HELPrct, favstats, select = is.numeric))

34 do

diffmean Difference in means and proportions

Description

Wrappers around diff(mean(...)) and diff(prop(...)) that facilitate better naming of the
result

Usage

diffmean(x, ..., data = parent.frame(), only.2 = TRUE)

diffprop(x, ..., data = parent.frame(), only.2 = TRUE)

Arguments

x, data, ... as in mean or prop

only.2 a logical indicating whether differences should only be computed between two
groups.

Examples

if (require(mosaicData)) {
diffprop(homeless ~ sex , data=HELPrct)
do(3) * diffprop(homeless ~ shuffle(sex) , data=HELPrct)
diffmean(age ~ substance, data=HELPrct, only.2=FALSE)
do(3) * diffmean(age ~ shuffle(substance), data=HELPrct, only.2=FALSE)
diffmean(age ~ sex, data=HELPrct)
do(3) * diffmean(age ~ shuffle(sex), data=HELPrct)
}

do Do Things Repeatedly

Description

do() provides a natural syntax for repetition tuned to assist with replication and resampling meth-
ods.

do 35

Usage

do(object, ...)

S3 method for class 'numeric'
do(object, ...)

Default S3 method:
do(object, ...)

Do(n = 1L, cull = NULL, mode = "default", algorithm = 1,
parallel = TRUE)

S3 method for class 'repeater'
print(x, ...)

S4 method for signature 'repeater,ANY'
e1 * e2

Arguments

object an object

... additional arguments

n number of times to repeat

cull function for culling output of objects being repeated. If NULL, a default culling
function is used. The default culling function is currently aware of objects of
types lme, lm, htest, table, cointoss, and matrix.

mode target mode for value returned

algorithm a number usd to select the algorithm used. Currently numbers below 1 use an
older algorithm and numbers >=1 use a newer algorithm which is faster in some
situations.

parallel a logical indicating whether parallel computation should be attempted using the
parallel package (if it is installed and loaded).

x an object created by do.

e1 an object (in cases documented here, the result of running do)

e2 an object (in cases documented here, an expression to be repeated)

Value

do returns an object of class repeater which is only useful in the context of the operator *. See the
examples.

Note

do is a thin wrapper around Do to avoid collision with do from the dplyr package.

36 docFile

Author(s)

Daniel Kaplan (<kaplan@macalaster.edu>) and Randall Pruim (<rpruim@calvin.edu>)

See Also

replicate, set.rseed

Examples

do(3) * rnorm(1)
do(3) * "hello"
do(3) * 1:4
do(3) * mean(rnorm(25))
if (require(mosaicData)) {

do(3) * lm(shuffle(height) ~ sex + mother, Galton)
do(3) * anova(lm(shuffle(height) ~ sex + mother, Galton))
do(3) * c(sample.mean = mean(rnorm(25)))
set.rseed(1234)
do(3) * tally(~sex|treat, data=resample(HELPrct))
set.rseed(1234) # re-using seed gives same results again
do(3) * tally(~sex|treat, data=resample(HELPrct))

}

docFile Return the path to a documentation file in a package

Description

Return the path to a documentation file in a package

Usage

docFile(file, package = "mosaic", character.only = FALSE)

Arguments

file the name of a file

package the name of a package

character.only a logical. If TRUE package names must be specified as character, else names will
be converted as a convenience as is library and library.

Value

a character vector specifying the path to the file on the user’s system.

Examples

MustangPrice <- read.file(docFile("MustangPrice.csv", "mosaic"))

dotPlot 37

dotPlot Dotplots

Description

A high level function and panel function for producing a variant of a histogram called a dotplot.

Usage

dotPlot(x, breaks, ..., panel = panel.dotPlot)

panel.dotPlot(x, breaks, equal.widths = TRUE, groups = NULL, nint = if
(is.factor(x)) nlevels(x) else round(1.3 * log2(length(x)) + 4), pch, col,
lty = trellis.par.get("dot.line")$lty,
lwd = trellis.par.get("dot.line")$lwd,
col.line = trellis.par.get("dot.line")$col,
alpha = trellis.par.get("dot.symbol")$alpha, cex = 1, type = "count",
...)

Arguments

x a vector of values or a formula
breaks, equal.widths, groups, pch, col, lty, lwd, col.line, type, alpha

as in histogram

panel a panel function

nint the number of intervals to use

cex a ratio by which to increase or decrease the dot size

... additional arguments

Value

a trellis object

See Also

histogram

Examples

if (require(mosaicData)) {
dotPlot(~ age, data = HELPrct)
dotPlot(~ age, nint=42, data = HELPrct)
dotPlot(~ height | voice.part, data = singer, nint = 17,

endpoints = c(59.5, 76.5), layout = c(4,2), aspect = 1,
xlab = "Height (inches)")

}

38 ediff

dpqrdist Distribution wrapper

Description

Utility function wrapping up the d/p/q/r distribution functions

Usage

dpqrdist(dist, type = c("d", "p", "q", "r"), ...)

Arguments

dist a character discription of a distribution, for example "norm", "t", or "chisq"

type one of "x", "p", "q", or "r"

... additional arguments passed on to underlying distribution function. Note that
one of d, p, q, or n must be a named argument in ...

Examples

3 random draws from N(1,2)
dpqrdist("norm", "r", n=3, mean = 1, sd = 2)
These should all be the same
dpqrdist("norm", "d", x=0) == dnorm(x=0)
dpqrdist("norm", "p", q=0, mean = 1, sd = 2) == pnorm(q=0, mean = 1, sd = 2)
dpqrdist("norm", "q", p=0.5, mean = 1, sd = 2) == qnorm(p=0.5, mean = 1, sd = 2)

ediff Lagged Differences with equal length

Description

Often when creating lagged differences, it is awkward that the differences vector is shorter than the
original. ediff pads with NAs to make its output the same length as the input.

Usage

ediff(x, lag = 1, differences = 1, pad = c("head", "tail", "symmetric"),
frontPad, ...)

evalFormula 39

Arguments

x a numeric vector or a matrix containing the values to be differenced
lag an integer indicating which lag to use
differences an integer indicating the order of the difference
pad one of "head", "tail", or "symmetric". indicating where the NA padding

should be added to the result.
frontPad logical indicating whether padding is on the front (head) or back (tail) end. This

exists for backward compatibility. New code should use pad instaed.
... further arguments to be passed to or from methods

See Also

diff since ediff is a thin wrapper around diff.

Examples

ediff(1:10)
ediff(1:10, 2)
ediff(1:10, 2, 2)
x <- cumsum(cumsum(1:10))
ediff(x, lag = 2)
ediff(x, differences = 2)
ediff(x, differences = 2, pad="symmetric")
ediff(.leap.seconds)
if (require(mosaicData)) {
Men <- subset(SwimRecords, sex=="M")
Men <- mutate(Men, change=ediff(time), interval=ediff(year))
head(Men)
}

evalFormula Evaluate a formula

Description

Evaluate a formula

Usage

evalFormula(formula, data = parent.frame(), subset, ops = c("+", "&"))

Arguments

formula a formula (y ~ x | z) to evaluate
data a data frame or environment in which evaluation occurs
subset an optional vector describing a subset of the observations to be used. Currently

only implemented when data is a data frame.
ops a vector of operator symbols allowable to separate variables in rhs

40 evalSubFormula

Value

a list containing data frames corresponding to the left, right, and condition slots of formula

Examples

if (require(mosaicData)) {
data(CPS85)
cps <- CPS85[1:6,]
cps
evalFormula(wage ~ sex & married & age | sector & race, data=cps)
}

evalSubFormula Evaluate a part of a formula

Description

Evaluate a part of a formula

Usage

evalSubFormula(x, data = NULL, ops = c("+", "&"), env = parent.frame())

Arguments

x an object appearing as a subformula (typically a name or a call)

data a data frame or environment in which things are evaluated

ops a vector of operators that are not evaluated as operators but instead used to fur-
ther split x

env an environment in which to search for objects not in data.

Value

a data frame containing the terms of the evaluated subformula

Examples

if (require(mosaicData)) {
data(CPS85)
cps <- CPS85[1:6,]
cps
evalSubFormula(rhs(~ married & sector), data=cps)
}

expandFun 41

expandFun Expand the left-hand side of a formula

Description

Expands the contents of functions used in a formula.

Usage

expandFun(formula, ...)

Arguments

formula A mathematical expression (see examples and plotFun)

... additional parameters

Value

A list with the new expanded formula and the combined formals

Examples

f=makeFun(x^2~x)
expandFun(f(z)~z) #Returns z^2~z

factorize Conditionally convert vectors to factors

Description

A generic function and several instances for creating factors from other sorts of data. The primary
use case is for vectors that contain few unique values and might be better considered as factors.
When applied to a data frame, this is applied to each variable in the data frame.

Usage

factorize(x, ...)

Default S3 method:
factorize(x, ...)

S3 method for class 'numeric'
factorize(x, max.levels = 5L, ...)

S3 method for class 'character'
factorize(x, max.levels = 5L, ...)

42 fav_stats

S3 method for class 'data.frame'
factorize(x, max.levels = 5L, ...)

factorise(x, ...)

Arguments

x an object

... additional arguments (currently ignored)

max.levels an integer. Only convert if the number of unique values is no more than max.levels.

Examples

data(KidsFeet, package="mosaicData")
str(KidsFeet)
factorize(KidsFeet$birthyear)
str(factorize(KidsFeet))
alternative spelling
str(factorise(KidsFeet))

fav_stats Some favorite statistical summaries

Description

Likely you mean to be using favstats. Each of these computes the mean, standard deviation,
quartiles, sample size and number of missing values for a numeric vector, but favstats can take
a formula describing how these summary statistics should be aggregated across various subsets of
the data.

Usage

fav_stats(x, ..., na.rm = TRUE, type = 7)

Arguments

x numeric vector

... additional arguments (currently ignored)

na.rm boolean indicating whether missing data should be ignored

type an integer between 1 and 9 selecting one of the nine quantile algorithms detailed
in the documentation for quantile

Value

A vector of statistical summaries

fetchData 43

Examples

fav_stats(1:10)
fav_stats(faithful$eruptions)
favstats(Sepal.Length ~ Species, data=iris) # Note: this is favstats() rather than fav_stats()

fetchData Defunct functions now in the fetch package

Description

These functions have been moved to the fetch package.

Usage

fetchData(...)

fetchGapminder1(...)

fetchGapminder(...)

fetchGoogle(...)

Arguments

... arguments

findZeros Find zeros of functions

Description

Compute numerically zeros of a function or simultaneous zeros of multiple functions.

Solve an equation

Usage

findZeros(expr, ..., xlim = c(near - within, near + within), near = 0,
within = Inf, nearest = 10, npts = 1000, iterate = 1,
sortBy = c("byx", "byy", "radial"))

S3 method for class 'formula'
solve(form, ..., near = 0, within = Inf, nearest = 10,
npts = 1000, iterate = 1, sortBy = c("byx", "byy", "radial"))

44 findZeros

Arguments

expr A formula. The right side names the variable with respect to which the zeros
should be found. The left side is an expression, e.g. sin(x) ~ x. All free
variables (all but the variable on the right side) named in the expression must be
assigned a value via ...

xlim The range of the dependent variable to search for zeros. Inf is a legitimate value,
but is interpreted in the numerical sense as the non-Inf largest floating point
number. This can also be specified replacing x with the name of the variable.
See the examples.

near a value near which zeros are desired

within only look for zeros at least this close to near. near and within provide an
alternative to using xlim to specify the search space.

nearest the number of nearest zeros to return. Fewer are returned if fewer are found.

npts How many sub-intervals to divide the xlim into when looking for candidates for
zeros. The default is usually good enough. If Inf is involved, the intervals are
logarithmically spaced up to the largest finite floating point number. There is no
guarantee that all the roots will be found.

iterate maximum number of times to iterate the search. Subsequent searches take place
with the range of previously found zeros. Choosing a large number here is likely
to kill performance without improving results, but a value of 1 (the default) or 2
works well when searching in c(-Inf,Inf) for a modest number of zeros near
near.

sortBy specifies how the zeros found will be sorted. Options are ’byx’, ’byy’, or ’radial’.

form Expression to be solved

... Formulas corresponding to additional functions to use in simultaneous zero find-
ing and/or specific numerical values for the free variables in the expression.

Details

Searches numerically using uniroot.

Uses findZerosMult of findZeros to solve the given expression

Value

A dataframe of zero or more numerical values. Plugging these into the expression on the left side
of the formula should result in values near zero.

a dataframe with solutions to the expression.

Author(s)

Daniel Kaplan (<kaplan@macalester.edu>)

Cecylia Bocovich

findZerosMult 45

Examples

findZeros(sin(t) ~ t, xlim=c(-10,10))
Can use tlim or t.lim instead of xlim if we prefer
findZeros(sin(t) ~ t, tlim=c(-10,10))
findZeros(sin(theta) ~ theta, near=0, nearest=20)
findZeros(A*sin(2*pi*t/P) ~ t, xlim=c(0,100), P=50, A=2)
Interval of a normal at half its maximum height.
findZeros(dnorm(x,mean=0,sd=10) - 0.5*dnorm(0,mean=0,sd=10) ~ x)
A pathological example
There are no "neareset" zeros for this function. Each iteration finds new zeros.
f <- function(x) { if (x==0) 0 else sin(1/x) }
findZeros(f(x) ~ x, near=0)
Better to look nearer to 0
findZeros(f(x) ~ x, near=0, within=100)
findZeros(f(x) ~ x, near=0, within=100, iterate=0)
findZeros(f(x) ~ x, near=0, within=100, iterate=3)
Zeros in multiple dimensions (not run: these take a long time)
findZeros(x^2+y^2+z^2-5~x&y&z, nearest=3000, within = 5)
findZeros(x*y+z^2~z&y&z, z+y~x&y&z, npts=10)
solve(3*x==3~x)

plot out sphere (not run)
sphere = solve(x^2+y^2+z^2==5~x&y&z, within=5, nearest=1000)
cloud(z~x+y, data=sphere)

findZerosMult Find the zeros of a function of two or more variables

Description

Compute numerically zeros of a function of two or more variables. All free variables (all but the
variable on the right side) named in the expression must be assigned a value via ...

Usage

findZerosMult(..., npts = 10, rad = 5, near = 0, sortBy = "byx")

Arguments

... arguments for values NOTE: if the system has more than one equation and the
rhs variables do not match up, there will be an error.

npts number of desired zeros to return

rad radius around near in which to look for zeros

near center of search for zeros

sortBy options for sorting zeros for plotting. Options are ’byx’, ’byy’ and ’radial’. The
default value is ’byx’.

46 fitModel

Details

sorts points in the domain according to the sign of the function value at respective points. Use
continuity and uniroot to find zeros between points of opposite signs. Returns any number of points
which may be sorted and plotted according to x, y, or radial values.

Value

A data frame of numerical values which should all result in a value of zero when input into original
function

Author(s)

Cecylia Bocovich

Examples

findZerosMult(a*x^2-8~a&x, npts = 50)
findZerosMult(a^2+x^2-8~a&x, npts = 100, sortBy='radial')
Not run: findZerosMult(a^2+x^2-8~a&x, npts = 1000, sortBy='radial')

fitModel Fit a nonlinear least squares model

Description

Allows you to specify a formula with parameters, along with starting guesses for the parameters.
Refines those guesses to find the least-squares fit.

Usage

fitModel(formula, data = parent.frame(), start = list(), ...)

model(object, ...)

S3 method for class 'nlsfunction'
model(object, ...)

S3 method for class 'nlsfunction'
summary(object, ...)

S3 method for class 'nlsfunction'
coef(object, ...)

fitSpline 47

Arguments

formula formula specifying the model

data dataframe containing the data to be used

start passed as start to nls. If and empty list, a simple starting point is used (thus
avoiding the usual warning message).

object an R object (typically a the result of fitModel)

... additional arguments passed to nls

Details

Fits a nonlinear least squares model to data. In contrast to linear models, all the parameters (in-
cluding linear ones) need to be named in the formula. The function returned simply contains the
formula together with pre-assigned arguments setting the parameter value. Variables used in the
fitting (as opposed to parameters) are unassigned arguments to the returned function.

Value

a function

Note

This doesn’t work with categorical explanatory variables. Also, this does not work with synthentic
data that fit the model perfectly. See link{nls} for details.

See Also

linearModel, nls

Examples

if (require(mosaicData)) {
f <- fitModel(temp ~ A+B*exp(-k*time), data=CoolingWater, start=list(A=50,B=50,k=1/20))
f(time=50)
coef(f)
summary(f)
model(f)
}

fitSpline Fit splines to data

Description

These functions create mathematical functions from data, using splines.

48 formularise

Usage

fitSpline(formula, data = parent.frame(), df = NULL, knots = NULL,
degree = 3, type = c("natural", "linear", "cubic", "polynomial"), ...)

Arguments

formula a formula. Only one quantity is allowed on the left-hand side, the output quantity

data a data frame in which formula is evaluated.

df degrees of freedom (used to determine how many knots should be used)

knots a vector of knots

degree parameter for splines when type is "polynomial". 1 is locally linear, 2 is lo-
cally quadratic, etc.

type type of splines to use; one of "linear", "cubic", "natural" (cubic with linear
tails, the default), or "polynomial".

... additional arguments passed to spline basis functions (ns and bs).

Value

a function of the explanatory variable

See Also

bs and ns for the bases used to generate the splines.

Examples

f <- fitSpline(weight ~ height, data=women, df=5)
xyplot(weight ~ height, data=women)
plotFun(f(height) ~ height, add=TRUE)

g <- fitSpline(length ~ width, data = KidsFeet, type='natural', df=5)
h <- fitSpline(length ~ width, data = KidsFeet, type='linear', df=5)
xyplot(length ~ width, data = KidsFeet, col='gray70', pch=16)
plotFun(g, add=TRUE, col='navy')
plotFun(h, add=TRUE, col='red')

formularise Convert lazy objects into formulas

Description

Convert lazy objects into a formula

Usage

formularise(lazy_formula, envir = parent.frame())

fortify.hclust 49

Arguments

lazy_formula an object of class lazy

envir an environment that will be come the environment of the returned formula

Details

The expression of the lazy object is evaluated in its environment. If the result is not a formula, then
the formula is created with an empty left hand side and the expression on the right hand side.

Value

a formula

Examples

formularise(lazyeval::lazy(foo))
formularise(lazyeval::lazy(y ~ x))
bar <- a ~ b
formularise(lazyeval::lazy(bar))

fortify.hclust mosaic tools for clustering

Description

mosaic tools for clustering

Usage

S3 method for class 'hclust'
fortify(model, data, which = c("segments", "heatmap",
"leaves", "labels", "data"), k = 1, ...)

S3 method for class 'hclust'
mplot(object, data, colorize = TRUE, k = 1,
labels = FALSE, heatmap = 0, enumerate = "white", ...)

Arguments

model a model

data a data-like object

which which kind of fortification to compute

k number of clusters

... additional arguments passed on to link{dendro_data}

object an object of class "hclust"

50 fortify.summary.lm

colorize whether to show clusters in different colors

labels a logical indicating whether labels should be used to identify leaves of the tree.

heatmap the ratio of size of heatmap to size of dendrogram. Use 0 or FALSE to omit the
heatmap.

enumerate a color used for numbers within heatmap. Use "transparent" to hide.

Examples

KidsFeet %>% select(-name, -birthmonth) %>% rescale() -> KidsFeet2
M <- dist(KidsFeet2)
Cl <- hclust(M)
fortify(Cl, k=5) %>% head(3)
fortify(Cl, which="heatmap", data=KidsFeet2) %>% head(3)
fortify(Cl, which="data", data=KidsFeet2) %>% head(3)
fortify(Cl, which="labels") %>% head(3)
mplot(Cl, data=KidsFeet2, k=4, heatmap=2)
mplot(Cl, data=KidsFeet2, k=4, heatmap=0.5, enumerate="transparent")
mplot(Cl, data=KidsFeet2, k=4, heatmap=2, type="triangle")
mplot(Cl, data=KidsFeet2, k=4, heatmap=0, type="triangle")

fortify.summary.lm Extract data from R objects

Description

Extract data from R objects

Usage

S3 method for class 'summary.lm'
fortify(model, data = NULL, level = 0.95, ...)

