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boral-package Bayesian Ordination and Regression AnaLysis (boral)

Description

boral is a package offering Bayesian model-based approaches for analyzing multivariate data in
ecology. Estimation is performed using Bayesian/Markov Chain Monte Carlo (MCMC) methods
via JAGS (Plummer, 2003). Three “types" of models may be fitted: 1) With covariates and no
latent variables, boral fits independent response GLMs such that the columns of y are assumed
to be independent; 2) With no covariates, boral fits a pure latent variable model (Skrondal and
Rabe-Hesketh, 2004) to perform model-based unconstrained ordination (Hui et al., 2014); 3) With
covariates and latent variables, boral fits correlated response GLMs, with latent variables accounting
for any residual correlation between the columns of y (Warton et al., 2015).
Details
Package: boral
Type: Package
Version: 0.6
Date: 2014-12-12
License: GPL-2
Author(s)
Francis K.C. Hui <fhui28@gmail.com>
References

* Hui et al. (2014). Model-based approaches to unconstrained ordination. Methods in Ecology

and Evolution, 6, 399-411.
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* Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using
Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical
Computing. March (pp. 20-22).

e Skrondal, A., and Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel,
longitudinal, and structural equation models. CRC Press.

* Warton et al. (2015). So Many Variables: Joint Modeling in Community Ecology. Trends in
Ecology and Evolution, to appear.

* Yi W. et al. (2013). mvabund: statistical methods for analysing multivariate abundance data.
R package version 3.8.4.

Examples

## Please see examples in the help file for boral (?boral). Thanks!

boral Fitting boral (Bayesian Ordination and Regression AnaLysis) models

Description

Bayesian ordination and regression models for analyzing multivariate data in ecology. Three "types"
of models may be fitted: 1) With covariates and no latent variables, boral fits independent response
GLMs; 2) With no covariates, boral fits a pure latent variable model; 3) With covariates and latent
variables, boral fits correlated response GLMs.

Usage
boral(y, ...)

## Default S3 method:

boral(y, X = NULL, traits = NULL, which.traits = NULL,

family, trial.size = 1, num.lv = @, row.eff = "none", row.ids = NULL,
save.model = FALSE, calc.ics = TRUE, mcmc.control = list(n.burnin = 10000,
n.iteration = 40000, n.thin = 30, seed = 123),

prior.control = list(type = c(”"normal”,"normal”,”normal”,"uniform”),
hypparams = c(100, 20, 100, 50), ssvs.index = -1, ssvs.g = le-6),

do.fit = TRUE, model.name = NULL, ...)

## S3 method for class 'boral'
print(x, ...)

Arguments

y A response matrix of multivariate data e.g., counts, binomial or Bernoulli re-
sponses, continuous response, and so on. With multivariate abundance data ecol-
ogy for instance, rows correspond to sites and columns correspond to species.
Any categorical (multinomial) responses must be converted to integer values.
For ordinal data, the minimum level of y must be 1 instead of 0.



X

traits

which.traits

family

trial.size

boral

A model matrix of covariates, which can be included as part of the boral model.
Defaults to NULL, in which case no model matrix was used. No intercept column
should be included in X.

An object for class "boral".

A model matrix of species covariates, which can be included as part of the boral
model. Defaults to NULL, in which case no matrix was used. No intercept column
should be included in traits, as it is included automatically.

A list of length equal to (number of columns in X + 1), informing which columns
of traits the column-specific intercepts and each of the column-specific re-
gression coefficients should be regressed against. The first element in the list
applies to the column-specific intercept, while the remaining elements apply to
the regression coefficients. Each element of which. traits is a vector indicating
which traits are to be used.

For example, ifwhich.traits[[2]] = c(2,3), then the regression coefficients
corresponding to the first column in X are regressed against the second and third
columns of traits. If which.traits[[2]] = 0, then the regression coeffi-
cients for each column are treated as independent. Please see help file below for
more details.

Defaults to NULL, in conjunction with traits = NULL).

Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial” (with log link), "normal" (with identity link), "Inormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).

For the negative binomial distribution, the variance is parameterized as Var(y) =
1+ ¢u?, where ¢ is the column-specific dispersion parameter. For the normal
distribution, the variance is parameterized as Var(y) = ¢2, where ¢ is the
column-specific standard deviation. For the tweedie distribution, the variance
is parameterized as Var(y) = ¢uP where ¢ is the column-specific dispersion
parameter and p is a power parameter common to all columns assumed to be
tweedie, with 1 < p < 2. For the gamma distribution, the variance is parameter-
ized as Var(y) = /¢ where ¢ is the column-specific rate (henceforth referred
to also as dispersion parameter). For the beta distribution, the parameterization
is in terms of the mean p and sample size ¢ (henceforth referred to also as dis-
persion parameter), so that the two shape parameters are given by a = ¢ and
b=(1-p)o.

All columns assumed to have ordinal responses are constrained to have the same
cutoffs points, with a column-specific random intercept to account for differ-
ences between the columns (please see Details for formulation).

Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.
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num.lv

row.eff

row.ids

save.model

calc.ics

mcmc. control

prior.control

Number of latent variables to fit. Can take any non-negative integer value. De-
faults to 0.

Single element indicating whether (multiple) row effects are included as fixed
effects ("fixed"), random effects ("random") or not included ("none") in the boral
model. If random effects, they are drawn from a normal distribution with mean
zero and unknown variance, analogous to a random intercept in mixed models.
Defaults to "none".

A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (i, j) indicates to the cluster ID of row 7 in y for random ef-
fect eqnj. This matrix is useful if one wants to specify more complicated row
effect structures beyond a single, row effect unique to each row; please see de-
tails below as well as examples below. Whether these row effects are included
as fixed or random effects is governed by row.eff. Defaults to NULL, so that if
row.eff = "none"” then the argument is ignored, otherwise if row.eff = "fixed"
or "random”, then row.ids = matrix(1:nrow(y), ncol = 1) i.e., a single,
row effect unique to each row.

If save.model = TRUE, then the JAGS model file is saved as a text file (with
name given by model.name) in the current working directory, as well as the
MCMC samples from the call to JAGS. If saved, various functions available in
the coda package can be applied to the MCMC samples. Note MCMC samples
can take up a lot of memory. Defaults to FALSE.

If calc.ics = TRUE, then various information criteria values are also returned,
which could be used to perform model selection (see get.measures). Defaults
to TRUE.

A list of parameters for controlling the MCMC sampling. Values not set will
assume default values. These include:

* n.burnin: Length of burnin i.e., the number of iterations to discard at the
beginning of the MCMC sampler. Defaults to 10000.

* n.iteration: Number of iterations including burnin. Defaults to 40000.
* n.thin: Thinning rate. Must be a positive integer. Defaults to 30.

* seed: Seed for JAGS sampler. A set.seed(seed) command is run imme-
diately before starting the MCMC sampler. Defaults to the value 123.

A list of parameters for controlling the prior distributions. Values not set will
assume default values. These include:

* type: Vector of four strings indicating the type of prior distributions to use.
In order, these are: 1) priors for all column-specific intercepts, row effects,
and cutoff points for ordinal data; 2) priors for the latent variable coeffi-
cients (ignored if num.lv = 0); 3) priors for all column-specific coeffi-
cients relating to the model matrix X (ignored if X = NULL). When traits are
included in the model, this is also the prior for the trait regression coeffi-
cients (please see section Including species traits in the help file for boral
for more information); 4) priors for any dispersion parameters.

For elements 1-3, the prior distributions currently available include: I) “nor-
mal", which is normal prior with the variance controlled by the hypparams
argument; II) “cauchy”, which is a Cauchy prior with variance controlled
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model . name
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by the hypparams argument. Gelman, et al. (2008) considers using Cauchy
priors with variance 2.5% as weakly informative priors for regression coef-
ficients; III) “uniform", which is uniform prior with minimum values given
by -hypparams and maximum values given by +hypparams.

