REndo: Fitting Linear Models with Endogenous Regressors when No External Instruments are Available

Fits linear models with endogenous regressors using Internal Instrumental Variables (IIV) methods. These are statistical techniques to correct for endogeneity when no strong, valid external instrumental variables are available. The first version of the package offers two methods, the Latent Instrumental Variables (Ebbes et al., 2005) and Lewbel's higher moments approach (Lewbel, 1997). In a second version of the package, two other methods will be added, joint estimation using copulas (Park and Gupta, 2012) and multilevel GMM (Kim and Frees, 2007).

Version: 1.0
Imports: stats, optimx, mvtnorm, AER, e1071, utils, methods
Published: 2015-12-09
Author: Raluca Gui, Markus Meierer, Rene Algesheimer
Maintainer: Raluca Gui <raluca.gui at business.uzh.ch>
License: GPL-3
NeedsCompilation: no
Materials: README
CRAN checks: REndo results

Downloads:

Reference manual: REndo.pdf
Package source: REndo_1.0.tar.gz
Windows binaries: r-devel: REndo_1.0.zip, r-release: REndo_1.0.zip, r-oldrel: REndo_1.0.zip
OS X Mavericks binaries: r-release: REndo_1.0.tgz, r-oldrel: REndo_1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=REndo to link to this page.