S3 method for class 'summary.glm'
fortify(model, data = NULL, level = 0.95, ...)

S3 method for class 'TukeyHSD'
fortify(model, data, order = c("asis", "pval",
"difference"), ...)

Arguments

model an R object

data original data set, if needed

level confidence level

... additional arguments

order one of "pval", "diff", or "asis" determining the order of the pair factor,
which determines the order in which the differences are displayed on the plot.

freqpoly 51

Examples

fortify(TukeyHSD(lm(age ~ substance, data=HELPrct)))

freqpoly Turn histograms into frequency polygons

Description

Turn histograms into frequency polygons

Usage

freqpoly(x, plot = TRUE, ...)

hist2freqpolygon(hist)

S3 method for class 'freqpolygon'
plot(x, freq = equidist, col = graphics::par("fg"),
lty = NULL, lwd = 1, main = paste("Frequency polygon of", paste(x$xname,
collapse = "\n")), sub = NULL, xlab = x$xname, ylab, xlim = range(x$x),
ylim = NULL, axes = TRUE, labels = FALSE, add = FALSE, ann = TRUE,
...)

Arguments

x a vector of values for which a frequency polygon is desired.
plot a logical indicating if a plot should be generated.
... additional arguments passed on to hist().
hist a histgram object produced by link{hist}().
freq A logical indicating whether the vertical scale should be frequency (count).
col A color for the frequency polygon.
lty An integer indicating the line type.
lwd An integer indicating the line width.
main A title for the plot.
sub A sub-title for the plot.
xlab Label for the horizontal axis.
ylab Label for the vertical axis.
xlim A numeric vector of lenght 2.
ylim A numeric vector of lenght 2.
axes A logical indicating whehter axes should be drawn.
labels A logical indicating whether labels should be printed or a character vector of

labels to add.
add A logical indicating whether the plot should be added to the current plot
ann A logical indicating whether annotations (titles and axis titles) should be plotted.

52 freqpolygon

Value

An object of class "freqpoly" (invisibly). Additionally, if plot is TRUE, a plot is generated.

Examples

freqpoly(faithful$eruptions)
bks <- c(0, 1, 1.5, 2, 3, 3.5, 4, 4.5, 5, 7)
hist(faithful$eruptions, breaks = bks)
freqpoly(faithful$eruptions, col = rgb(0,0,1,.5), lwd = 5, breaks = bks, add = TRUE)

freqpolygon Frequency Polygons

Description

Frequency polygons are an alternative to histograms that make it simpler to overlay multiple distri-
butions.

Usage

freqpolygon(x, ..., panel = "panel.freqpolygon",
prepanel = "prepanel.default.freqpolygon")

prepanel.default.freqpolygon(x, darg = list(), plot.points = FALSE,
ref = FALSE, groups = NULL, subscripts = TRUE, jitter.amount = 0.01 *
diff(current.panel.limits()$ylim), center = NULL, nint = NULL,
breaks = NULL, width = darg$width, type = "density", ...)

panel.freqpolygon(x, darg = list(), plot.points = FALSE, ref = FALSE,
groups = NULL, weights = NULL, jitter.amount = 0.01 *
diff(current.panel.limits()$ylim), type = "density", breaks = NULL,
nint = NULL, center = NULL, width = darg$width,
gcol = trellis.par.get("reference.line")$col,
glwd = trellis.par.get("reference.line")$lwd, h, v, ...,
identifier = "freqpoly")

Arguments

x a formula or a numeric vector

panel a panel function

prepanel a prepanel function

darg a list of arguments for the function computing the frequency polygon. This
exists primarily for compatibility with densityplot and is unlikely to be needed
by the end user.

freqpolygon 53

plot.points one of TRUE, FALSE, "jitter", or "rug" indicating how points are to be dis-
played

ref a logical indicating whether a horizontal reference line should be added (roughly
equivalent to h=0)

groups, weights, jitter.amount, identifier

as in densityplot or histogram

subscripts as in other lattice prepanel functions

center center of one of the bins

nint an approximate number of bins for the frequency polygon

breaks a vector of breaks for the frequency polygon bins

width width of the bins

type one of 'density', 'percent', or 'count'

gcol color of guidelines

glwd width of guidelines

h, v a vector of values for additional horizontal and vertical lines

... additional arguments passed on to histogram and panel.

Value

a trellis object

Note

This function make use of histogram to determine overall layout. Often this works reasonably
well but sometimes it does not. In particular, when groups is used to overlay multiple frequency
polygons, there is often too little head room. In the latter cases, it may be necessary to use ylim to
determine an approprate viewing rectangle for the plot.

Examples

freqpolygon(~age | substance, data=HELPrct, v=35)
freqpolygon(~age, data=HELPrct, labels=TRUE, type='count')
freqpolygon(~age | substance, data=HELPrct, groups=sex)
freqpolygon(~age | substance, data=HELPrct, groups=sex, ylim=c(0,0.11))
comparison of histogram and frequency polygon
histogram(~eruptions, faithful, type='density', width=.5)
ladd(panel.freqpolygon(faithful$eruptions, width=.5))

54 FunctionsFromData

FunctionsFromData Create function from data

Description

These functions create mathematical functions from data, by smoothing, splining, or linear combi-
nation (fitting). Each of them takes a formula and a data frame as an argument

Usage

spliner(formula, data = NULL, method = "fmm", monotonic = FALSE)

connector(formula, data = NULL, method = "linear")

smoother(formula, data, span = 0.5, degree = 2, ...)

linearModel(formula, data, ...)

Arguments

formula a formula. Only one quantity is allowed on the left-hand side, the output quantity

data a data frame

method a method for splining. See spline.

monotonic a TRUE/FALSE flag specifying whether the spline should respect monotonicity in
the data

span parameter to smoother. How smooth it should be.

degree parameter to smoother. 1 is locally linear, 2 is locally quadratic.

... additional arguments to loess or lm

Details

These functions use data to create a mathematical, single-valued function of the inputs. All return
a function whose arguments are the variables used on the right-hand side of the formula. If the
formula involves a transformation, e.g. sqrt(age) or log(income), only the variable itself, e.g.
age or income, is an argument to the function.

linearModel takes a linear combination of the vectors specified on the right-hand side. It differs
from project in that linearModel returns a function whereas project returns the coefficients.
NOTE: An intercept term is not included unless that is explicitly part of the formula with +1. This
conflicts with the standard usage of formulas as found in lm. Another option for creating such
functions is to combine lm and makeFun.

spliner and connector currently work for only one input variable.

See Also

project method for formulas

getVarFormula 55

Examples

if (require(mosaicData)) {
data(CPS85)
f <- smoother(wage ~ age, span=.9, data=CPS85)
f(40)
derivf <- D(f(age) ~ age)
derivf(40)
g <- linearModel(log(wage) ~ age + educ + 1, data=CPS85)
g(age=40, educ=12)
an alternative way to define g (Note: + 1 is the default for lm().)
g2 <- makeFun(lm(log(wage) ~ age + educ, data=CPS85))
g2(age=40, educ=12)
dgdeduc <- D(g(age=age, educ=educ) ~ educ)
dgdeduc(age=40, educ=12)
x<-1:5; y=c(1, 2, 4, 8, 8.2)
f1 <- spliner(y ~ x)
f1(x=8:10)
f2 <- connector(x~y)
}

getVarFormula Extract data from a data frame using a formula interface

Description

Uses the full model syntax.

Usage

getVarFormula(formula, data = parent.frame(), intercept = FALSE)

Arguments

formula a formula. The right-hand side selects variables; the left-hand side, if present, is
used to set row names. A . on the right-hand side indicates to use all variables
not in the LHS.

data a data frame

intercept a logical indicating whether to include the intercept in the model default: FALSE
(no intercept)

Examples

getVarFormula(~ wt + mpg, data = mtcars)

56 googleMap

googleMap Display a point on earth on a Google Map

Description

Creates a URL for Google Maps for a particular latitude and longitude position.

Usage

googleMap(latitude, longitude, position = NULL, zoom = 12,
maptype = c("roadmap", "satellite", "terrain", "hybrid"), mark = FALSE,
radius = 0, browse = TRUE, ...)

Arguments

latitude, longitude

vectors of latitude and longitude values

position a data frame containing latitude and longitude positions

zoom zoom level for initial map (1-20)

maptype one of 'roadmap', 'satellite', 'terrain', and 'hybrid'

mark a logical indicating whether the location should be marked with a pin

radius a vector of radii of circles centered at position that are displayed on the map

browse a logical indicating whether the URL should be browsed (else only returned as
a string)

... additional arguments passed to browseURL

Value

a string containing a URL. Optionally, as a side-effect, the URL is visited in a browser

See Also

deg2rad, latlon2xyz and rgeo.

Examples

Not run:
googleMap(40.7566, -73.9863, radius=1) # Times Square
googleMap(position=rgeo(2), radius=1) # 2 random locations

End(Not run)

gwm 57

gwm Groupwise models Construct a model based on groupwise means or
proportions

Description

Groupwise models

Construct a model based on groupwise means or proportions

Usage

gwm(formula, data = parent.frame(), drop = FALSE, ...)

Arguments

formula A formula. The left-hand side specifies the response variable over which the
mean or proportion will be taken. The right-hand side gives the explanatory
variables, separated by +. Means or proportions are computed for every combi-
nation of the levels of the explanatory variables.

data A data frame in which to evaluate variables in formula. If not specified, vari-
ables will be taken from the current environment.

drop Logical flag indicating whether to drop unoccupied groups. Default FALSE. NOT
YET IMPLEMENTED.

... Additional arguments; currently ignored.

Details

gwm (groupwise model) is a sort of training function for lm, meant to provide a basis for discussing
inference and introducing resampling in a simple, intuitive setting of groupwise means or propor-
tions. lm provides a better, more general facility. When using lm to recreate the results of gwm,
include all the interaction terms (i.e., use * instead of +) and remove the intercept term. See the
examples.

Value

mm returns an object of class groupwiseModel. The functions fitted.values, residuals, coefficients,
and summary are useful for extracting various features of the value returned by mm

See Also

lm, do

58 inferArgs

Examples

gwm(wage ~ sex, data=CPS85)
gwm(wage ~ sex + married, data = CPS85)
The same model, fit using lm() instead
lm(wage ~ sex * married - 1, data = CPS85)
do(5) * gwm(wage ~ sex + married, data = resample(CPS85))
mod <- gwm(width ~ domhand, data=KidsFeet)
summary(mod)
resid(mod)
fitted(mod)

inferArgs Infer arguments

Description

The primary purpose is for inferring argument settings from names derived from variables occurring
in a formula. For example, the default use is to infer limits for variables without having to call them
xlim and ylim when the variables in the formula have other names. Other uses could easily be
devised by specifying different variants.

Usage

inferArgs(vars, dots, defaults = alist(xlim = , ylim = , zlim =),
variants = c(".lim", "lim"))

Arguments

vars a vector of variable names to look for

dots a named list of argument values

defaults named list or alist of default values for limits

variants a vector of optional postfixes for limit-specifying variable names

Value

a named list or alist of limits. The names are determined by the names in defaults.

If multiple variants are matched, the first is used.

Examples

inferArgs(c('x','u','t'), list(t=c(1,3), x.lim=c(1,10), u=c(1,3), u.lim=c(2,4)))
inferArgs(c('x','u'), list(u=c(1,3)), defaults=list(xlim=c(0,1), ylim=NULL))

inspect 59

inspect Inspect objects

Description

Print a short summary of the contents of an object. Most useful as a way to get a quick overview of
the variables in data frame.

Usage

inspect(object, ...)

S3 method for class 'list'
inspect(object, max.level = 2, ...)

S3 method for class 'character'
inspect(object, ...)

S3 method for class 'logical'
inspect(object, ...)

S3 method for class 'numeric'
inspect(object, ...)

S3 method for class 'factor'
inspect(object, ...)

S3 method for class 'POSIXt'
inspect(object, ...)

S3 method for class 'data.frame'
inspect(object, select = TRUE,
digits = getOption("digits", 3), ...)

S3 method for class 'inspected_data_frame'
print(x, digits = NULL, ...)

Arguments

object a data frame or a vector
... additional arguments passed along to specific methods
max.level an integer giving the depth to which lists should be expanded
select a logical, character (naming variables), or numeric vector or a function used to

select variables to which FUN is applied. If a function, it should take a vector as
input and return a single logical. See examples here and at link{dfapply}.

digits and integer giving the number of digits to display
x an object

60 integrateODE

Examples

inspect(Births78)
inspect(Births78, is.numeric)

integrateODE Integrate ordinary differential equations

Description

A formula interface to integration of an ODE with respect to "t"

Usage

integrateODE(dyn, ..., tdur)

Arguments

dyn a formula specifying the dynamics, e.g. dx ~ -a*x for $dx/dt = -ax$.

tdur the duration of integration. Or, a list of the form list(from=5,to=10,dt=.001)

... arguments giving additional formulas for dynamics in other variables, assign-
ments of parameters, and assignments of initial conditions

Details

The equations must be in first-order form. Each dynamical equation uses a formula interface with
the variable name given on the left-hand side of the formula, preceded by a d, so use dx~-k*x for
exponential decay. All parameters (such as k) must be assigned numerical values in the argument
list. All dynamical variables must be assigned initial conditions in the argument list. The returned
value will be a list with one component named after each dynamical variable. The component will
be a spline-generated function of t.

Value

a list with splined function of time for each dynamical variable

Examples

soln = integrateODE(dx~r*x*(1-x/k), k=10, r=.5, tdur=20, x=1)
soln$x(10)
soln$x(30) # outside the time interval for integration
plotFun(soln$x(t)~t, tlim=range(0,20))
soln2 = integrateODE(dx~y, dy~-x, x=1, y=0, tdur=10)
plotFun(soln2$y(t)~t, tlim=range(0,10))
SIR epidemic
epi = integrateODE(dS~ -a*S*I, dI ~ a*S*I - b*I, a=0.0026, b=.5, S=762, I=1, tdur=20)

is.wholenumber 61

is.wholenumber Check for whole number values

Description

Unlike is.integer, which checks the type of argument is integer, this function checks whether
the value of the argument is an integer (within a specified tolerance).

Usage

is.wholenumber(x, tol = .Machine$double.eps^0.5)

Arguments

x a vector

tol a numeric tolerance

Details

This function is borrowed from the examples for is.integer

Value

a logical vector indicating whether x has a whole number value

Examples

is.wholenumber(1)
all(is.wholenumber(rbinom(100,10,.5)))
is.wholenumber((1:10)/2)

joinFrames Join data frames

Description

Join data frames

Usage

joinFrames(...)

joinTwoFrames(left, right)

62 ladd

Arguments

left, right data frames

... data frames to be joined

Value

a data frame containing columns from each of data frames being joined.

ladd Add to Lattice Plots

Description

Simplified lattice plotting by adding additional elements to existing plots.

Usage

ladd(x, data = NULL, ..., plot = trellis.last.object())

Arguments

x callable graphical element to be added to a panel or panels in a lattice plot

data a list containing objects that can be referred to in x. Panel functions also have
access to the data already used in the panel by the underlying lattice plot. See
layer for details.

... additional arguments passed to layer.

plot a lattice plot to add to. Defaults to previous lattice plot.

Details

ladd is a wrapper around layer that simplifies certain common plotting additions. The same
caveats that apply to that function apply here as well. In particular, ladd uses non-standard evalua-
tion. For this reason care must be taken if trying to use ladd within other functions and the use of
data may be required to pass information into the environment in which x will be evaluated.

Value

a trellis object

Author(s)

Randall Pruim (<rpruim@calvin.edu>)

See Also

layer

linear.algebra 63

Examples

p <- xyplot(rnorm(100) ~rnorm(100))
print(p)
ladd(panel.abline(a=0,b=1))
ladd(panel.abline(h=0,col='blue'))
ladd(grid.text('Hello'))
ladd(grid.text(x=.95,y=.05,'text here',just=c('right','bottom')))
q <- xyplot(rnorm(100) ~rnorm(100)|factor(rbinom(100,4,.5)))
q <- update(q, layout=c(3,2))
ladd(panel.abline(a=0,b=1), plot=q)
ladd(panel.abline(h=0,col='blue'))
ladd(grid.text("(2,1)",gp=gpar(cex=3,alpha=.5)), columns=2, rows=1)
ladd(grid.text("p5",gp=gpar(cex=3,alpha=.5)), packets=5)
q
ladd(grid.text(paste(current.column(), current.row(),sep=','), gp=gpar(cex=3,alpha=.5)))
histogram(~eruptions, data=faithful)
over would probably be better here, but the demonstrates what under=TRUE does.
ladd(panel.densityplot(faithful$eruptions, lwd=4), under=TRUE)

linear.algebra Functions for teaching linear algebra.

Description

These functions provide a formula based interface to the construction of matrices from data and for
fitting. You can use them both for numerical vectors and for functions of variables in data frames.
These functions are intended to support teaching basic linear algebra with a particular connection
to statistics.

Usage

mat(A, data = parent.frame())

singvals(A, data = parent.frame())

Arguments

A a formula. In mat and singvals, only the right-hand side is used.

data a data frame from which to pull out numerical values for the variables in the
formula

... additional arguments (currently ignored)
mat returns a model matrix
To demonstrate singularity, use singvals.

64 logical2factor

Value

mat returns a matrix

singvals gives singular values for each column in the model matrix

See Also

project

linearModel, which returns a function.

Examples

a <- c(1,0,0); b <- c(1,2,3); c <- c(4,5,6); x <- rnorm(3)
Formula interface
mat(~a+b)
mat(~a+b+1)
if (require(mosaicData)) {
mat(~length+sex, data=KidsFeet)
singvals(~length*sex*width, data=KidsFeet)
}

logical2factor Turn logicals into factors; leave other things alone

Description

Turn logicals into factors; leave other things alone

Usage

logical2factor(x, ...)

Default S3 method:
logical2factor(x, ...)

S3 method for class 'data.frame'
logical2factor(x, ...)

Arguments

x a vector or data frame

... additional arguments (currently ignored)

Value

If x is a vector either x or the result of converting x into a factor with levels TRUE and FALSE (in that
order); if x is a data frame, a data frame with all logicals converted to factors in this manner.

logit 65

logit Logit and inverse logit functions

Description

Logit and inverse logit functions

Usage

logit(x)

ilogit(x)

Arguments

x a numeric vector

Value

For logit the value is
log(x/(1− x))

For ilogit the value is
exp(x)/(1 + exp(x))

Examples

p <- seq(.1, .9, by=.10)
l <- logit(p); l
ilogit(l)
ilogit(l) == p

MAD All pairs mean and sum of absolute differences

Description

All pairs mean and sum of absolute differences

Usage

MAD(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

SAD(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

66 MAD_

Arguments

x a numeric vector or a formula.

... additional arguments passed through to MAD_ or SAD_. If x is a formala, ...
should include an argument named data if the intent is to interpret the formala
in a data frame.

data a data frame in which to evaluate formulas (or bare names). Note that the default
is data=parent.frame(). This makes it convenient to use this function inter-
actively by treating the working envionment as if it were a data frame. But this
may not be appropriate for programming uses. When programming, it is best to
use an explicit data argument – ideally supplying a data frame that contains the
variables mentioned.

groups a grouping variable, typically a name of a variable in data

na.rm a logical indicating whether NAs should be removed before calculaing.

Value

the mean or sum of the absolute differences between each pair of values in c(x,...).

See Also

link{mad}, MAD_

Examples

SAD(1:3)
MAD(1:3)
MAD(~eruptions, data=faithful)

MAD_ All pairs mean and sum of absolute differences

Description

All pairs mean and sum of absolute differences

Usage

MAD_(x, ..., na.rm = getOption("na.omit", FALSE))

SAD_(x, ..., na.rm = getOption("na.omit", FALSE))

Arguments

x a numeric vector or a formula.

... additional arguments appended to x

na.rm a logical indicating whether NAs should be removed before calculaing.

maggregate 67

Value

the mean or sum of the absolute differences between each pair of values in c(x,...).

See Also

mad

maggregate Aggregate for mosaic

Description

Compute function on subsets of a variable in a data frame.

