Gaussian mixture models, k-means, mini-batch-kmeans and k-medoids clustering with the option to plot, validate, predict (new data) and estimate the optimal number of clusters. The package takes advantage of 'RcppArmadillo' to speed up the computationally intensive parts of the functions.
Version: | 1.0.3 |
Depends: | R (≥ 3.2.3), gtools |
Imports: | Rcpp (≥ 0.12.5), OpenImageR, graphics, grDevices, utils, gmp, FD, stats, ggplot2 |
LinkingTo: | Rcpp, RcppArmadillo (≥ 0.7.2) |
Suggests: | testthat, covr, knitr, rmarkdown |
Published: | 2016-10-08 |
Author: | Lampros Mouselimis |
Maintainer: | Lampros Mouselimis <mouselimislampros at gmail.com> |
BugReports: | https://github.com/mlampros/ClusterR/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/mlampros/ClusterR |
NeedsCompilation: | yes |
Materials: | README NEWS |
CRAN checks: | ClusterR results |
Reference manual: | ClusterR.pdf |
Vignettes: |
Functionality of the ClusterR package |
Package source: | ClusterR_1.0.3.tar.gz |
Windows binaries: | r-devel: ClusterR_1.0.3.zip, r-release: ClusterR_1.0.3.zip, r-oldrel: not available |
OS X Mavericks binaries: | r-release: ClusterR_1.0.3.tgz, r-oldrel: ClusterR_1.0.3.tgz |
Old sources: | ClusterR archive |
Please use the canonical form https://CRAN.R-project.org/package=ClusterR to link to this page.