Usage

maggregate(formula, data = parent.frame(), FUN, groups = NULL, subset,
drop = FALSE, ..., .format = c("default", "table", "flat"),
.overall = mosaic.par.get("aggregate.overall"), .multiple = FALSE,
.name = deparse(substitute(FUN)), .envir = parent.frame())

Arguments

formula a formula. Left side provides variable to be summarized. Right side and con-
dition describe subsets. If the left side is empty, right side and condition are
shifted over as a convenience.

data a data frame. Note that the default is data=parent.frame(). This makes it
convenient to use this function interactively by treating the working envionment
as if it were a data frame. But this may not be appropriate for programming
uses. When programming, it is best to use an explicit data argument – ideally
supplying a data frame that contains the variables mentioned in formula.

FUN a function to apply to each subset

groups grouping variable that will be folded into the formula (if there is room for it).
This offers some additional flexibility in how formulas can be specified.

subset a logical indicating a subset of data to be processed.

drop a logical indicating whether unused levels should be dropped.

.format format used for aggregation. "default" and "flat" are equivalent.

.overall currently unused

.multiple a logical indicating whether FUN returns multiple values

.name a name used for the resulting object

.envir an environment in which to evaluate expressions

... additional arguments passed to FUN

68 makeColorscheme

Value

a vector

Examples

if (require(mosaicData)) {
maggregate(cesd ~ sex, HELPrct, FUN=mean)
using groups instead
maggregate(~ cesd, groups = sex, HELPrct, FUN=sd)
the next four all do the same thing
maggregate(cesd ~ sex + homeless, HELPrct, FUN=mean)
maggregate(cesd ~ sex | homeless, HELPrct, FUN=sd)
maggregate(~ cesd | sex , groups= homeless, HELPrct, FUN=sd)
maggregate(cesd ~ sex, groups = homeless, HELPrct, FUN=sd)
this is unusual, but also works.
maggregate(cesd ~ NULL , groups = sex, HELPrct, FUN=sd)
}

makeColorscheme Create a color generating function from a vector of colors

Description

Create a color generating function from a vector of colors

Usage

makeColorscheme(col)

Arguments

col a vector of colors

Value

a function that generates a vector of colors interpolated among the colors in col

Examples

cs <- makeColorscheme(c('red','white','blue'))
cs(10)
cs(10, alpha=.5)

makeFun 69

makeFun Create a function from a formula

Description

Provides an easy mechanism for creating simple "mathematical" functions via a formula interface.

Usage

makeFun(object, ...)

S3 method for class 'function'
makeFun(object, ..., strict.declaration = TRUE,
use.environment = TRUE, suppress.warnings = FALSE)

S3 method for class 'formula'
makeFun(object, ..., strict.declaration = TRUE,
use.environment = TRUE, suppress.warnings = FALSE)

S3 method for class 'lm'
makeFun(object, ..., transformation = NULL)

S3 method for class 'glm'
makeFun(object, ..., type = c("response", "link"),
transformation = NULL)

S3 method for class 'nls'
makeFun(object, ..., transformation = NULL)

S3 method for class 'groupwiseModel'
makeFun(object, ..., transformation = NULL)

Arguments

object an object from which to create a function. This should generally be specified
without naming.

... additional arguments in the form var = val that set default values for the inputs
to the function.

strict.declaration

if TRUE (the default), an error is thrown if default values are given for variables
not appearing in the object formula.

use.environment

if TRUE, then variables implicitly defined in the object formula can take default
values from the environment at the time makeFun is called. A warning message
alerts the user to this situation, unless suppress.warnings is TRUE.

suppress.warnings

A logical indicating whether warnings should be suppressed.

70 makeFun

transformation a function used to transform the response. This can be useful to invert a trans-
formation used on the response when creating the model. If NULL, an attempt
will be made to infer the transformation from the model formula. A few simple
transformations (log, log2, sqrt) are recognized. For other transformations,
transformation should be provided explicitly.

type one of 'response' (default) or 'link' specifying scale to be used for value of
function returned.

Details

The definition of the function is given by the left side of a formula. The right side lists at least one
of the inputs to the function. The inputs to the function are all variables appearing on either the left
or right sides of the formula. Those appearing in the right side will occur in the order specified.
Those not appearing in the right side will appear in an unspecified order.

When creating a function from a model created with lm, glm, or nls, the function produced is a
wrapper around the corresponding version of predict. This means that having variables in the
model with names that match arguments of predict will lead to potentially ambiguous situations
and should be avoided.

Value

a function

Examples

f <- makeFun(sin(x^2 * b) ~ x & y & a); f
g <- makeFun(sin(x^2 * b) ~ x & y & a, a=2); g
h <- makeFun(a * sin(x^2 * b) ~ b & y, a=2, y=3); h
if (require(mosaicData)) {
model <- lm(log(length) ~ log(width), data=KidsFeet)
f <- makeFun(model, transformation = exp)
f(8.4)
head(KidsFeet,1)
}

model <- lm(wage ~ poly(exper,degree=2), data=CPS85)
fit <- makeFun(model)
xyplot(wage ~ exper, data=CPS85)
plotFun(fit(exper) ~ exper, add=TRUE)
if (require(mosaicData)) {
model <- glm(wage ~ poly(exper,degree=2), data=CPS85, family=gaussian)
fit <- makeFun(model)
xyplot(wage ~ exper, data=CPS85)
plotFun(fit(exper) ~ exper, add=TRUE)
}
if (require(mosaicData)) {
model <- nls(wage ~ A + B * exper + C * exper^2, data=CPS85, start=list(A=1,B=1,C=1))
fit <- makeFun(model)
xyplot(wage ~ exper, data=CPS85)
plotFun(fit(exper) ~ exper, add=TRUE)
}

makeMap 71

mod <- gwm(wage ~ sector, data = CPS85)
modfun <- makeFun(mod)
modfun(sector = "prof")

makeMap Make a map with ggplot2

Description

makeMap takes in two sources of data that refer to geographical regions and merges them together.
Depending on the arguments passed, it returns this merged data or a ggplot object constructed with
the data.

Usage

makeMap(data = NULL, map = NULL, key = c(key.data, key.map), key.data,
key.map, tr.data = identity, tr.map = identity, plot = c("borders",
"frame", "none"))

Arguments

data A dataframe with regions as cases

map An object that can be fortified to a dataframe (ex: a dataframe itself, or a Spa-
tialPolygonsDataFrame)

key The combination of key.data and key.map

key.data The column name in the data that holds the unique names of each region

key.map The column name in the map that holds the unique names of each region

tr.data A function of the transformation to be performed to the key.data column

tr.map A function of the transformation to be performed to the key.map column

plot The plot desired for the output. plot = "none" returns the merged data that is
the result of merging the data and map together; plot="frame" returns an empty
(unplottable) ggplot object; plot = "border" (the default) returns a ggplot object
with one geom_polygon layer that shows the borders of the regions.

72 mean_

mean_ Aggregating functions

Description

The mosaic package makes several summary statistic functions (like mean and sd) formula aware.

Usage

mean_(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm",
FALSE))

mean(x, ...)

median(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm",
FALSE))

range(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm",
FALSE))

sd(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

max(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

min(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

sum(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

IQR(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

fivenum(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm",
FALSE))

iqr(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

prod(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm",
FALSE))

sum(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

favstats(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

quantile(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm",
FALSE))

var(x, y = NULL, na.rm = getOption("na.rm", FALSE), ..., data = NULL)

mean_ 73

cor(x, y = NULL, ..., data = NULL)

cov(x, y = NULL, ..., data = NULL)

Arguments

x a numeric vector or a formula

data a data frame in which to evaluate formulas (or bare names). Note that the default
is data=parent.frame(). This makes it convenient to use this function inter-
actively by treating the working envionment as if it were a data frame. But this
may not be appropriate for programming uses. When programming, it is best to
use an explicit data argument – ideally supplying a data frame that contains the
variables mentioned.

groups a grouping variable, typically a name of a variable in data

na.rm a logical indicating whether NAs should be removed before computing

y a numeric vector or a formula

... additional arguments

Details

Many of these functions mask core R functions to provide an additional formula interface. Old
behavior should be unchanged. But if the first argument is a formula, that formula, together with
data are used to generate the numeric vector(s) to be summarized. Formulas of the shape x ~ a or
~ x | a can be used to produce summaries of x for each subsect defined by a. Two-way aggregation
can be acheived using formulas of the form x ~ a + b or x ~ a | b. See the examples.

Note

Earlier versions of these functions supported a "bare name + data frame" interface. This function-
ality has been removed since it was (a) ambiguous in some cases, (b) unnecessary, and (c) difficult
to maintain.

Examples

mean(HELPrct$age)
mean(~ age, data=HELPrct)
mean(age ~ shuffle(sex), data=HELPrct)
mean(age ~ shuffle(sex), data=HELPrct, .format="table")
wrap in data.frame() to auto-convert awkward variable names
data.frame(mean(age ~ shuffle(sex), data=HELPrct, .format="table"))
mean(age ~ sex + substance, data=HELPrct)
mean(~ age | sex + substance, data=HELPrct)
mean(~ sqrt(age), data=HELPrct)
sum(~ age, data=HELPrct)
sd(HELPrct$age)
sd(~ age, data=HELPrct)
sd(age ~ sex + substance, data=HELPrct)
var(HELPrct$age)
var(~ age, data=HELPrct)

74 mm

var(age ~ sex + substance, data=HELPrct)
IQR(width ~ sex, data=KidsFeet)
iqr(width ~ sex, data=KidsFeet)
favstats(width ~ sex, data = KidsFeet)

cor(length ~ width, data = KidsFeet)
cov (length ~ width, data = KidsFeet)

mid midpoints along a sequence

Description

Compute a vector of midpoints between values in a numeric vector

Usage

mid(x)

Arguments

x a numeric vector

Value

a vector of length 1 less than x

Examples

mid(1:5)
mid((1:5)^2)

mm Construct a model based on groupwise means

Description

Calculate groupwise means, presenting the result as a model in the style of lm.

Usage

mm(formula, data = parent.frame(), fun = mean, drop = TRUE, ...)

modelVars 75

Arguments

formula A formula. The left-hand side specifies the variable over which the mean will
be taken. The right-hand side gives the grouping variables, separated by &.

data A data frame to which the formula variables refer. If not specified, variables will
be taken from the current environment.

fun The function used to calculate the means. Default: mean.

drop Logical flag indicating whether to drop unoccupied groups. Default TRUE. NOT
YET IMPLEMENTED.

... Additional arguments to be passed to the fun doing the calculation.

Details

mm is a sort of training function for lm, meant to provide a basis for discussing inference and in-
troducing resampling in a simple, intuitive setting of groupwise means. lm provides a better, more
general facility. When using lm to recreate the results of mm, include all the interaction terms, that
is, use * instead of &. See the examples.

Value

mm returns an object of class groupwiseModel. The functions fitted.values, residuals, coefficients,
and summary are useful for extracting various features of the value returned by mm

See Also

lm, do

modelVars extract predictor variables from a model

Description

extract predictor variables from a model

Usage

modelVars(model)

Arguments

model a model, typically of class lm or glm

Value

a vector of variable names

76 mosaic.options

Examples

model <- lm(wage ~ poly(exper,degree=2), data=CPS85)
modelVars(model)

mosaic.options Setting options for mosaic package functions

Description

A mechanism for setting options in the mosaic package.

Usage

mosaic.options(...)

mosaic.getOption(name)

mosaic.par.set(name, value, ..., theme, warn = TRUE, strict = FALSE)

mosaic.par.get(name = NULL)

restoreLatticeOptions()

mosaicLatticeOptions()

Arguments

name the name of the option being set

value the value to which to set the option

theme a list appropriate for a mosaic theme

warn a logical. UNUSED at present.

strict a logical or numeric.

... additional arguments that are turned into a list if a list cannot be inferred from
theme, name, and value.

Details

restoreLatticeOptions returns any lattice options that were changed when the mosiac package
was loaded back to their pre-mosaic state.

mosaicLatticeOptions sets a number of defaults for lattice graphics.

mosaic_formula 77

mosaic_formula Convert formulas into standard shapes

Description

These functions convert formauls into standard shapes, including by incorporating a groups argu-
ment.

Usage

mosaic_formula(formula, groups = NULL, envir = parent.frame(),
max.slots = 3, groups.first = FALSE)

mosaic_formula_q(formula, groups = NULL, max.slots = 3,
groups.first = FALSE, ...)

Arguments

formula a formula

groups a name used for grouping

envir the environment in which the resulting formula may be evaluated. May also be
NULL, a list, a data frame, or a pairlist.

max.slots an integer specifying the maximum number of slots for the resulting formula.
An error results from trying to create a formula that is too complex.

groups.first a logical indicating whether groups should be inserted ahead of the condition
(else after).

... additional arguments (currently ignored)

Details

mosaic_formula_q uses nonstandard evaluation of groups that may be necessary for use within
other functions. mosaic_formula is a wrapper around mosaic_formula_q and quotes groups
before passing it along.

Examples

mosaic_formula(~ x | z)
mosaic_formula(~ x, groups=g)
mosaic_formula(y ~ x, groups=g)
this is probably not what you want for interactive use.
mosaic_formula_q(y ~ x, groups=g)
but it is for programming
foo <- function(x, groups=NULL) {

mosaic_formula_q(x, groups=groups, envir=parent.frame())
}
foo(y ~ x , groups = g)

78 mPlot

mPlot Interactive plotting

Description

These functions provide a menu selection system (via manipulate) so that different aspects of a
plot can be selected interactively. The ggplot2 or lattice command for generating the plot currently
being displayed can be copied to the console, whence it can be copied to a document for later direct,
non-interactive use.

Usage

mPlot(data, format, default = format, system = c("lattice", "ggplot2"),
show = FALSE, title = "", data_text = expr_text(data), ...)

mMap(data, default = "map", system = "ggplot2", show = FALSE,
title = title, data_text = expr_text(data), ...)

mScatter(data, default = c("scatter", "jitter", "boxplot", "violin", "line"),
system = c("lattice", "ggplot2"), show = FALSE, title = "",
data_text = lazyeval::expr_text(data))

mUniplot(data, default = c("histogram", "density", "frequency polygon",
"ASH plot"), system = c("lattice", "ggplot2"), show = FALSE, title = "",
data_text = expr_text(data))

Arguments

data a data frame containing the variables that might be used in the plot. Note that
for maps, the data frame must contain coordinates of the polygons comprising
the map and a variable for determining which corodiantes are part of the same
region. See sp2df for one way to create such a data frame. Typically merge will
be used to combine the map data with some auxilliary data to be displayed as
fill color on the map, although this is not necessary if all one wants is a map.

format a synonym for default.
default default type of plot to create; one of "scatter", "jitter", "boxplot", "violin",

"histogram", "density", "frequency polygon", "xyplot", or "map". Unique
prefixes suffice.

system which graphics system to use (initially) for plotting (ggplot2 or lattice). A check
box will allow on the fly change of plotting system.

show a logical, if TRUE, the code will be displayed each time the plot is changed.
title a title for the plot
data_text A text string describing the data. It must be possible to recover the data from

this string using eval(). Typically users will not need to modify this from the
default value.

... additional arguments

mplot 79

Details

Only mPlot is required by end users. The other plotting functions are dispatched based on the value
of default. Furthermore, mplot will dispatch mPlot when provided a data frame.

Currently maps are only supported in ggplot2 and not in lattice.

Value

Nothing. Just for side effects.

Examples

Not run:
mPlot(HELPrct, format="scatter")
mPlot(HELPrct, format="density")

End(Not run)

mplot Generic plotting

Description

Generic function plotting for R objects. Currently plots exist for data.frames, lms, (including
glms).

Usage

mplot(object, ...)

Default S3 method:
mplot(object, ...)

S3 method for class 'lm'
mplot(object, which = c(1:3, 7), system = c("lattice",
"ggplot2", "base"), ask = FALSE, multiplot = "package:gridExtra" %in%
search(), par.settings = theme.mosaic(), level = 0.95,
title = paste("model: ", deparse(object$call), "\n"), rows = TRUE, ...)

S3 method for class 'data.frame'
mplot(object, format, default = format,
system = c("lattice", "ggplot2"), show = FALSE, title = "", ...)

S3 method for class 'summary.lm'
mplot(object, system = c("lattice", "ggplot2"),
level = 0.95, par.settings = trellis.par.get(), rows = TRUE, ...)

S3 method for class 'TukeyHSD'

80 mplot

mplot(object, system = c("lattice", "ggplot2"),
ylab = "", xlab = "difference in means", title = paste0(attr(object,
"conf.level") * 100, "% family-wise confidence level"),
par.settings = trellis.par.get(), order = c("asis", "pval", "difference"),
...)

Arguments

object an R object from which a plot will be constructed.

... additional arguments. If object is an lm, subsets of these arguments are passed
to grid.arrange and to the lattice plotting routines; in particular, nrow and
ncol can be used to control the number of rows and columns used.

which a numeric vector used to select from 7 potential plots

system which graphics system to use (initially) for plotting (ggplot2 or lattice). A check
box will allow on the fly change of plotting system.

ask if TRUE, each plot will be displayed separately after the user responds to a
prompt.

multiplot if TRUE and ask == FALSE, all plots will be displayed together.

par.settings lattice theme settings

level a confidence level

title title for plot

rows rows to show. This may be a numeric vector, TRUE (for all rows), or a character
vector of row names.

format, default

default type of plot to create; one of "scatter", "jitter", "boxplot", "violin",
"histogram", "density", "frequency polygon", or "map". Unique prefixes
suffice.

show a logical, if TRUE, the code will be displayed each time the plot is changed.

ylab label for y-axis

xlab label for x-axis

order one of "pval", "diff", or "asis" determining the order of the pair factor,
which determines the order in which the differences are displayed on the plot.

data a data frame containing the variables that might be used in the plot.

Details

The method for models (lm and glm) is still a work in progress, but should be useable for relatively
simple models. When the results for a logistic regression model created with glm() are satisfactory
will depend on the format and structure of the data used to fit the model.

Value

Nothing. Just for side effects.

MSPE 81

Examples

mplot(lm(width ~ length * sex, data=KidsFeet))
mplot(lm(width ~ length * sex, data=KidsFeet), rows=2:3, which=7)
Not run:
mplot(HELPrct)
mplot(HELPrct, "histogram")

End(Not run)
mplot(summary(lm(width ~ length * sex, data=KidsFeet)), system="ggplot")
mplot(summary(lm(width ~ length * sex, data=KidsFeet)), rows=c("sex", "length"))
mplot(summary(lm(width ~ length * sex, data=KidsFeet)), rows=TRUE)
mplot(TukeyHSD(lm(age ~ substance, data=HELPrct)))
mplot(TukeyHSD(lm(age ~ substance, data=HELPrct)), system="ggplot2")

MSPE Mean Squared Prediction Error

Description

A one-step calculation of mean square prediction error

Usage

MSPE(model, data, LL = TRUE)

Arguments

model a model produced by lm, glm, or gwm.

data a data frame.

LL if TRUE, for categorical responses replace mean square error with minus mean
log likelihood

Details

For categorical responses, the mean square prediction error is not ideal. Better to use the likelhood.
LL = TRUE (the default) turns the calculation into the mean log likelihood per case, negated so that
large values mean poor predictions

Examples

HELP <- HELPrct %>% sample_frac(.3)
MSPE(gwm(age ~ sex, data = HELP), HELPrct)
MSPE(gwm(age ~ 1, data = HELP), HELPrct)
MSPE(gwm(age ~ sex + homeless, data = HELP), HELPrct)
MSPE(gwm(sex ~ 1, data = HELP), HELPrct)
MSPE(gwm(sex ~ homeless, data = HELP), HELPrct)
MSPE(gwm(sex ~ homeless + substance, data = HELP), HELPrct)

82 mWorldMap

mUSMap Make a US map with ggplot2

Description

mUSMap takes in one dataframe that includes information about different US states. It merges this
dataframe with a dataframe that includes geographical coordinate information. Depending on the
arguments passed, it returns this data or a ggplot object constructed with the data.

Usage

mUSMap(data = NULL, key, fill = NULL, plot = c("borders", "frame",
"none"), style = c("compact", "real"))

Arguments

data A dataframe with US states as cases

key The column name in the data that holds the unique names of each state

fill A variable in the data used to specify the fill color of states in the map (note: if
fill is not null, then plot cannot be set to "none")

plot The plot desired for the output. plot = "none" returns the merged data that is the
result of merging the data and the dataframe with the geographical coordinate
information; plot = "frame" returns an empty (unplottable) ggplot object; plot
= "border" (the default) returns a ggplot object with one geom_polygon layer
that shows the borders of the states

style The style in which to display the map. compact gives a polyconic projection
with Alaska and Hawaii on the lower left corner; real gives the real size and
position of all states without any projection.

Examples

USArrests2 <- USArrests %>% mutate(state = row.names(.))
mUSMap(USArrests2, key="state", fill = "UrbanPop")

mWorldMap Make a world map with ggplot2

Description

mWorldMap takes in one dataframe that includes information about different countries. It merges
this dataframe with a dataframe that includes geographical coordinate information. Depending on
the arguments passed, it returns this data or a ggplot object constructed with the data.

named 83

Usage

mWorldMap(data = NULL, key = NA, fill = NULL, plot = c("borders",
"frame", "none"))

Arguments

data A dataframe with countries as cases

key The column name in the data that holds the unique names of each country

fill A variable in the data used to specify the fill color of countries in the map (note:
if fill is not null, then plot cannot be set to "none")

plot The plot desired for the output. plot = "none" returns the merged data that is the
result of merging the data and the dataframe with the geographical coordinate
information; plot = "frame" returns an empty (unplottable) ggplot object; plot
= "border" (the default) returns a ggplot object with one geom_polygon layer
that shows the borders of the countries

Examples

Not run:
gdpData <- CIAdata("GDP") # load some world data

mWorldMap(gdpData, key="country", fill="GDP")

gdpData <- gdpData %>% mutate(GDP5 = ntiles(-GDP, 5, format="rank"))
mWorldMap(gdpData, key="country", fill="GDP5")

mWorldMap(gdpData, key="country", plot="frame") +
geom_point()

mergedData <- mWorldMap(gdpData, key="country", plot="none")

ggplot(mergedData, aes(x=long, y=lat, group=group, order=order)) +
geom_polygon(aes(fill=GDP5), color="gray70", size=.5) + guides(fill=FALSE)

End(Not run)

named List extraction

Description

These functions create subsets of lists based on their names

84 nice_names

Usage

named(l)

unnamed(l)

named_among(l, n)

Arguments

l a list

n a vector of character strings (potential names)

Value

a sublist of l determined by names(l)

nice_names Nice names

Description

Convert a character vector into a similar character vector that would work better as names in a data
frame by avoiding certain awkward characters

Usage

nice_names(x, unique = TRUE)

Arguments

x a character vector

unique a logical indicating whether returned values should be uniquified.

Value

a character vector

Examples

nice_names(c("bad name", "name (crazy)", "a:b", "two-way"))

ntiles 85

ntiles Create vector based on roughly equally sized groups

Description

Create vector based on roughly equally sized groups

Usage

ntiles(x, n = 3, format = c("rank", "interval", "mean", "median", "center",
"left", "right"), digits = 3)

Arguments

x a numeric vector

n (approximate) number of quantiles

format a specification of desired output format.

digits desired number of digits for labeling of factors.

Value

a vector. The type of vector will depend on format.

Examples

if (require(mosaicData)) {
tally(~ ntiles(age, 4), data=HELPrct)
tally(~ ntiles(age, 4, format="center"), data=HELPrct)
tally(~ ntiles(age, 4, format="interval"), data=HELPrct)
tally(~ ntiles(age, 4, format="left"), data=HELPrct)
tally(~ ntiles(age, 4, format="right"), data=HELPrct)
tally(~ ntiles(age, 4, format="mean"), data=HELPrct)
tally(~ ntiles(age, 4, format="median"), data=HELPrct)
bwplot(i2 ~ ntiles(age, n=5, format="interval"), data=HELPrct)
}

numD Numerical Derivatives

Description

Constructs the numerical derivatives of mathematical expressions

86 numD

Usage

numD(formula, ..., .hstep = NULL, add.h.control = FALSE)

setInterval(C, wrt, h)

setCorners(C, var1, var2, h)

dfdx(.function, .wrt, .hstep)

d2fdxdy(.function, .var1, .var2, .hstep)

d2fdx2(.function, .wrt, .hstep)

numerical.first.partial(f, wrt, h, av)

numerical.second.partial(f, wrt, h, av)

numerical.mixed.partial(f, var1, var2, h, av)

Arguments

formula a mathematical expression (see examples and plotFun)
... additional parameters, typically default values for mathematical parameters
.hstep numerical finite-difference step (default is 1e-6 or 1e-4 for first and second-order

derivatives, respectively)
add.h.control arranges the returned function to have a .hstep argument that cann be used to

demonstrate convergence and error
C list of arguments for evaluating the function at the "center" point
wrt character string naming the variable with respect to which differentiation is to

be done
h the finite-difference step size
var1 character string naming the first variable with respect to which differentiation is

to be done
var2 character string naming the second variable with respect to which differentiation

is to be done
.function function to be differentiated
.wrt character string naming the variable with respect to which differentiation is to

be done
.var1 character string naming the first variable with respect to which differentiation is

to be done
.var2 character string naming the second variable with respect to which differentiation

is to be done
f function to differentiate
av arguments to the function calling this
.step the finite-difference step size

numD 87

Details

Uses a simple finite-difference scheme to evaluate the derivative. The function created will not
contain a formula for the derivative. Instead, the original function is stored at the time the derivative
is constructed and that original function is re-evaluated at the finitely-spaced points of an interval.
If you redefine the original function, that won’t affect any derivatives that were already defined
from it. Numerical derivatives, particularly high-order ones, are unstable. The finite-difference
parameter .hstep is set, by default, to give reasonable results for first- and second-order derivatives.
It’s tweaked a bit so that taking a second derivative by differentiating a first derivative will give
reasonably accurate results. But, if taking a second derivative, much better to do it in one step to
preserve numerical accuracy.

Value

a function implementing the derivative as a finite-difference approximation

Numerical partials

These functions are not indended for direct use. They just package up the numerical differentiation
process to make functions returned by numD and D easier to read.

Note

WARNING: In the expressions, do not use variable names beginning with a dot, particularly .f or
.h

Helper function for numD for unmixed partials

Helper function for numD for mixed partials

Helper function for numD for first-order derivs.

Helper function for numD for second-order mixed partials

Helper function for numD for second-order derivs

Not for direct use. This just packages up the numerical differentiation process to make functions
returned by numD and D easier to read.

Not for direct use. This just packages up the numerical differentiation process to make functions
returned by numD and D easier to read.

Author(s)

Daniel Kaplan (<kaplan@macalester.edu>)

See Also

D, symbolicD, makeFun, antiD, plotFun

88 n_missing

Examples

g = numD(a*x^2 + x*y ~ x, a=1)
g(x=2,y=10)
gg = numD(a*x^2 + x*y ~ x&x, a=1)
gg(x=2,y=10)
ggg = numD(a*x^2 + x*y ~ x&y, a=1)
ggg(x=2,y=10)
h = numD(g(x=x,y=y,a=a) ~ y, a=1)
h(x=2,y=10)
f = numD(sin(x)~x, add.h.control=TRUE)
plotFun(f(3,.hstep=h)~h, hlim=range(.00000001,.000001))
ladd(panel.abline(cos(3),0))

n_missing counting missing elements

Description

counting missing elements

Usage

n_missing(..., type = c("any", "all"))

Arguments

... vectors of equal length to be checked in parallel for missing values.

type one of "any" (default) or "all".

Examples

if (require(NHANES)) {
tally(~ is.na(Height) + is.na(Weight), data = NHANES, margins = TRUE)
NHANES %>%
summarise(

mean.wt = mean(Weight, na.rm = TRUE),
missing.Wt = n_missing(Weight),
missing.WtAndHt = n_missing(Weight, Height, type = "all"),
missing.WtOrHt = n_missing(Weight, Height, type = "any")
)

}

orrr 89

orrr Odds Ratio and Relative Risk for 2 x 2 Contingency Tables

Description

This function calculates the odds ratio and relative risk for a 2 x 2 contingency table and a confidence
interval (default conf.level is 95 percent) for the each estimate. x should be a matrix, data frame
or table. "Successes" should be located in column 1 of x, and the treatment of interest should be
located in row 2. The odds ratio is calculated as (Odds row 2) / (Odds row 1). The confidence
interval is calculated from the log(OR) and backtransformed.

Usage

orrr(x, conf.level = 0.95, verbose = !quiet, quiet = TRUE, digits = 3,
relrisk = FALSE)

oddsRatio(x, conf.level = 0.95, verbose = !quiet, quiet = TRUE,
digits = 3)

relrisk(x, conf.level = 0.95, verbose = !quiet, quiet = TRUE,
digits = 3)

S3 method for class 'oddsRatio'
print(x, digits = 4, ...)

S3 method for class 'relrisk'
print(x, digits = 4, ...)

S3 method for class 'oddsRatio'
summary(object, digits = 4, ...)

S3 method for class 'relrisk'
summary(object, digits = 4, ...)

Arguments

x a 2 X 2 matrix, data frame or table of counts
conf.level the confidence interval level
verbose a logical indicating whether verbose output should be displayed
quiet a logical indicating whether verbose outoput should be supressed
digits number of digits to display
relrisk a logical indicating whether the relative risk should be returned instead of the

odds ratio
... additional arguments
object an R object to print or summarise. Here an object of class "oddsRatio" or

"relrisk".

90 panel.levelcontourplot

Value

an odds ratio or relative risk. If verpose is true, more details and the confidence intervals are
displayed.

Author(s)

Kevin Middleton (<kmm@csusb.edu>); modified by R Pruim.

See Also

chisq.test, fisher.test

Examples

M1 <- matrix(c(14, 38, 51, 11), nrow = 2)
M1
oddsRatio(M1)

M2 <- matrix(c(18515, 18496, 1427, 1438), nrow = 2)
rownames(M2) <- c("Placebo", "Aspirin")
colnames(M2) <- c("No", "Yes")
M2
oddsRatio(M2)
oddsRatio(M2, verbose=TRUE)
relrisk(M2, verbose=TRUE)
if (require(mosaicData)) {
relrisk(tally(~ homeless + sex, data=HELPrct))
do(3) * relrisk(tally(~ homeless + shuffle(sex), data=HELPrct))
}

panel.levelcontourplot

Lattice plot that draws a filled contour plot

Description

Used within plotFun

Usage

panel.levelcontourplot(x, y, z, subscripts = 1, at, shrink, labels = TRUE,
label.style = c("mixed", "flat", "align"), contour = FALSE,
region = TRUE, col = add.line$col, lty = add.line$lty,
lwd = add.line$lwd, border = "transparent", ...,
col.regions = regions$col, filled = TRUE, alpha.regions = regions$alpha)

panel.lmbands 91

Arguments

x x on a grid

y y on a grid

z zvalues for the x and y

subscripts which points to plot

at cuts for the contours

shrink what does this do?

labels draw the contour labels

label.style where to put the labels

contour logical draw the contours

region logical color the regions

col color for contours

lty type for contours

lwd width for contour

border type of border

... dots additional arguments

col.regions a vector of colors or a function (topo.colors by default) for generating such

filled whether to fill the contours with color

alpha.regions transparency of regions

panel.lmbands show confidence and preciction bands on plots

Description

show confidence and preciction bands on plots

Usage

panel.lmbands(x, y, interval = "confidence", level = 0.95, model = lm(y ~
x), band.col = c(conf = slcol[3], pred = slcol[2]), band.lty = c(conf =
slty[3], pred = slty[2]), band.show = TRUE, fit.show = TRUE,
band.alpha = 0.6, band.lwd = 1, npts = 100, ...)

92 panel.plotFun

Arguments

x, y numeric vectors

interval a vector subset of 'confidence' and 'prediction'

level conficence level

model model to be used for generating bands

band.col a vector of length 1 or 2 giving the color of bands

band.lty a vector of length 1 or 2 giving the line type for bands

band.show logical vector of length 1 or 2 indicating whether confidence and prediction
bands should be shown

fit.show logical indicating whether the model fit should be shown

band.alpha a vector of length 1 or 2 alpha level for bands

band.lwd a vector of length 1 or 2 giving line width for bands

npts resolution parameter for bands (increase to get better resolution)

... additional arguments

panel.plotFun Panel function for plotting functions

Description

Panel function for plotting functions

Usage

panel.plotFun(object, ..., type = "l", npts = NULL, zlab = NULL,
filled = TRUE, levels = NULL, nlevels = 10, surface = FALSE,
col.regions = topo.colors, alpha = NULL, discontinuity = NULL,
discontinuities = NULL)

Arguments

object an object (e.g., a formula) describing a function

... additional arguments, typically processed by lattice panel functions such as
panel.xyplot or panel.levelplot. Frequently used arguments include

lwd line width
lty line type
col a color

type type of plot ("l" by default)

npts an integer giving the number of points (in each dimension) to sample the func-
tion

zlab label for z axis (when in surface-plot mode)

panel.plotFun1 93

filled fill with color between the contours (TRUE by default)

levels levels at which to draw contours

nlevels number of contours to draw (if levels not specified)

surface a logical indicating whether to draw a surface plot rather than a contour plot

col.regions a vector of colors or a function (topo.colors by default) for generating such

alpha number from 0 (transparent) to 1 (opaque) for the fill colors

discontinuity a positive number determining how sensitive the plot is to potential discontinu-
ity. Larger values result in less sensitivity. The default is 1. Use discontinuity = Inf
to disable discontinuity detection. Discontinuity detection uses a crude numeri-
cal heuristic and may not give the desired results in all cases.

discontinuities

a vector of input values at which a function is discontinuous or NULL to use a
heuristic to auto-detect.

See Also

plotFun

Examples

x <- runif(30,0,2*pi)
d <- data.frame(x = x, y = sin(x) + rnorm(30,sd=.2))
xyplot(y ~ x, data=d)
ladd(panel.plotFun(sin(x) ~ x, col='red'))
xyplot(y ~ x | rbinom(30,1,.5), data=d)
ladd(panel.plotFun(sin(x) ~ x, col='red', lty=2)) # plots sin(x) in each panel

panel.plotFun1 Panel function for plotting functions

Description

Panel function for plotting functions

Usage

panel.plotFun1(..f.., ..., x, y, type = "l",
col = trellis.par.get("superpose.line")$col, npts = NULL, zlab = NULL,
filled = TRUE, levels = NULL, nlevels = 10, surface = FALSE,
alpha = NULL, discontinuity = NULL, discontinuities = NULL)

94 panel.plotFun1

Arguments

..f.. an object (e.g., a formula) describing a function

... additional arguments, typically processed by lattice panel functions such as
panel.xyplot or panel.levelplot. Frequently used arguments include

lwd line width
lty line type
col a color

x, y ignored, but there for compatibility with other lattice panel functions

type type of plot ("l" by default)

col a vector of colors

npts an integer giving the number of points (in each dimension) to sample the func-
tion

zlab label for z axis (when in surface-plot mode)

filled fill with color between the contours (TRUE by default)

levels levels at which to draw contours

nlevels number of contours to draw (if levels not specified)

surface a logical indicating whether to draw a surface plot rather than a contour plot

alpha number from 0 (transparent) to 1 (opaque) for the fill colors

discontinuity a positive number determining how sensitive the plot is to potential discontinu-
ity. Larger values result in less sensitivity. The default is 1. Use discontinuity = Inf
to disable discontinuity detection. Discontinuity detection uses a crude numeri-
cal heuristic and may not give the desired results in all cases.

discontinuities

a vector of input values at which a function is discontinuous or NULL to use a
heuristic to auto-detect.

See Also

plotFun

Examples

x <- runif(30,0,2*pi)
d <- data.frame(x = x, y = sin(x) + rnorm(30,sd=.2))
xyplot(y ~ x, data=d)
ladd(panel.plotFun1(sin, col='red'))
xyplot(y ~ x | rbinom(30,1,.5), data=d)
ladd(panel.plotFun1(sin, col='red', lty=2)) # plots sin(x) in each panel

parse.formula 95

parse.formula Parse formulas

Description

utilities for exptracting portions of formulas.

Usage

parse.formula(formula, ...)

rhs(x, ...)

lhs(x, ...)

condition(x, ...)

operator(x, ...)

S3 method for class 'formula'
rhs(x, ...)

S3 method for class 'formula'
lhs(x, ...)

S3 method for class 'formula'
condition(x, ...)

S3 method for class 'formula'
operator(x, ...)

S3 method for class 'parsedFormula'
rhs(x, ...)

S3 method for class 'parsedFormula'
lhs(x, ...)

S3 method for class 'parsedFormula'
operator(x, ...)

S3 method for class 'parsedFormula'
condition(x, ...)

Arguments

formula, a formula

x, an object (currently a formula or parsedFormula)

96 pdist

... additional arguments, current ignored

Details

currently this is primarily concerned with extracting the operator, left hand side, right hand side
(minus any condition) and the condition. Improvements/extensions may come in the future.

Value

an object of class parsedFormula from which information is easy to extract

pdist Illustrated probability calculations from distributions

Description

Illustrated probability calculations from distributions

Usage

pdist(dist = "norm", q, plot = TRUE, verbose = FALSE, invisible = FALSE,
digits = 4L, xlim, ylim, vlwd = NULL,
vcol = trellis.par.get("add.line")$col, rot = 45, resolution = 5000L,
...)

xpgamma(...)

xpt(...)

xpchisq(...)

xpf(...)

xpbinom(...)

xppois(...)

xpgeom(...)

xpnbinom(...)

Arguments

dist a character discription of a distribution, for example "norm", "t", or "chisq"

q a vector of quantiles

plot a logical indicating whether a plot should be created

verbose a logical

perctable 97

invisible a logical

digits the number of digits desired

xlim x limits

ylim y limits

vlwd width of vertical lines

vcol color of vertical lines

rot angle for rotating text indicating probability

resolution number of points used for detecting discreteness and generating plots. The de-
faut value of 5000 should work well except for discrete distributions that have
many distinct values, especially if these values are not evenly spaced.

... additional arguments, including parameters of the distribution and additional
options for the plot

Details

The most general function is pdist which can work with any distribution for which a p-function
exists. As a convenience, wrappers are provided for several common distributions.

Value

a vector of probabilities; a plot is printed as a side effect

See Also

qdist, xpnorm, xqnorm.

Examples

pdist("norm", -2:2)
pdist("norm", seq(80,120, by=10), mean=100, sd=10)
pdist("chisq", 2:4, df=3)
pdist("f", 1, df1=2, df2=10)
pdist("gamma", 2, shape=3, rate=4)

perctable Cross tabulation displayed as percents or proportions

Description

perctable and proptable use the cross-classifying factors to build a contingency table of the
percents or proportions at each combination of factor levels.

Usage

perctable(...)

proptable(...)

98 plotCumfreq

Arguments

... arguments passed directly to table; typically one or more objects which can
be interpreted as factors (including character strings), or a list (or data frame)
whose components can be so interpreted.

Details

See table.

Value

a contingency table, an object of class "table", an array of percentage or proportion values. Note
that unlike S the result is always an array, a 1D array if one factor is given.

Examples

perctable() has been deprecated. Use tally() instead
example(tally)

plotCumfreq Cumulative frequency plots

Description

A high-level function for producing a cumulative frequency plot using lattice graphics.

Usage

plotCumfreq(x, data, ...)

S3 method for class 'formula'
plotCumfreq(x, data = NULL, subscripts, ...)

Default S3 method:
plotCumfreq(x, ...)

prepanel.cumfreq(x, ...)

panel.cumfreq(x, type = c("smooth", "step"), groups = NULL, ...)

Arguments

x a formula or numeric vector

data a data frame in which x is evaluated if x is a formula.

subscripts as in lattice plots

type smooth or step-function?

plotDist 99

groups grouping variable
... other lattice arguments

See Also

histogram, densityplot

Examples

plotCumfreq(~eruptions, faithful, xlab = 'duration of eruptions')

plotDist Plots of Discrete and Continuous Distributions

Description

Provides a simple way to generate plots of pdfs, probability mass functions, cdfs, probability his-
tograms, and normal-quantile plots for distributions known to R.

Usage

plotDist(dist, ..., add, under = FALSE, packets = NULL, rows = NULL,
columns = NULL, kind = c("density", "cdf", "qq", "histogram"),
xlab = "", ylab = "", breaks = NULL, type, resolution = 5000,
params = NULL)

Arguments

dist A string identifying the distribution. This should work with any distribution that
has associated functions beginning with ’d’, ’p’, and ’q’ (e.g, dnorm, pnorm, and
qnorm). dist should match the name of the distribution with the initial ’d’, ’p’,
or ’q’ removed.

add a logical indicating whether the plot should be added to the previous lattice plot.
If missing, it will be set to match under.

under a logical indicating whether adding should be done in a layer under or over the
existing layers when add = TRUE.

packets, rows, columns

specification of which panels will be added to when add is TRUE. See layer.
kind one of "density", "cdf", "qq", or "histogram" (or prefix of any of these)
xlab, ylab as per other lattice functions
breaks a vector of break points for bins of histograms, as in histogram

type passed along to various lattice graphing functions
resolution number of points to sample when generating the plots
params a list containing parameters for the distribution. If NULL (the default), this list is

created from elements of ... that are either unnamed or have names among the
formals of the appropriate distribution function. See the examples.

... other arguments passed along to lattice graphing routines

100 plotFun

Details

plotDist determines whether the distribution is continuous or discrete by seeing if all the sam-
pled quantiles are unique. A discrete random variable with many possible values could fool this
algorithm and be considered continuous.

The plots are done referencing a data frame with variables x and y giving points on the graph of the
pdf, pmf, or cdf for the distribution. This can be useful in conjuction with the groups argument.
See the examples.

Examples

plotDist('norm')
plotDist('norm', type='h')
plotDist('norm', kind='cdf')
plotDist('exp', kind='histogram')
plotDist('binom', params=list(25, .25)) # explicit params
plotDist('binom', 25, .25) # params inferred
plotDist('norm', mean=100, sd=10, kind='cdf') # params inferred
plotDist('binom', 25, .25, xlim=c(-1,26)) # params inferred
plotDist('binom', params=list(25, .25), kind='cdf')
plotDist('beta', params=list(3, 10), kind='density')
plotDist('beta', params=list(3, 10), kind='cdf')
plotDist("binom", params=list(35,.25),

groups= y < dbinom(qbinom(0.05, 35, .25), 35,.25))
plotDist("binom", params=list(35,.25),

groups= y < dbinom(qbinom(0.05, 35, .25), 35,.25),
kind='hist')

plotDist("norm", mean=10, sd=2, col="blue", type="h")
plotDist("norm", mean=12, sd=2, col="red", type="h", under=TRUE)
plotDist("binom", size=100, prob=.30) +
plotDist("norm", mean=30, sd=sqrt(100 * .3 * .7))

plotDist("chisq", df=4, groups = x > 6, type="h")
if (require(mosaicData)) {
histogram(~age|sex, data=HELPrct)
m <- mean(~age|sex, data=HELPrct)
s <- sd(~age|sex, data=HELPrct)
plotDist("norm", mean=m[1], sd=s[1], col="red", add=TRUE, packets=1)
plotDist("norm", mean=m[2], sd=s[2], col="blue", under=TRUE, packets=2)
}

plotFun Plotting mathematical expressions

Description

Plots mathematical expressions in one and two variables.

plotFun 101

Usage

plotFun(object, ..., plot = trellis.last.object(), add = NULL,
under = FALSE, xlim = NULL, ylim = NULL, npts = NULL, ylab = NULL,
xlab = NULL, zlab = NULL, filled = TRUE, levels = NULL,
nlevels = 10, labels = TRUE, surface = FALSE, groups = NULL,
col = trellis.par.get("superpose.line")$col, col.regions = topo.colors,
type = "l", alpha = NULL, discontinuities = NULL, discontinuity = 1,
interactive = rstudio_is_available())

Arguments

object a mathematical expression or a function "of one variable" which will converted
to something intuitively equivalent to object(x) ~ x. (See examples)

... additional parameters, typically processed by lattice functions such as xyplot,
levelplot or their panel functions. Frequently used parameters include

main main title for plot
sub subtitle for plot
lwd line width
lty line type
col a color or a (small) integer indicating which color in the current color

scheme is desired.

Additionally, these arguments can be used to specify parameters for the function
being plotted and to specify the plotting window with natural names. See the
examples for such usage.

plot a trellis object; by default, the most recently created trellis plot. When add is
TRUE, the new function will be plotted into a layer added to this object.

add if TRUE, then add a layer to an existing plot rather than creating a new plot. If
NULL, this will be determined by the value of under.

under if TRUE, then new layer is added beneath existing layers

xlim limits for x axis (or use variable names, see examples)

ylim limits for y axis (or use variable names, see examples)

npts number of points for plotting.

ylab label for y axis

xlab label for x axis

zlab label for z axis (when in surface-plot mode)

filled fill with color between the contours (TRUE by default)

levels levels at which to draw contours

nlevels number of contours to draw (if levels not specified)

labels if FALSE, don’t label contours

surface draw a surface plot rather than a contour plot

groups grouping argument ala lattice graphics

col vector of colors for line graphs and contours

102 plotFun

col.regions a vector of colors or a function (topo.colors by default) for generating such

type type of plot ("l" by default)

alpha number from 0 (transparent) to 1 (opaque) for the fill colors
discontinuities

a vector of input values at which a function is discontinuous or NULL to use a
heuristic to auto-detect.

discontinuity a positive number determining how sensitive the plot is to potential discontinu-
ity. Larger values result in less sensitivity. The default is 1. Use discontinuity = Inf
to disable discontinuity detection. Discontinuity detection uses a crude numeri-
cal heuristic and may not give the desired results in all cases.

interactive a logical indicating whether the surface plot should be interactive.

Details

makes plots of mathematical expressions using the formula syntax. Will draw both line plots and
contour/surface plots (for functions of two variables). In RStudio, the surface plot comes with
sliders to set orientation. If the colors in filled surface plots are too blocky, increase npts beyond
the default of 50, though npts=300 is as much as you’re likely to ever need. See examples for
overplotting a constraint function on an objective function.

Value

a trellis object

Examples

plotFun(a*sin(x^2)~x, xlim=range(-5,5), a=2) # setting parameter value
plotFun(u^2 ~ u, ulim=c(-4,4)) # limits in terms of u
Note roles of ylim and y.lim in this example
plotFun(y^2 ~ y, ylim=c(-2,20), y.lim=c(-4,4))
Combining plot elements to show the solution to an inequality
plotFun(x^2 -3 ~ x, xlim=c(-4,4), grid=TRUE)
ladd(panel.abline(h=0,v=0,col='gray50'))
plotFun((x^2 -3) * (x^2 > 3) ~ x, type='h', alpha=.1, lwd=4, col='lightblue', add=TRUE)
plotFun(sin(x) ~ x,

groups=cut(x, findZeros(sin(x) ~ x, within=10)$x),
col=c('blue','green'), lty=2, lwd=3, xlim=c(-10,10))

plotFun(sin(x) ~ x,
groups=cut(x, findZeros(sin(x) ~ x, within=10)$x),
col=c(1,2), lty=2, lwd=3, xlim=c(-10,10))

plotFun(sin(2*pi*x/P)*exp(-k*t)~x+t, k=2, P=.3)
f <- rfun(~ u & v)
plotFun(f(u=u,v=v) ~ u & v, u.lim=range(-3,3), v.lim=range(-3,3))
plotFun(u^2 + v < 3 ~ u & v, add=TRUE, npts=200)
if (require(mosaicData)) {
display a linear model using a formula interface
model <- lm(wage ~ poly(exper,degree=2), data=CPS85)
fit <- makeFun(model)
xyplot(wage ~ exper, data=CPS85)
plotFun(fit(exper) ~ exper, add=TRUE, lwd=3, col="red")

plotModel 103

Can also just give fit since it is a "function of one variable"
plotFun(fit, add=TRUE, lwd=2, col='white')
}
Attempts to find sensible axis limits by default
plotFun(sin(k*x)~x, k=0.01)
Plotting a linear model with multiple predictors.
mod <- lm(length ~ width * sex, data=KidsFeet)
fitted.length <- makeFun(mod)
xyplot(length ~ width, groups=sex, data=KidsFeet, auto.key=TRUE)
plotFun(fitted.length(width, sex="B") ~ width, add=TRUE, col=1)
plotFun(fitted.length(width, sex="G") ~ width, add=TRUE, col=2)

plotModel Plot a regression model

Description

Visualize a regression model amid the data that generated it.

Usage

plotModel(mod, ...)

Arguments

mod A model of type lm or glm

... arguments passed to xyplot or rgl::plot3d.

Details

The goal of this function is to assist with visualization of statistical models. Namely, to plot the
model on top of the data from which the model was fit.

The primary plot type is a scatter plot. The x-axis can be assigned to one of the predictors in the
model. Additional predictors are thought of as co-variates. The data and fitted curves are partitioned
by these covariates. When the number of components to this partition is large, a random subset of
the fitted curves is displayed to avoid visual clutter.

If the model was fit on one quantitative variable (e.g. SLR), then a scatter plot is drawn, and
the model is realized as parallel or non-parallel lines, depending on whether interaction terms are
present.

Eventually we hope to support 3-d visualizations of models with 2 quantitative predictors using the
rgl package.

Currently, only linear regression models and generalized linear regression models are supported.

Value

A lattice or ggplot2 graphics object.

104 plotModel

Caution

This is still underdevelopment. The API is subject to change, and some use cases may not work yet.
Watch for improvments in subsequent versions of the package.

Author(s)

Ben Baumer, Galen Long, Randall Pruim

See Also

plotPoints, plotFun

Examples

require(mosaic)

mod <- lm(mpg ~ factor(cyl), data = mtcars)
plotModel(mod)

SLR
mod <- lm(mpg ~ wt, data = mtcars)
plotModel(mod, pch = 19)

parallel slopes
mod <- lm(mpg ~ wt + factor(cyl), data=mtcars)
plotModel(mod)

multiple categorical vars
mod <- lm(mpg ~ wt + factor(cyl) + factor(vs) + factor(am), data = mtcars)
plotModel(mod)
plotModel(mod, mpg ~ am)

interaction
mod <- lm(mpg ~ wt + factor(cyl) + wt:factor(cyl), data = mtcars)
plotModel(mod)

polynomial terms
mod <- lm(mpg ~ wt + I(wt^2), data = mtcars)
plotModel(mod)

GLM
mod <- glm(vs ~ wt, data=mtcars, family = 'binomial')
plotModel(mod)

GLM with interaction
mod <- glm(vs ~ wt + factor(cyl), data=mtcars, family = 'binomial')
plotModel(mod)
3D model
mod <- lm(mpg ~ wt + hp, data = mtcars)
plotModel(mod)

plotPoints 105

parallel planes
mod <- lm(mpg ~ wt + hp + factor(cyl) + factor(vs), data = mtcars)
plotModel(mod)

interaction planes
mod <- lm(mpg ~ wt + hp + wt * factor(cyl), data = mtcars)
plotModel(mod)
plotModel(mod, system="g") + facet_wrap(~ cyl)

plotPoints Scatter plot of points

Description

Make or add a scatter plot in a manner coordinated with plotFun.

Usage

plotPoints(x, data = parent.frame(), add = NULL, under = FALSE,
panelfun = panel.xyplot, plotfun = xyplot, ...,
plot = trellis.last.object())

Arguments

x A formula specifying y ~ x or z ~ x&y

data Data frame containing the variables to be plotted. If not specified, the variables
will be looked up in the local environment

add If TRUE, add points as a new layer to an existing plot. If NULL, the value of under
will be used.

under If TRUE, the new layer will be underneat existing layers.

panelfun Lattice panel function to be used for adding. Set only if you want something
other than a scatter plot. Mainly, this is intended to add new functionality
through other functions.

plotfun Lattice function to be used for initial plot creation. Set only if you want some-
thing other than a scatter plot. Mainly, this is intended to add new functionality
through other functions.

plot a trellis plot, by default the most recently created one. If add is TRUE, new points
will be added as a new layer to plot.

... additional arguments

Value

A trellis graphics object

106 predict.groupwiseModel

See Also

plotFun

Examples

if (require(mosaicData)) {
plotPoints(width ~ length, data=KidsFeet, groups=sex, pch=20)
f <- makeFun(lm(width ~ length * sex, data=KidsFeet))
plotFun(f(length=length,sex="G")~length, add=TRUE, col="pink")
plotFun(f(length=length,sex="B")~length, add=TRUE)
}

predict.groupwiseModel

Evaluate a groupwise model given new data

Description

If newdata is not specified, the data originally used for fitting will be used.

Usage

S3 method for class 'groupwiseModel'
predict(object, newdata = object$data,
type = c("class", "likelihood", "prob"), level = NULL, ...)

Arguments

object a groupwise model

newdata new data from which to compute fitted valeus.

type one of "class", "likelihood", or "prob"

level an optional character string specifying the level for which probabilities are to be
reported. Defaults to the first class of the potential outputs. Set to ".all" to see
probabilities for all levels.

... additional arguments (currently ignored)

Details

setting the type is needed only for classifiers. "class" will give just the class as output. "likelihood"
will give the probability of the observed outcome (in newdata) given the model. "prob" will give
the probability of the class named in level

print.msummary.lm 107

print.msummary.lm Modified summaries

Description

msummary provides modified summary objects that typically produce output that is either identical
to or somewhat terser than their summary analogs. The contents of the object itself are unchanged
(except for an augmented class) so that other downstream functions should work as before.

Usage

S3 method for class 'msummary.lm'
print(x, digits = max(3L, getOption("digits") - 3L),
symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

S3 method for class 'msummary.glm'
print(x, digits = max(3L, getOption("digits") - 3L),
symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

msummary(object, ...)

Default S3 method:
msummary(object, ...)

S3 method for class 'lm'
msummary(object, ...)

S3 method for class 'glm'
msummary(object, ...)

Arguments

x an object to summarize

digits desired number of digits to display

symbolic.cor see summary

signif.stars a logical indicating whether to diplay stars to indicate significance

... aditional arguments

object an object to summarise

Examples

msummary(lm(Sepal.Length ~ Species, data = iris))

108 project

project Projections

Description

Compute projections onto the span of a vector or a model space, dot products, and vector lengths in
Euclidean space.

Usage

project(x, ...)

S4 method for signature 'formula'
project(x, u = NULL, data = parent.frame(2),
coefficients = TRUE, ...)

S4 method for signature 'numeric'
project(x, u = rep(1, length(x)), type = c("vector",
"length", "coef"), ...)

S4 method for signature 'matrix'
project(x, u, data = parent.frame())

vlength(x, ...)

dot(u, v)

Arguments

x a numeric vector (all functions) or a formula (only for project). Left-hand
sides of formulas should be a single quantity

... additional arguments

u a numeric vector

data a data frame.

coefficients For project(y ~ x) indicates whether the projection coeffients should be re-
turned or the projection vector.

type one of "length" or "vector" determining the type of the returned value

v a numeric vector

Details

project (preferably pronounced "pro-JECT" as in "projection") does either of two related things:
(1) Given two vectors as arguments, it will project the first onto the second, returning the point in
the subspace of the second that is as close as possible to the first vector. (2) Given a formula as an
argument, will work very much like lm(), constructing a model matrix from the right-hand side of
the formula and projecting the vector on the left-hand side onto the subspace of that model matrix.

project 109

In (2), rather than returning the projected vector, project() returns the coefficients on each of the
vectors in the model matrix. UNLIKE lm(), the intercept vector is NOT included by default. If you
want an intercept vector, include +1 in your formula.

Value

project returns the projection of x onto u (or its length if u and v are numeric vectors and
type == "length")

vlength returns the length of the vector (i.e., the square root of the sum of the squares of the
components)

dot returns the dot product of u and v

See Also

link{project}

Examples

x1 <- c(1,0,0); x2 <- c(1,2,3); y1 <- c(3,4,5); y2 <- rnorm(3)
projection onto the 1 vector gives the mean vector
mean(y2)
project(y2, 1)
return the length of the vector, rather than the vector itself
project(y2, 1, type='length')
project(y1 ~ x1 + x2) -> pr; pr
recover the projected vector
cbind(x1,x2) %*% pr -> v; v
project(y1 ~ x1 + x2, coefficients=FALSE)
dot(y1 - v, v) # left over should be orthogonal to projection, so this should be ~ 0
if (require(mosaicData)) {
project(width~length+sex, data=KidsFeet)
}
vlength(rep(1,4))
if (require(mosaicData)) {
m <- lm(length ~ width, data=KidsFeet)
These should be the same
vlength(m$effects)
vlength(KidsFeet$length)
So should these
vlength(tail(m$effects, -2))
sqrt(sum(resid(m)^2))
}
v <- c(1,1,1); w <- c(1,2,3)
u <- v / vlength(v) # make a unit vector
The following should be the same:
project(w,v, type="coef") * v
project(w,v)
The following are equivalent
abs(dot(w, u))
vlength(project(w, u))
vlength(project(w, v))

110 prop

project(w, v, type='length')

prop Compute proportions, percents, or counts for a single level

Description

Compute proportions, percents, or counts for a single level

Usage

prop(x, data = parent.frame(), useNA = "no", ..., level = NULL,
long.names = TRUE, sep = ".", format = c("proportion", "percent",
"count"), quiet = TRUE, pval.adjust = FALSE)

prop1(..., pval.adjust = TRUE)

count(x, data = parent.frame(), ..., format = "count")

perc(x, data = parent.frame(), ..., format = "percent")

Arguments

x an R object, usually a formula

data a data frame in which x is to be evaluated

useNA an indication of how NA’s should be handled. By default, they are ignored.

level the level for which counts, proportions or percents are calculated

long.names a logical indicating whether long names should be when there is a conditioning
variable

sep a character used to separate portions of long names

format one of proportion, percent, or count, possibly abbrevaited

quiet a logical indicating whether messages regarding the target level should be su-
pressed.

pval.adjust a logical indicating whether the "p-value" adjustment should be applied. This
adjustment adds 1 to the numerator and denominator counts.

... arguments passed through to tally

Details

prop1 is intended for the computation of p-values from randomization distributions and differs from
prop only in its default value of pval.adjust.

Note

For 0-1 data, level is set to 1 by default since that a standard coding scheme for success and failure.

prop.test 111

Examples

if (require(mosaicData)) {
prop(~sex, data=HELPrct)
prop(~sex, data=HELPrct, level='male')
count(~sex | substance, data=HELPrct)
prop(~sex | substance, data=HELPrct)
perc(~sex | substance, data=HELPrct)
}

prop.test Exact and Approximate Tests for Proportions

Description

The mosaic prop.test provides wrapper functions around the function of the same name in stats.
These wrappers provide an extended interface (including formulas). prop.test performs an ap-
proximate test of a simple null hypothesis about the probability of success in a Bernoulli or multi-
nomial experiment from summarized data or from raw data.

Usage

prop.test(x, n, p = NULL, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, data = NULL, success = NULL, ...)

Arguments

x count of successes, length 2 vector of success and failure counts, a formula, or a
character, numeric, or factor vector containing raw data.

n sample size (successes + failures) or a data frame (for the formula interface)

p a vector of probabilities of success. The length of p must be the same as the
number of groups specified by x, and its elements must be greater than 0 and
less than 1.

alternative character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter. Only
used for testing the null that a single proportion equals a given value, or that two
proportions are equal; ignored otherwise.

conf.level confidence level of the returned confidence interval. Must be a single number
between 0 and 1. Only used when testing the null that a single proportion equals
a given value, or that two proportions are equal; ignored otherwise.

data a data frame (if missing, n may be a data frame)

success level of variable to be considered success. All other levels are considered failure.

... additional arguments (often ignored). When x is a formula, groups can be used
to compare groups: x = ~ var, groups=g is equivalent to x = var ~ g .
See the examples.

112 qdata

Details

conf.level = 0.95, ...)

This is a wrapper around prop.test to simplify its use when the raw data are available, in which
case an extended syntax for prop.test is provided.

Value

an htest object

Note

When x is a 0-1 vector, 0 is treated as failure and 1 as success. Similarly, for a logical vector TRUE
is treated as success and FALSE as failure.

See Also

binom.test, prop.test

Examples

Several ways to get a confidence interval for the proportion of Old Faithful
eruptions lasting more than 3 minutes.
prop.test(faithful$eruptions > 3)
prop.test(97,272)
faithful$long <- faithful$eruptions > 3
prop.test(faithful$long)
prop.test(~long , data = faithful)
prop.test(homeless ~ sex, data = HELPrct)
prop.test(~ homeless | sex, data = HELPrct)
prop.test(~ homeless, groups = sex, data = HELPrct)

qdata The Data Distribution

Description

Density, distribution function, quantile function, and random generation from data.

Usage

qdata(formula, p = seq(0, 1, 0.25), data = NULL, ...)

cdata(formula, p = 0.95, data = NULL, ...)

pdata(formula, q, data = NULL, ...)

rdata(formula, n, data = NULL, ...)

qdata 113

ddata(formula, q, data = NULL, ...)

Arguments

formula a formula or a vector

p a vector of probabilities

data a data frame in which to evaluate formula

q a vector of quantiles

n number of values to sample

... additional arguments passed to quantile or sample

Value

For qdata, a vector of quantiles

for cdata, a named numerical vector or a data frame giving upper and lower limits and the central
proportion requested

For pdata, a vector of probabilities

For rdata, a vector of sampled values.

For ddata, a vector of probabilities (empirical densities)

Examples

data(iris)
qdata(Sepal.Length ~ Species, 0.5, data=iris)
qdata(~Sepal.Length, p = 0.5, groups=Species, data=iris)
qdata(iris$Sepal.Length, p = 0.5)
qdata(~ Sepal.Length, p = 0.5, data=iris)
qdata(~ Sepal.Length, p = 0.5, groups=Species, data=iris)
data(iris)
cdata(iris$Sepal.Length, 0.5)
cdata(~ Sepal.Length, 0.5, data = iris)
cdata(~ Sepal.Length, 0.5, data = iris)
cdata(~ Sepal.Length | Species, data = iris, p = .5)
data(iris)
pdata(iris$Sepal.Length, 3:6)
pdata(~ Sepal.Length, 3:6, data=iris)
data(iris)
rdata(iris$Species, 10)
rdata(~Species, n = 10, data=iris)
rdata(Sepal.Length ~ Species, n = 5, data=iris)
data(iris)
ddata(iris$Species, 'setosa')
ddata(~Species, 'setosa', data=iris)

114 qdata_v

qdata_v The Data Distribution

Description

Utility functions for density, distribution function, quantile function, and random generation from
data.

Usage

qdata_v(x, p = seq(0, 1, 0.25), na.rm = TRUE, ...)

qdata_f(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

cdata_v(x, p = 0.95, na.rm = TRUE, ...)

cdata_f(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

pdata_v(x, q, lower.tail = TRUE, ...)

pdata_f(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

rdata_v(x, n, replace = TRUE, ...)

rdata_f(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

ddata_v(x, q, ..., data = NULL, log = FALSE, na.rm = TRUE)

ddata_f(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

Arguments

x a vector containing the data

p a vector of probabilities

na.rm a logical indicating whether NAs should be removed before computing.

data a data frame in which to evaluate formula

groups a grouping variable, typically the name of a variable in data

q a vector of quantiles

lower.tail a logical indicating whether to use the lower or upper tail probability

n number of values to sample

replace a logical indicating whether to sample with replacement

log a logical indicating whether the result should be log transformed

... additional arguments passed to quantile or sample

qdist 115

See Also

ddata, pdata, qdata, rdata, cdata

qdist Illustrated quantile calculations from distributions

Description

Illustrated quantile calculations from distributions

Usage

qdist(dist = "norm", p, plot = TRUE, verbose = FALSE, invisible = FALSE,
resolution = 5000L, digits = 4L, xlim, ylim, vlwd = NULL,
vcol = trellis.par.get("add.line")$col, rot = 45, ...)

xqgamma(...)

xqt(...)

xqchisq(...)

xqf(...)

xqbinom(...)

xqpois(...)

xqgeom(...)

xqnbinom(...)

Arguments

dist a character discription of a distribution, for example "norm", "t", or "chisq"

p a vector of probabilities

plot a logical indicating whether a plot should be created

verbose a logical

invisible a logical

resolution number of points used for detecting discreteness and generating plots. The de-
faut value of 5000 should work well except for discrete distributions that have
many distinct values, especially if these values are not evenly spaced.

digits the number of digits desired

xlim x limits. By default, these are chosen to show the central 99.8% of the distribu-
tion.

116 r.squared

ylim y limits

vlwd width of vertical lines

vcol color of vertical lines

rot angle for rotating text indicating probability

... additional arguments, including parameters of the distribution and additional
options for the plot

Details

The most general function is qdist which can work with any distribution for which a q-function
exists. As a convenience, wrappers are provided for several common distributions.

Value

a vector of quantiles; a plot is printed as a side effect

Examples

qdist("norm", seq(.2, .8, by = 0.10))
xqnorm(seq(.2, .8, by = 0.10), mean = 100, sd = 10)
qdist("unif", .5)
xqgamma(.5, shape = 3, scale = 4)
xqchisq(c(.25,.5,.75), df = 3)
xpbinom(c(480, 500, 510), size = 1000, prob = 0.48)
xpbinom(c(40, 60), size = 100, prob = 0.5)
xqpois(c(0.25, 0.5, 0.75), lambda = 6, lwd = 3, vlwd = 2)

r.squared Extract r-squared value

Description

Attempts to extract an r-squared value from a model or model-like object.

Usage

r.squared(x, ...)

Arguments

x an object

... additional arguments

rand 117

rand Random Regressors

Description

A utility function for producing random regressors with a specified number of degrees of freedom.

Usage

rand(df = 1, rdist = rnorm, args = list(), nrow, seed = NULL)

Arguments

df degrees of freedom, i.e., number of random regressors

rdist random distribution function for sampling

args arguments for rdist

nrow number of rows in resulting matrix. This can often be omitted in the context of
functions like lm where it is inferred from the data frame, if one is provided.

seed seed for random number generation

Value

A matrix of random variates with df columns. In its intended use, the number of rows will be
selected to match the size of the data frame supplied to lm

Examples

rand(2,nrow=4)
rand(2,rdist=rpois, args=list(lambda=3), nrow=4)
summary(lm(waiting ~ eruptions + rand(1), faithful))

read.file Read data files

Description

A wrapper around various file reading functions.

Usage

read.file(file, header = T, na.strings = "NA", comment.char = NULL,
filetype = c("default", "csv", "txt", "tsv", "fw", "rdata"),
stringsAsFactors = FALSE, readr = FALSE, package = NULL, ...)

118 read.file

Arguments

file character: The name of the file which the data are to be read from. This may
also be a complete URL or a path to a compressed file. If it does not contain an
absolute path, the file name is relative to the current working directory, getwd().
Tilde-expansion is performed where supported. See read.table for more de-
tails.

header logical; For .txt and .csv files, this indicates whether the first line of the file
includes variables names.

na.strings character: strings that indicate missing data.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

filetype one of "default", "csv", "txt", or "rdata" indicating the type of file being
loaded. The default is to use the filename to guess the type of file.

stringsAsFactors

a logical indicating whether strings should be converted to factors. This has no
affect when using readr.

readr a logical indicating whether functions from the readr package should be used,
if available.

package if specified, files will be searched for among the documentation files provided
by the package.

... additional arguments passed on to read.table, or load or one of the functions
in the readr package. Note that a message will indicate which underlying func-
tion is being used.

Details

Unless filetype is specified, read.file uses the (case insensitive) file extension to determine how
to read data from the file. If file ends in .rda or .rdata, then load is used to load the file. If file
ends in .csv, then read_csv or read.csv is used. Otherwise, read.table is used.

Value

A data frame, unless file unless filetype is "rdata", in which case arbitrary objects may be
loaded and a character vector holding the names of the loaded objects is returned invisibly.

See Also

read.csv, read.table, read_table, read_csv, load.

Examples

Not run:
Dome <- read.file("http://www.mosaic-web.org/go/datasets/Dome.csv")

End(Not run)
Mustangs <- read.file("MustangPrice.csv", package="mosaic")

relm 119

relm Resample a Linear Model

Description

Residual resampling from a linear model

Usage

relm(model, ..., envir = environment(formula(model)))

Arguments

model a linear model object produced using lm.

... additional arguments passed through to resample.

envir an environment in which to (re)evaluate the linear model.

repeater-class Repeater objects

Description

Repeater objects can be used with the * operator to repeat things multiple time using a different
syntax and different output format from that used by, for example, replicate.

Slots

n: Object of class "numeric" indicating how many times to repeat something.

cull: Object of class "function" that culls the ouput from each repetition.

mode: Object of class "character" indicating the output mode (’default’, ’data.frame’, ’matrix’,
’vector’, or ’list’). For most purposes ’default’ (the default) should suffice.

algorithm: an algorithm number.

parallel: a logical indicating whether to attempt parallel execution.

See Also

do

120 resample

resample More Random Samples

Description

These functions simplify and unify sampling in various ways.

Usage

resample(..., replace = TRUE)

deal(...)

shuffle(x, replace = FALSE, prob = NULL, groups = NULL,
orig.ids = FALSE)

sample(x, size, replace = FALSE, ...)

Default S3 method:
sample(x, size, replace = FALSE, prob = NULL,
groups = NULL, orig.ids = FALSE, ...)

S3 method for class 'data.frame'
sample(x, size, replace = FALSE, prob = NULL,
groups = NULL, orig.ids = TRUE, fixed = names(x), shuffled = c(),
invisibly.return = NULL, ...)

S3 method for class 'matrix'
sample(x, size, replace = FALSE, prob = NULL,
groups = NULL, orig.ids = FALSE, ...)

S3 method for class 'factor'
sample(x, size, replace = FALSE, prob = NULL,
groups = NULL, orig.ids = FALSE, drop.unused.levels = FALSE, ...)

Arguments

replace Should sampling be with replacement?

x Either a vector of one or more elements from which to choose, or a positive
integer.

prob A vector of probability weights for obtaining the elements of the vector being
sampled.

groups a vector (or variable in a data frame) specifying groups to sample within. This
will be recycled if necessary.

orig.ids a logical; should origianal ids be included in returned data frame?

rescale 121

size a non-negative integer giving the number of items to choose.

fixed a vector of column names. These variables are shuffled en masse, preserving
associations among these columns.

shuffled a vector of column names. these variables are reshuffled individually (within
groups if groups is specified), breaking associations among these columns. ex-
amples.

invisibly.return

a logical, should return be invisible?
drop.unused.levels

a logical, should unused levels be dropped?

... additional arguments passed to sample or sample.

Details

These functions are wrappers around sample providing different defaults and natural names.

Examples

100 Bernoulli trials -- no need for replace=TRUE
resample(0:1, 100)
tally(resample(0:1, 100))
if (require(mosaicData)) {
Small <- sample(KidsFeet, 10)
resample(Small)
tally(~ sex, data=resample(Small))
tally(~ sex, data=resample(Small))
fixed marginals for sex
tally(~ sex, data=Small)
tally(~ sex, data=resample(Small, groups=sex))
shuffled can be used to reshuffle some variables within groups
orig.id shows where the values were in original data frame.
Small <- mutate(Small,

id1 = paste(sex,1:10, sep=":"),
id2 = paste(sex,1:10, sep=":"))

resample(Small, groups=sex, shuffled=c("id1","id2"))
}
deal(Cards, 13) # A Bridge hand
shuffle(Cards)

rescale Rescale

Description

Rescale vectors or variables within data frames. This can be useful for comparing vectors that are
on different scales, for example in parallel plots or heatmaps.

122 rflip

Usage

rescale(x, range, domain = NULL, ...)

S3 method for class 'data.frame'
rescale(x, range = c(0, 1), domain = NULL, ...)

S3 method for class 'factor'
rescale(x, range, domain = NULL, ...)

S3 method for class 'numeric'
rescale(x, range = c(0, 1), domain = NULL, ...)

Default S3 method:
rescale(x, range = c(0, 1), domain = NULL, ...)

S3 method for class 'character'
rescale(x, range = c(0, 1), domain = NULL, ...)

Arguments

x an R object to rescale

range a numeric vector of length 2

domain a numeric vector of length 2 or NULL

... additional arguments

rflip Tossing Coins

Description

These functions simplify simulating coin tosses for those (students primarily) who are not yet fami-
lair with the binomial distributions or just like this syntax and verbosity better.

Usage

rflip(n = 1, prob = 0.5, quiet = FALSE, verbose = !quiet)

S3 method for class 'cointoss'
print(x, ...)

nflip(n = 1, prob = 0.5, ...)

rfun 123

Arguments

n the number of coins to toss

prob probability of heads on each toss

quiet a logical. If TRUE, less verbose output is used.

verbose a logical. If TRUE, more verbose output is used.

x an object

... additional arguments

Value

for rflip, a cointoss object

for nflip, a numeric vector

Examples

rflip(10)
rflip(10, prob=1/6, quiet=TRUE)
do(5) * rflip(10)
as.numeric(rflip(10))
nflip(10)

rfun Generate a natural-looking function

Description

Produce a random function that is the sum of Gaussian random variables

rpoly2 generates a random 2nd degree polynomial (as a function)

Usage

rfun(vars = ~x & y, seed = NULL, n = 0)

rpoly2(vars = ~x & y, seed = NULL)

Arguments

vars a formula; the LHS is empty and the RHS indicates the variables used for input
to the function (separated by &)

seed seed for random number generator, passed to set.seed.

n the number of Gaussians. By default, this will be selected randomly.

124 rkintegrate

Details

rfun is an easy way to generate a natural-looking but random function with ups and downs much as
you might draw on paper. In two variables, it provides a good way to produce a random landscape
that is smooth. Things happen in the domain -5 to 5. The function is pretty flat outside of that. Use
seed to create a fixed function that will be the same for everybody

These functions are particularly useful for teaching calculus.

Value

a function with the appropriate number of inputs

a function defined by a 2nd degree polynomial with coefficients selected randomly according to a
Unif(-1,1) distribution.

Examples

f <- rfun(~ u & v)
plotFun(f(u,v)~u&v,u=range(-5,5),v=range(-5,5))
myfun <- rfun(~ u & v, seed=1959)
g <- rpoly2(~ x&y&z, seed=1964)
plotFun(g(x,y,z=2)~x&y,xlim=range(-5,5),ylim=range(-5,5))

rkintegrate A simple Runge-Kutte integrator

Description

Integrates ordinary differential equations using a Runge-Kutta method

Usage

rkintegrate(fun, x0, tstart = 0, tend = 1, dt = NULL)

Arguments

fun the dynamical function with arguments state (a vector) and t.

x0 the initial condition, a vector with one element for each state variable

tstart starting time

tend ending time for integration

dt step size for integration

Details

This is mainly for internal use by integrateODE.

rlatlon 125

Value

a list containing x, a matrix of the state with one row for each time step and a vector t containing
the times of those steps.

Author(s)

Daniel Kaplan (<kaplan@macalester.edu>)

rlatlon Sample longitude and latitude on a sphere

Description

Randomly samples longitude and latitude on earth so that equal areas are (approximately) equally
likely to be sampled. (Approximation assumes earth as a perfect sphere.)

Usage

rlatlon(...)

rlonlat(...)

rgeo(n = 1, latlim = c(-90, 90), lonlim = c(-180, 180), verbose = FALSE)

rgeo2(n = 1, latlim = c(-90, 90), lonlim = c(-180, 180),
verbose = FALSE)

Arguments

... arguments passed through to other functions
n number of random locations
latlim, lonlim range of latitudes and longitudes to sample within, only implemented for rgeo.
verbose return verbose output that includes Euclidean coordinates on unit sphere as well

as longitude and latitude.

Details

rgeo and rgeo2 differ in the algorithms used to generate random positions. Each assumes a spher-
ical globe. rgeo uses that fact that each of the x, y and z coordinates is uniformly distributed (but
not independent of each other). Furthermore, the angle about the z-axis is uniformly distributed
and independent of z. This provides a straightforward way to generate Euclidean coordinates using
runif. These are then translated into latitude and longitude.

rlatlon is an alias for rgeo and rlonlat is too, expect that it reverses the order in which the
lattitude and longitute values are returned.

rgeo2 samples points in a cube by independently sampling each coordinate. It then discards any
point outside the sphere contained in the cube and projects the non-discarded points to the sphere.
This method must oversample to allow for the discarded points.

126 rspin

Value

a data frame with variables long and lat. If verbose is TRUE, then x, y, and z coordinates are also
included in the data frame.

See Also

deg2rad, googleMap and latlon2xyz.

Examples

rgeo(4)
sample from a region that contains the continental US
rgeo(4, latlim=c(25,50), lonlim=c(-65,-125))
rgeo2(4)

rspin Simulate spinning a spinnner

Description

This is essentially rmultinom with a different interface.

Usage

rspin(n, probs, labels = 1:length(probs))

Arguments

n number of spins of spinner

probs a vector of probabilities. If the sum is not 1, the probabiliies will be rescaled.

labels a character vector of labels for the categories

Examples

rspin(20, prob=c(1,2,3), labels=c("Red", "Blue", "Green"))
do(2) * rspin(20, prob=c(1,2,3), labels=c("Red", "Blue", "Green"))

rsquared 127

rsquared Extract r-squared value

Description

Attempts to extract an r-squared value from a model or model-like object.

Usage

rsquared(x, ...)

Arguments

x an object

... additional arguments

rstudio_is_available Check whether RStudio is in use

Description

This functions checks that RStudio is in use. It will likely be removed from this package once the
versions of RStudio in popular use rely on the manipulate package on CRAN which will provide its
own version.

Usage

rstudio_is_available()

Value

a logical

128 sp2df

set.rseed Set seed in parallel compatible way

Description

When the parallel package is used, setting the RNG seed for reproducibility involves more than
simply calling set.seed. set.rseed takes care of the additional overhead.

Usage

set.rseed(seed)

Arguments

seed seed for the random number generator

Details

If the parallel package is not on the search path, then set.seed is called. If parallel is on the
search path, then the RNG kind is set to "L'Ecuyer-CMRG", the seed is set and mc.reset.stream
is called.

Examples

These should give identical results, even if the `parallel' package is loaded.
set.rseed(123); do(3) * resample(1:10, 2)
set.rseed(123); do(3) * resample(1:10, 2)

sp2df Transforms a shapefile into a dataframe

Description

This function takes in a shapefile (formal class of SpatialPolygonsDataFrame) and transforms it
into a dataframe

Usage

sp2df(map, ...)

Arguments

map A map object of class SpatialPolygonsDataFrame

... Other arguments, currently ignored

standardName 129

Value

A dataframe, in which the first 7 columns hold geographical information (ex: long and lat)

Examples

Not run:
if(require(maptools)) {

data(wrld_simpl)
worldmap <- sp2df(wrld_simpl)

}

if (require(ggplot2) && require(maptools)) {
data(wrld_simpl)
World <- sp2df(wrld_simpl)
World2 <- merge(World, Countries, by.x="NAME", by.y="maptools", all.y=FALSE)
Mdata <- merge(Alcohol, World2, by.x="country", by.y="gapminder", all.y=FALSE)
Mdata <- Mdata[order(Mdata$order),]
qplot(x=long, y=lat, fill=ntiles(alcohol,5),

data=subset(Mdata, year==2008), group = group,
geom="polygon")

}

End(Not run)

standardName Standardization of Geographic Names

Description

Often different sources of geographical data will use different names for the same region. These
utilities make it easier to merge data from different sources by converting names to standardized
forms.

Usage

standardName(x, standard, ignore.case = TRUE, returnAlternatives = FALSE,
quiet = FALSE)

standardCountry(x, ignore.case = TRUE, returnAlternatives = FALSE,
quiet = FALSE)

standardState(x, ignore.case = TRUE, returnAlternatives = FALSE,
quiet = FALSE)

130 StatSpline

Arguments

x A vector with the region names to standardize
standard a named vector providing the map from non-standard names (names of vector)

to standard names (values of vector)
ignore.case a logical indicating whether case should be ignored when matching.
returnAlternatives

a logical indicating whether all alternatives should be returned in addition to the
standard name.

quiet a logical indicating whether warnings should be surpressed

Details

standardName This is the most general standardizing function. In addition to x, this function
requires another argument: standard - a named vector in which each name is a particular
spelling of the region name in question and the corresponding value is the standardized version
of that region name

standardCountry This function will standardize the country names in x to the standard ISO_a3
country code format. If returnAlternatives is set to TRUE, this function will also return the
the named vector used to standardize the country names

standardState This function will standardize the US state names in x to the standard two-letter
abbreviations. If returnAlternatives is set to TRUE, this function will also return the the
named vector used to standardize the state names

In all three cases, any names not found in standard will be left unaltered. Unless supressed, a
warning message will indicate the number of such cases, if there are any.

StatSpline Geoms and stats for spline smoother

Description

Functions to allow spline smoothing with ggplot2

Usage

StatSpline

stat_spline(mapping = NULL, data = NULL, geom = "line",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, weight = NULL, df = NULL, spar = NULL,
cv = FALSE, all.knots = FALSE, nknots = stats::.nknots.smspl,
df.offset = 0, penalty = 1, control.spar = list(), tol = NULL, ...)

geom_spline(mapping = NULL, data = NULL, stat = "spline",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, weight = NULL, df = NULL, spar = NULL,
cv = FALSE, all.knots = FALSE, nknots = stats::.nknots.smspl,
df.offset = 0, penalty = 1, control.spar = list(), tol = NULL, ...)

StatSpline 131

Arguments

mapping An aesthetic mapping produced with aes() or aes_string().

data A data frame.

geom A geom.

position A position object.

na.rm A logical indicating whether a warning should be issued when missing values
are removed before plotting.

show.legend A logical indicating whether legends should be included for this layer. If NA,
legends will be inclued for each aesthetic that is mapped.

inherit.aes A logical indicating whether aesthetics should be inherited. When FALSE, the
supplied mapping will be the only aesthetics used.

weight An optional vector of weights. See smooth.spline().

df desired equivalent degrees of freedom. See smooth.spline() for details.

spar A smoothing parameter, typically in (0,1]. See smooth.spline() for details.

cv A logical. See smooth.spline() for details.

all.knots A logical. See smooth.spline() for details.

nknots An integer or function giving the number of knots to use when all.knots = FALSE.
See smooth.spline() for details.

df.offset A numerical value used to increase the degrees of freedom when using GVC.
See smooth.spline() for details.

penalty the coefficient of the penalty for degrees of freedom in the GVC cireterion. See
smooth.spline() for details.

control.spar An optional list used to control root finding when the parameter spar is com-
puted. See smooth.spline() for details.

tol A tolerance for same-ness or uniqueness of the x values. The values are binned
into bins of size tol and values which fall into the same bin are regarded as the
same. Must be strictly positive (and finite). When NULL, IQR(x) * 10e-6 is
used.

... Additional arguments

stat A stat.

Format

An object of class StatSpline (inherits from Stat, ggproto) of length 3.

Examples

ggplot(Births) + geom_spline(aes(x = date, y=births, colour = wday))
ggplot(Births) + geom_spline(aes(x = date, y=births, colour = wday), nknots = 10)

132 statTally

statTally Tally test statistics

Description

Tally test statistics from data and from multiple draws from a simulated null distribution

Usage

statTally(sample, rdata, FUN, direction = NULL, alternative = c("default",
"two.sided", "less", "greater"), sig.level = 0.1, center = NULL,
stemplot = dim(rdata)[direction] < 201, q = c(0.5, 0.9, 0.95, 0.99),
fun = function(x) x, xlim, ...)

Arguments

sample sample data

rdata a matrix of randomly generated data under null hypothesis.

FUN a function that computes the test statistic from a data set. The default value does
nothing, making it easy to use this to tabulate precomputed statistics into a null
distribution. See the examples.

direction 1 or 2 indicating whether samples in rdata are in rows (1) or columns (2).

alternative one of default, two.sided, less, or greater

sig.level significance threshold for wilcox.test used to detect lack of symmetry

center center of null distribution

stemplot indicates whether a stem plot should be displayed

q quantiles of sampling distribution to display

fun same as FUN so you don’t have to remember if it should be capitalized

xlim limits for the horizontal axis of the plot.

... additional arguments passed to histogram

Value

A lattice plot showing the sampling distribution.

As side effects, information about the empirical sampling distribution and (optionally) a stem plot
are printed to the screen.

surround 133

Examples

is my spinner fair?
x <- c(10, 18, 9, 15) # counts in four cells
rdata <- rmultinom(999, sum(x), prob=rep(.25, 4))
statTally(x, rdata, fun=max) # unusual test statistic
statTally(x, rdata, fun=var) # equivalent to chi-squared test
Can also be used with test stats that are precomputed.
if (require(mosaicData)) {
D <- diffmean(age ~ sex, data=HELPrct); D
nullDist <- do(999) * diffmean(age ~ shuffle(sex), data=HELPrct)
statTally(D, nullDist)
}

surround Format strings for pretty output

Description

Format strings for pretty output

Usage

surround(x, pre = " ", post = " ", width = 8, ...)

Arguments

x a vector

pre text to prepend onto string

post text to postpend onto string

width desired width of string

... additional arguments passed to format

Value

a vector of strings padded to the desired width

Examples

surround(rbinom(10,20,.5), " ", " ", width=4)
surround(rnorm(10), " ", " ", width=8, digits = 2, nsmall = 2)

134 symbolicD

swap Swap values among columns of a data frame

Description

Swap values among columns of a data frame

Usage

swap(data, which)

Arguments

data a data frame

which a formula or an integer or character vector specifying columns in data

Details

swap is not a particularly speedy function. It is intended primarily as an aid for teaching random-
ization for paired designs. Used this way, the number of randomizations should be kept modest
(approximately 1000) unless you are very patient.

Examples

if (require(tidyr)) {
Sleep2 <- sleep %>% spread(key=group, val=extra)
names(Sleep2) <- c("subject", "drug1", "drug2")
swap(Sleep2, drug1 ~ drug2)
mean(~(drug1 - drug2), data=Sleep2)
do(3) * mean(~(drug1 - drug2), data=Sleep2 %>% swap(drug1 ~ drug2))

}

symbolicD Symbolic Derivatives

Description

Constructs symbolic derivatives of some mathematical expressions

Usage

symbolicD(formula, ..., .order = NULL)

symbolicInt 135

Arguments

formula a mathematical expression (see examples and plotFun)

.order a number specifying the order of a derivative with respect to a single variable

... additional parameters, typically default values for mathematical parameters

Details

Uses the built-in symbolic differentiation function to construct a formula for the derivative and
packages this up as a function. The .order argument is just for convenience when programming
high-order derivatives, e.g. the 5th derivative w.r.t. one variable.

Value

a function implementing the derivative

Author(s)

Daniel Kaplan (<kaplan@macalester.edu>)

See Also

D, numD, makeFun, antiD, plotFun

Examples

symbolicD(a*x^2 ~ x)
symbolicD(a*x^2 ~ x&x)
symbolicD(a*sin(x)~x, .order=4)
symbolicD(a*x^2*y+b*y ~ x, a=10, b=100)

symbolicInt Find the symbolic integral of a formula

Description

Find the symbolic integral of a formula

Use recursion to find a symbolic antiderivative

Attempts symbolic integration of some mathematical/arithmetical forms

Attempts symbolic integration of some mathematical forms

Attempts symbolic integration of some mathematical forms using trigonometric substitution

Takes a call and returns its affine coefficients.

136 symbolicInt

Usage

symbolicInt(form, ...)

symbolicAntiD(form, ...)

.intArith(form, ...)

.intMath(form, ...)

.intTrig(form, num, den, .x.)

.affine.exp(tree, .x.)

Arguments

form an object of type formula to be integrated. Rhs of formula indicates which vari-
able to integrate with respect to. Must only have one variable.

num numerator

den denominator

.x. the variable name

tree the expression to be analyzed

... extra parameters

Details

This symbolic integrator recognizes simple polynomials and functions such as sin, cos, tan, sinh,
cosh, tanh, sqrt, and exp.

It will not perform more complicated substitutions or integration by parts.

Value

symbolicInt returns a function whose body is the symbolic antiderivative of the formula. If this
method does not recognize the formula, it will return an error.

a formula implementing giving symbolic anti-derivative. If the formula isn’t found by the algorithm,
an error is thrown.

An expression with the integral, or throws an error if unsuccessful.

An expression with the integral, or throws an error if unsuccessful.

An expression with the integral, or throws an error if unsuccessful.

A list with values of a and b satisfying a*.x.+b = tree. If the expression is not affine, returns an
empty list.

tally 137

tally Tabulate categorical data

Description

Tabulate categorical data

Usage

tally(x, ...)

S3 method for class 'tbl'
tally(x, wt, sort = FALSE, ..., envir = parent.frame())

S3 method for class 'data.frame'
tally(x, wt, sort = FALSE, ..., envir = parent.frame())

S3 method for class 'formula'
tally(x, data = parent.frame(2), format = c("count",
"proportion", "percent", "data.frame", "sparse", "default"),
margins = FALSE, quiet = TRUE, subset, groups = NULL, useNA = "ifany",
groups.first = FALSE, ...)

Arguments

x an object

... additional arguments passed to table

wt for weighted tallying, see tally in dplyr
sort a logical, see tally in dplyr
envir an environment in which to evaluate

data a data frame or environment in which evaluation occurs. Note that the default
is data=parent.frame(). This makes it convenient to use this function inter-
actively by treating the working envionment as if it were a data frame. But this
may not be appropriate for programming uses. When programming, it is best to
use an explicit data argument – ideally supplying a data frame that contains the
variables mentioned

format a character string describing the desired format of the results. One of 'default',
'count', 'proportion', 'percent', 'data.frame', 'sparse', or 'default'.
In case of 'default', counts are used unless there is a condition, in which case
proportions are used instead. Note that prior to version 0.9.3, 'default' was
the default, now it is 'count'. 'data.frame' converts the table to a data frame
with one row per cell; 'sparse' additionally removes any rows with 0 counts.

margins a logical indicating whether marginal distributions should be displayed.

quiet a logical indicating whether messages about order in which marginal distribu-
tions are calculated should be surpressed. See addmargins.

138 tally

subset an expression evaluating to a logical vector used to select a subset of data

groups used to specify a condition as an alternative to using a formula with a condition.

useNA as in table, but the default here is "ifany".

groups.first a logical indicating whether groups should be inserted ahead of the condition
(else after).

Details

The dplyr package also exports a tally function. If x inherits from class "tbl" or "data frame",
then dplyr’s tally() is called. This makes it easier to have the two packages coexist.

Otherwise, tally() is designed as an alternative to table() and xtabs(). The primary use case
it to describe a (possibly multi-dimensional) table using a formula. For a table of counts, each
component of the formala becomes one of the dimensions of the cross table. For tables of propor-
tions or percents, conditional proportions and percents are computed, conditioned on each level of
all "secondary" (i.e., conditioning) variables, defined as everything other than the left hand side, if
there is a left hand side to the formala; and everything except the right hand side if the left hand side
of the formula is empty. Note that groups is folded into the formula prior to this determination and
becomes part of the conditioning.

When marginal totals are added, they are added for all of the conditioning dimensions, and propor-
tions should sum to 1 for each level of the conditioning variables. This can be useful to make it
clear which conditional proportions are beign computed.

See the examples for some typical use cases.

Value

A object of class "table", unless passing through to dplyr or converted to a data frame because
format is "data.frame" or "sparse".

Note

The curent implementation when format = "sparse" first creates the full data frame and then
removes the unneeded rows. So the savings is in terms of space, not time.

Examples

tally(~ substance, data = HELPrct)
tally(~ substance + sex , data = HELPrct)
tally(sex ~ substance, data = HELPrct) # equivalent to tally(~ sex | substance, ...)
tally(~ substance | sex , data = HELPrct)
tally(~ substance | sex , data = HELPrct, format = 'count', margins = TRUE)
tally(~ substance + sex , data = HELPrct, format = 'percent', margins = TRUE)
tally(~ substance | sex , data = HELPrct, format = 'percent', margins = TRUE)
force NAs to show up
tally(~ sex, data = HELPrct, useNA = "always")
show NAs if any are there
tally(~ link, data = HELPrct)
ignore the NAs
tally(~ link, data = HELPrct, useNA = "no")

theme.mosaic 139

theme.mosaic Lattice Theme

Description

A theme for use with lattice graphics.

Usage

theme.mosaic(bw = FALSE, lty = if (bw) 1:7 else 1, lwd = 2, ...)

col.mosaic(bw = FALSE, lty = if (bw) 1:7 else 1, lwd = 2, ...)

Arguments

bw whether color scheme should be "black and white"

lty vector of line type codes

lwd vector of line widths

... additional named arguments passed to trellis.par.set

Value

Returns a list that can be supplied as the theme to trellis.par.set().

Note

These two functions are identical. col.mosaic is named similarly to col.whitebg, but since more
than just colors are set, theme.mosaic is a preferable name.

See Also

trellis.par.set, show.settings

Examples

trellis.par.set(theme=theme.mosaic())
show.settings()
trellis.par.set(theme=theme.mosaic(bw=TRUE))
show.settings()

140 TukeyHSD.lm

theme_map ggplot2 theme for maps

Description

A very plain ggplot2 theme that is good for maps.

Usage

theme_map(base_size = 12)

Arguments

base_size the base font size for the theme.

Details

This theme is largely based on an example posted by Winston Chang at the ggplot2 Google group
forum.

TukeyHSD.lm Additional interfaces to TukeyHSD

Description

TukeyHSD requires use of aov. Since this is a hinderence for beginners, wrappers have been provided
to remove this need.

Usage

S3 method for class 'lm'
TukeyHSD(x, which, ordered = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula'
TukeyHSD(x, which, ordered = FALSE, conf.level = 0.95,
data = parent.frame(), ...)

Arguments

x an object, for example of class lm or formula
which, ordered, conf.level, ...

just as in TukeyHSD from the base package

data a data frame. NB: This does not come second in the argument list.

t_test 141

Examples

These should all give the same results
if (require(mosaicData)) {

model <- lm(age ~ substance, data=HELPrct)
TukeyHSD(model)
TukeyHSD(age ~ substance, data=HELPrct)
TukeyHSD(aov(age ~ substance, data=HELPrct))

}

t_test Student’s t-Test

Description

Performs one and two sample t-tests. The mosaic t.test provides wrapper functions around the
function of the same name in stats. These wrappers provide an extended interface that allows for a
more systematic use of the formula interface.

Usage

t_test(x, y = NULL, ..., data = parent.frame())

t.test(x, y=NULL, ..., data = parent.frame())

Arguments

x a formula or a non-empty numeric vector

y an optional non-empty numeric vector or formula

data a data frame

... additional arguments, see t.test in the stats package. When x is a formula,
groups can be used to compare groups: x = ~ var, groups=g is equivalent to
x = var ~ g . See the examples.

Details

This is a wrapper around t.test from the stats package to extend the functionality of the formula
interface. In particular, one can now use the formula interface for a 1-sample t-test. Before, the
formula interface was only permitted for a 2-sample test. The type of formala that can be used for
the 2-sample test has also be broadened. See the examples.

Value

an object of class htest

See Also

prop.test, binom.test, t.test

142 value

Examples

if (require(mosaicData)) {
t.test(~ age, data=HELPrct)
t.test(age ~ sex, data=HELPrct)
t.test(~ age | sex, data=HELPrct)
t.test(~ age, groups=sex, data=HELPrct)

}

update_ci Update confidence interval

Description

Update the confidence interval portion of an object returned from binom.test using one of several
alternative methods.

Usage

update_ci(object, method = c("clopper-pearson", "wald", "agresti-coull",
"plus4", "score"))

Arguments

object An "htest" object produced by binom.test

method a method for computing a confidence interval for a propotion.

Value

an "htest" object with an updated confidence interval

See Also

binom.test

value Extract value from an object

Description

Functions like integrate() and nlm() return objects that contain more information that simply the
value of the integration or optimization. value() extracts the primary value from such objects. Cur-
renlty implemented situations include the output from integrate(), nlm(), adaptIntegrate(),
and uniroot().

vector2df 143

Usage

value(object, ...)

S3 method for class 'integrate'
value(object, ...)

Default S3 method:
value(object, ...)

Arguments

object an object from which a "value" is to be extracted.

... additional arguments (currently ignored).

Examples

integrate(sin, 0, 1) %>% value()
nlm(cos, p = 0) %>% value()
uniroot(cos, c(0, 2)) %>% value()

vector2df Convert a vector to a data frame

Description

Convert a vector into a 1-raw data frame using the names of the vector as column names for the data
frame

Usage

vector2df(x, nice_names = FALSE)

Arguments

x a vector

nice_names a logical indicating whether names should be nicified

Value

a data frame

Examples

vector2df(c(1, b = 2, `(Intercept)` = 3))
vector2df(c(1, b = 2, `(Intercept)` = 3), nice_names = TRUE)

144 xhistogram

xchisq.test Augmented Chi-squared test

Description

This augmented version of chisq.test provides more verbose output.

Usage

xchisq.test(x, y = NULL, correct = TRUE, p = rep(1/length(x), length(x)),
rescale.p = FALSE, simulate.p.value = FALSE, B = 2000)

Arguments

x, y, correct, p, rescale.p, simulate.p.value, B

as in chisq.test.

See Also

chisq.test

Examples

Physicians' Health Study data
phs <- cbind(c(104,189),c(10933,10845))
rownames(phs) <- c("aspirin","placebo")
colnames(phs) <- c("heart attack","no heart attack")
phs
xchisq.test(phs)

xhistogram Augmented histograms

Description

The mosaic package adds some additional functionality to histogram(), making it simpler to
obtain certain common histogram adornments. This is done be resetting the default panel and
prepanel functions used by histogram.

xhistogram 145

Usage

xhistogram(...)

xhistogramBreaks(x, center = NULL, width = NULL, nint, ...)

prepanel.xhistogram(x, breaks = xhistogramBreaks, ...)

panel.xhistogram(x, dcol = trellis.par.get("plot.line")$col, dalpha = 1,
dlwd = 2, gcol = trellis.par.get("add.line")$col, glwd = 2,
fcol = trellis.par.get("superpose.polygon")$col, dmath = dnorm,
verbose = FALSE, dn = 100, args = NULL, labels = FALSE,
density = NULL, under = FALSE, fit = NULL, start = NULL,
type = "density", v, h, groups = NULL, center = NULL, width = NULL,
breaks, nint = round(1.5 * log2(length(x)) + 1), stripes = c("vertical",
"horizontal", "none"), alpha = 1, ...)

Arguments

x a formula or a numeric vector

center center of one of the bins

width width of the bins

nint approximate number of bins

breaks break points for histogram bins, a function for computing such, or a method
hist knows about given as a character string. When using the mosaic package
defaults, xhistogramBreaks is used.

dcol color of density curve

dalpha alpha for density curve

dlwd, glwd like lwd but affecting the density line and guide lines, respectively

gcol color of guidelines

fcol fill color for histogram rectangles

dmath density function for density curve overlay

verbose be verbose?

dn number of points to sample from density curve

args a list of additional arguments for dmath

labels should counts/densities/precents be displayed or each bin?

density a logical indicating whether to overlay a density curve

under a logical indicating whether the density layers should be under or over other
layers of the plot.

fit a character string describing the distribution to fit. Known distributions include
"exponential", "normal", "lognormal" , "poisson", "beta", "geometric",
"t", "weibull", "cauchy", "gamma", "chisq", and "chi-squared"

start numeric value passed to fitdistr

146 xhistogram

type one of 'density', 'count', or 'percent'

h, v a vector of values for additional horizontal and vertical lines

groups as per histogram

stripes one of "vertical", "horizontal", or "none", indicating how bins should be
striped when groups is not NULL

alpha transparency level

panel a panel function

... additional arguments passed from histogram to the panel function; by default
when the mosaic package has been loaded this will panel.xhistogram.

Details

The primary additional functionality added to histogram() are the arguments width and center
which provide a simple way of describing equal-sized bins, and fit which can be used to overlay
the density curve for one of several distributions. The groups argument can be used to color the
bins. The primary use for this is to shade tails of histograms, but there may be other uses as well.

Value

xhistogramBreaks returns a vector of break points

Note

Versions of lattice since 0.20-21 support setting custom defaults for breaks, panel, and prepanel
used by histogram(), so xhistogram() is no longer needed. As a result, xhistogram() (which
was required in earlier versions of mosaic is no longer needed and has been removed.

See Also

histogram, mosaicLatticeOptions(), and restoreLatticeOptions().

Examples

if (require(mosaicData)) {
histogram(~age | substance, HELPrct, v=35, fit='normal')
histogram(~age, HELPrct, labels=TRUE, type='count')
histogram(~age, HELPrct, groups=cut(age, seq(10,80,by=10)))
histogram(~age, HELPrct, groups=sex, stripes='horizontal')
histogram(~racegrp, HELPrct, groups=substance,auto.key=TRUE)
xhistogramBreaks(1:10, center=5, width=1)
xhistogramBreaks(1:10, center=5, width=2)
xhistogramBreaks(0:10, center=15, width=3)
xhistogramBreaks(1:100, center=50, width=3)
xhistogramBreaks(0:10, center=5, nint=5)
}

xpnorm 147

xpnorm Augmented versions of pnorm and qnorm

Description

These functions behave similarly to the functions with the initial x removed from their names but
add more verbose output and graphics.

Usage

xpnorm(q, mean = 0, sd = 1, plot = TRUE, verbose = TRUE,
invisible = FALSE, digits = 4, lower.tail = TRUE, log.p = FALSE,
xlim = mean + c(-4, 4) * sd, ylim = c(0, 1.4 * dnorm(mean, mean, sd)),
vlwd = 2, vcol = trellis.par.get("add.line")$col, rot = 45,
manipulate = FALSE, ...)

xqnorm(p, mean = 0, sd = 1, plot = TRUE, verbose = TRUE, digits = 4,
lower.tail = TRUE, log.p = FALSE, xlim, ylim, invisible = FALSE,
vlwd = 2, vcol = trellis.par.get("add.line")$col, rot = 45, ...)

Arguments

q quantile

mean, sd parameters of normal distribution.

plot logical. If TRUE, show an illustrative plot.

verbose logical. If TRUE, display verbose output.

invisible logical. If TRUE, return value invisibly.

digits number of digits to display in output.

lower.tail logical. If FALSE, use upper tail probabilities.

log.p logical. If TRUE, uses the log of probabilities.

xlim, ylim limits for plotting.

vlwd, vcol line width and color for vertical lines.

rot angle of rotation for text labels.

manipulate logical. If TRUE and in RStudio, then sliders are added for interactivity.

p probability

... additional arguments.

See Also

histogram, chisq.test, pnorm, qnorm, qqmath, and plot.

148 xqqmath

Examples

xpnorm(650, 500, 100)
xqnorm(.75, 500, 100)
Not run:
if (rstudio_is_available() & require(manipulate)) {

manipulate(xpnorm(score, 500, 100, verbose=verbose),
score = slider(200,800),
verbose = checkbox(TRUE, label="Verbose Output")
)

}

End(Not run)

xqqmath Augmented version of qqmath

Description

Augmented version of qqmath

Usage

xqqmath(x, data = NULL, panel = "panel.xqqmath", ...)

panel.xqqmath(x, qqmathline = !(fitline || idline), idline = FALSE,
fitline = NULL, slope = NULL, intercept = NULL, overlines = FALSE,
groups = NULL, ..., col.line = trellis.par.get("add.line")$col,
pch = 16, lwd = 2, lty = 2)

Arguments

x, data, panel, xqqmath, ...

as in qqmath

qqmathline a logical: should line be displayed passing through first and third quartiles?

idline a logical; should the line y=x be added to the plot?

fitline a logical; should a ftted line be added to plot? Such a line will use slope and
intercept if provided, else the standard deviation and mean of the data. If
slope is specified, the line will be added unless fitline is FALSE.

slope slope for added line

intercept intercept for added line

overlines a logical: should lines be on top of qq plot?
groups, pch, lwd, lty

as in lattice plots

col.line color to use for added lines

xyz2latlon 149

Value

a trellis object

Examples

x <- rnorm(100)
xqqmath(~ x) # with quartile line
xqqmath(~ x, fitline = TRUE) # with fitted line
xqqmath(~ x, idline = TRUE) # with y = x
x <- rexp(100, rate = 10)
xqqmath(~ x, distribution = qexp) # with quartile line
xqqmath(~ x, distribution = qexp, slope = 1/10)
xqqmath(~ x, distribution = qexp, slope = mean(x))

xyz2latlon Convert back and forth between latitude/longitude and XYZ-space

Description

Convert back and forth between latitude/longitude and XYZ-space

Usage

xyz2latlon(x, y, z)

latlon2xyz(latitude, longitude)

lonlat2xyz(longitude, latitude)

Arguments

x, y, z numeric vectors
latitude, longitude

vectors of latitude and longitude values

Value

a matrix each row of which describes the latitudes and longitudes

a matrix each row of which contains the x, y, and z coordinates of a point on a unit sphere

See Also

deg2rad, googleMap, and rgeo.

150 zscore

Examples

xyz2latlon(1, 1, 1) # point may be on sphere of any radius
xyz2latlon(0, 0, 0) # this produces a NaN for latitude
latlon2xyz(30, 45)
lonlat2xyz(45, 30)

zscore Compute z-scores

Description

Compute z-scores

Usage

zscore(x, na.rm = getOption("na.rm", FALSE))

Arguments

x a numeric vector

na.rm a logical indicating whether missing values should be removed

Examples

iris %>%
group_by(Species) %>%
mutate(zSepal.Length = zscore(Sepal.Length)) %>%
head()

Index

∗Topic calculus
findZeros, 43

∗Topic datasets
ashplot, 11
StatSpline, 130

∗Topic distribution
qdata, 112
rand, 117

∗Topic geometry
rlatlon, 125

∗Topic graphics
dotPlot, 37
ladd, 62
plotCumfreq, 98
plotDist, 99
theme.mosaic, 139

∗Topic inference
CIsim, 19
confint.htest, 25
statTally, 132

∗Topic iteration
compareMean, 21
compareProportion, 22
do, 34

∗Topic manipulate
as.xtabs, 10
cross, 26
perctable, 97

∗Topic map
rlatlon, 125

∗Topic package
mosaic-package, 5

∗Topic random
rfun, 123
rlatlon, 125

∗Topic regression
rand, 117

∗Topic simulation
CIsim, 19

∗Topic stats
binom.test, 14
compareMean, 21
compareProportion, 22
confint.htest, 25
fav_stats, 42
orrr, 89
plotDist, 99
prop.test, 111

∗Topic util
read.file, 117

*,repeater,ANY-method (do), 34
.affine.exp (symbolicInt), 135
.intArith (symbolicInt), 135
.intMath (symbolicInt), 135
.intTrig (symbolicInt), 135
.makePoly (.polyExp), 5
.polyExp, 5

adapt_seq, 6
adaptIntegrate, 142
addmargins, 137
aes, 12, 131
aes_, 12
aes_string, 131
aggregatingFunction1, 7
aggregatingFunction1or2, 8
aggregatingFunction2, 9
antiD, 87, 135
antiD (D), 28
aov, 140
apply, 33
as.xtabs, 10
ash_points (ashplot), 11
ashplot, 11

barchart, 13, 14
bargraph, 13
binom.test, 14, 15, 112, 141, 142
borders, 12

151

152 INDEX

Broyden, 16
bs, 48

cdata, 115
cdata (qdata), 112
cdata_f (qdata_v), 114
cdata_v (qdata_v), 114
cdist, 16
chisq, 17
chisq.test, 90, 144, 147
CIAdata, 18
CIsim, 19
coef (coef.function), 20
coef.function, 20
coef.nlsfunction (fitModel), 46
col.mosaic (theme.mosaic), 139
col.whitebg, 139
columns, 21
compareMean, 21
compareProportion, 22, 22
condition (parse.formula), 95
confint, 23
confint.htest, 25
connector (FunctionsFromData), 54
cor (mean_), 72
count (prop), 110
cov (mean_), 72
cross, 26
cull_for_do, 27

D, 28, 87, 135
d2fdx2 (numD), 85
d2fdxdy (numD), 85
ddata, 115
ddata (qdata), 112
ddata_f (qdata_v), 114
ddata_v (qdata_v), 114
deal (resample), 120
deg2rad, 30, 56, 126, 149
deltaMethod, 31
densityplot, 53, 99
derivedFactor (derivedVariable), 31
derivedVariable, 31
dfapply, 33
dfdx (numD), 85
diff, 39
diffmean, 22, 34
diffprop, 23
diffprop (diffmean), 34

dnorm, 99
Do (do), 34
do, 22, 25, 27, 34, 35, 57, 75, 119
docFile, 36
dot (project), 108
dotPlot, 37
dpqrdist, 38

ediff, 38
eval, 78
evalFormula, 39
evalSubFormula, 40
expandFun, 41

factorise (factorize), 41
factorize, 41
fav_stats, 42
favstats, 42
favstats (mean_), 72
fetchData, 43
fetchGapminder (fetchData), 43
fetchGapminder1 (fetchData), 43
fetchGoogle (fetchData), 43
findZeros, 43
findZerosMult, 45
fisher.test, 90
fitdistr, 145
fitModel, 46
fitSpline, 47
fivenum (mean_), 72
format, 133
formularise, 48
fortify.hclust, 49
fortify.summary.glm

(fortify.summary.lm), 50
fortify.summary.lm, 50
fortify.TukeyHSD (fortify.summary.lm),

50
freqpoly, 51
freqpolygon, 52
FunctionsFromData, 54

geom_ash (ashplot), 11
geom_spline (StatSpline), 130
getVarFormula, 55
glm, 20, 80, 103
googleMap, 30, 56, 126, 149
gwm, 57

hist, 51, 145

INDEX 153

hist2freqpolygon (freqpoly), 51
histogram, 37, 53, 99, 132, 144, 146, 147
histogram (xhistogram), 144

ilogit (logit), 65
inferArgs, 58
inspect, 33, 59
integrate, 142
integrateODE, 60
IQR (mean_), 72
iqr (mean_), 72
is.integer, 61
is.wholenumber, 61

jitter, 12
joinFrames, 61
joinTwoFrames (joinFrames), 61

ladd, 62
lapply, 33
latlon2xyz, 30, 56, 126
latlon2xyz (xyz2latlon), 149
layer, 62, 99
levelplot, 101
lhs (parse.formula), 95
library, 36
linear.algebra, 63
linearModel, 47, 64
linearModel (FunctionsFromData), 54
lm, 20, 54, 57, 75, 103, 119
load, 118
loess, 54
logical2factor, 64
logit, 65
lonlat2xyz (xyz2latlon), 149

MAD, 65
mad, 67
MAD_, 66, 66
maggregate, 67
makeAntiDfun (D), 28
makeColorscheme, 68
makeFun, 54, 69, 87, 135
makeMap, 71
mat (linear.algebra), 63
max (mean_), 72
mean, 34
mean (mean_), 72
mean_, 72

median (mean_), 72
merge, 78
mid, 74
min (mean_), 72
mm, 74
mMap (mPlot), 78
model (fitModel), 46
modelVars, 75
mosaic (mosaic-package), 5
mosaic-package, 5
mosaic.getOption (mosaic.options), 76
mosaic.options, 76
mosaic.par.get (mosaic.options), 76
mosaic.par.set (mosaic.options), 76
mosaic_formula, 77
mosaic_formula_q (mosaic_formula), 77
mosaicGetOption (mosaic.options), 76
mosaicLatticeOptions, 146
mosaicLatticeOptions (mosaic.options),

76
mPlot, 78
mplot, 79, 79
mplot.hclust (fortify.hclust), 49
mScatter (mPlot), 78
MSPE, 81
msummary (print.msummary.lm), 107
mUniplot (mPlot), 78
mUSMap, 82
mutate, 32
mWorldMap, 82

n_missing, 88
named, 83
named_among (named), 83
nflip (rflip), 122
nice_names, 84
nlm, 142
nls, 20, 47
ns, 48
ntiles, 85
numD, 85, 135
numerical.first.partial (numD), 85
numerical.mixed.partial (numD), 85
numerical.second.partial (numD), 85
numerical_integration (D), 28

oddsRatio (orrr), 89
operator (parse.formula), 95
orrr, 89

154 INDEX

panel.ashplot (ashplot), 11
panel.cumfreq (plotCumfreq), 98
panel.dotPlot (dotPlot), 37
panel.freqpolygon (freqpolygon), 52
panel.levelcontourplot, 90
panel.levelplot, 92, 94
panel.lmbands, 91
panel.plotFun, 92
panel.plotFun1, 93
panel.xhistogram, 146
panel.xhistogram (xhistogram), 144
panel.xqqmath (xqqmath), 148
panel.xyplot, 92, 94
parse.formula, 95
pdata, 115
pdata (qdata), 112
pdata_f (qdata_v), 114
pdata_v (qdata_v), 114
pdist, 96
perc (prop), 110
perctable, 97
plot, 147
plot.freqpolygon (freqpoly), 51
plotCumfreq, 98
plotDist, 99
plotFun, 41, 86, 87, 100, 104, 106, 135
plotModel, 103
plotPoints, 104, 105
pnorm, 99, 147
predict.groupwiseModel, 106
prepanel.cumfreq (plotCumfreq), 98
prepanel.default.ashplot (ashplot), 11
prepanel.default.freqpolygon

(freqpolygon), 52
prepanel.xhistogram (xhistogram), 144
print.cointoss (rflip), 122
print.inspected_data_frame (inspect), 59
print.msummary.glm (print.msummary.lm),

107
print.msummary.lm, 107
print.oddsRatio (orrr), 89
print.relrisk (orrr), 89
print.repeater (do), 34
prod (mean_), 72
project, 54, 64, 108
project,formula-method (project), 108
project,matrix-method (project), 108
project,numeric-method (project), 108

prop, 34, 110
prop.test, 15, 111, 112, 141
prop1 (prop), 110
proptable (perctable), 97
pval (confint.htest), 25

qdata, 112, 115
qdata_f (qdata_v), 114
qdata_v, 114
qdist, 97, 115
qnorm, 99, 147
qqmath, 147, 148
quantile, 42
quantile (mean_), 72

r.squared, 116
rad2deg (deg2rad), 30
rand, 117
range (mean_), 72
rdata, 115
rdata (qdata), 112
rdata_f (qdata_v), 114
rdata_v (qdata_v), 114
read.csv, 118
read.file, 117
read.table, 118
read_csv, 118
read_table, 118
relm, 119
relrisk (orrr), 89
repeater-class, 119
replicate, 36, 119
resample, 119, 120
rescale, 121
restoreLatticeOptions, 146
restoreLatticeOptions (mosaic.options),

76
rflip, 122
rfun, 123
rgeo, 30, 56, 149
rgeo (rlatlon), 125
rgeo2 (rlatlon), 125
rhs (parse.formula), 95
rkintegrate, 124
rlatlon, 125
rlonlat (rlatlon), 125
rows (columns), 21
rpoly2 (rfun), 123
rspin, 126

INDEX 155

rsquared, 127
rstudio_is_available, 127

SAD (MAD), 65
SAD_ (MAD_), 66
sample, 121
sample (resample), 120
sapply, 33
sd (mean_), 72
set.rseed, 36, 128
set.seed, 123, 128
setCorners (numD), 85
setInterval (numD), 85
show.settings, 139
shuffle, 22
shuffle (resample), 120
singvals (linear.algebra), 63
smooth.spline, 131
smoother (FunctionsFromData), 54
solve.formula (findZeros), 43
sp2df, 78, 128
spline, 54
spliner (FunctionsFromData), 54
standardCountry (standardName), 129
standardName, 129
standardState (standardName), 129
stat, 18
stat (confint.htest), 25
stat_ash (ashplot), 11
stat_spline (StatSpline), 130
StatAsh (ashplot), 11
StatSpline, 130
statTally, 132
sum (mean_), 72
summary, 107
summary.nlsfunction (fitModel), 46
summary.oddsRatio (orrr), 89
summary.relrisk (orrr), 89
surround, 133
swap, 134
symbolicAntiD (symbolicInt), 135
symbolicD, 87, 134
symbolicInt, 135

t.test, 141
t.test (t_test), 141
t_test, 141
table, 98, 137, 138
tally, 18, 110, 137, 137, 138

tapply, 33
theme.mosaic, 139
theme_map, 140
transform, 32
trellis.par.set, 139
TukeyHSD, 140
TukeyHSD.formula (TukeyHSD.lm), 140
TukeyHSD.lm, 140

uniroot, 142
unnamed (named), 83
update_ci, 142

value, 142
var, 8
var (mean_), 72
vector2df, 143
vlength (project), 108

xchisq.test, 144
xhistogram, 144
xhistogramBreaks, 145
xhistogramBreaks (xhistogram), 144
xpbinom (pdist), 96
xpchisq (pdist), 96
xpf (pdist), 96
xpgamma (pdist), 96
xpgeom (pdist), 96
xpnbinom (pdist), 96
xpnorm, 97, 147
xppois (pdist), 96
xpt (pdist), 96
xqbinom (qdist), 115
xqchisq (qdist), 115
xqf (qdist), 115
xqgamma (qdist), 115
xqgeom (qdist), 115
xqnbinom (qdist), 115
xqnorm, 97
xqnorm (xpnorm), 147
xqpois (qdist), 115
xqqmath, 148
xqt (qdist), 115
xtabs, 13, 138
xyplot, 101, 103
xyz2latlon, 149

zscore, 150

	mosaic-package
	.polyExp
	adapt_seq
	aggregatingFunction1
	aggregatingFunction1or2
	aggregatingFunction2
	as.xtabs
	ashplot
	bargraph
	binom.test
	Broyden
	cdist
	chisq
	CIAdata
	CIsim
	coef.function
	columns
	compareMean
	compareProportion
	confint
	confint.htest
	cross
	cull_for_do
	D
	deg2rad
	deltaMethod
	derivedVariable
	dfapply
	diffmean
	do
	docFile
	dotPlot
	dpqrdist
	ediff
	evalFormula
	evalSubFormula
	expandFun
	factorize
	fav_stats
	fetchData
	findZeros
	findZerosMult
	fitModel
	fitSpline
	formularise
	fortify.hclust
	fortify.summary.lm
	freqpoly
	freqpolygon
	FunctionsFromData
	getVarFormula
	googleMap
	gwm
	inferArgs
	inspect
	integrateODE
	is.wholenumber
	joinFrames
	ladd
	linear.algebra
	logical2factor
	logit
	MAD
	MAD_
	maggregate
	makeColorscheme
	makeFun
	makeMap
	mean_
	mid
	mm
	modelVars
	mosaic.options
	mosaic_formula
	mPlot
	mplot
	MSPE
	mUSMap
	mWorldMap
	named
	nice_names
	ntiles
	numD
	n_missing
	orrr
	panel.levelcontourplot
	panel.lmbands
	panel.plotFun
	panel.plotFun1
	parse.formula
	pdist
	perctable
	plotCumfreq
	plotDist
	plotFun
	plotModel
	plotPoints
	predict.groupwiseModel
	print.msummary.lm
	project
	prop
	prop.test
	qdata
	qdata_v
	qdist
	r.squared
	rand
	read.file
	relm
	repeater-class
	resample
	rescale
	rflip
	rfun
	rkintegrate
	rlatlon
	rspin
	rsquared
	rstudio_is_available
	set.rseed
	sp2df
	standardName
	StatSpline
	statTally
	surround
	swap
	symbolicD
	symbolicInt
	tally
	theme.mosaic
	theme_map
	TukeyHSD.lm
	t_test
	update_ci
	value
	vector2df
	xchisq.test
	xhistogram
	xpnorm
	xqqmath
	xyz2latlon
	zscore
	Index