For element 4, the prior distributions currently available include: 1) “uni-
form", which is uniform prior with minimum zero and maximum con-
trolled by hypparams[417; II) “halfnormal”, which is half-normal prior with
variance controlled by hypparams[41]; III) “halfcauchy", which is a half-
Cauchy prior with variance controlled by the hypparams[4] argument.
Defaults to the vector c(”"normal”, "normal”, "normal”, "uniform”).
hypparams: Vector of four hyperparameters used in the set up of prior
distributions. In order, these are: 1) affects the prior distribution for all
column-specific intercepts, row effects, and cutoff points for ordinal data.
If row.eff = "random”, this also controls the maximum of the uniform
prior for the standard deviation of the random effects normal distribution.
Also, if more than two of the columns are ordinal, then this also controls
the maximum of the uniform prior for the standard deviation of the column-
specific random intercepts for these columns; 2) affects the prior distribu-
tion for all latent variable coefficients (ignored if num.1lv = @); 3) affects
the prior distribution for column-specific coefficients relating to the model
matrix X (ignored if X = NULL). When traits are included in the model, it
also affects the prior distribution for the trait regression coefficients, and
controls the maximum of the uniform prior for the standard deviation of the
normally distributed random effects; 4) affects the prior distribution used
for any dispersion parameters.

Defaults to the vector c(100, 20, 100, 50).

ssvs.index: Indices to be used for stochastic search variable selection (SSVS,
George and McCulloch, 1993). Either a single element or a vector with
length equal to the number of columns in the implied model matrix X. Each
element can take values of -1 (no SSVS is performed on this covariate),
0 (SSVS is performed on individual coefficients for this covariate), or any
integer exceeding 1 (SSVS is performed on collectively all coefficients on
this covariate/s.)

This argument is only read if X.eff = TRUE. Please see the boral help file
for more information regarding the implementation of SSVS. Defaults to
-1, in which case no model selection is performed on the fitted model at all.

ssvs.g: Multiplicative, shrinkage factor for SSVS, which controls the strength
of the "spike" in the SSVS mixture prior. In summary, if the coefficient is
included in the model, the "slab" prior is a normal distribution with mean
zero and variance given by hypparams[3], while if the coefficient is not in-
cluded in the model, the "spike" prior is normal distribution with mean zero
and variance given by hypparams[3]xssvs.g. Please see the boral help
file for more information regarding the implementation of SSVS. Defaults
to le-6.

If do.fit = FALSE, then only the JAGS model file is written to the current
working directly (as text file with name based on model.name). No MCMC
sampling is performed, and nothing else is returned. Defaults to TRUE.

Name of the text file that the JAGS model is written to. Defaults to NULL, in
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which case the default of "jagsboralmodel.txt" is used.

Not used.

Details

The boral package is designed to fit three types models which may be useful in ecology (and prob-
ably outside of ecology as well =D).

Independent response models: boral allows explanatory variables to be entered into the model via
a model matrix X. This model matrix can contain anything the user wants, provided factors have
been parameterized as dummy variables. It should NOT include an intercept column.

Without latent variables, i.e. num.1lv = 9, boral fits separate GLMs to each column of the n x p
matrix y, where the columns are assumed to be independent.

where the mean response for element (i,j), denoted as mu;;, is regressed against the covariates x;
via a link function g(-). The quantities betay; and beta; denote the column-specific intercepts
and coefficients respectively, while alpha_i is an optional row effect that may be treated as a fixed
or random effect. The latter assumes the row effects are drawn from a normal distribution with
unknown variance ¢2. One reason we might want to include row effects is to account differences
in sampling intensity between sites: these can lead to differences in site total abundance, and so by
including fixed effects they play the same role as an offset to account for these differences.

Note boral can also handle multiple, hierarchical row effects, which may be useful to account for
sampling design. This is controlled using the row. ids argument. For example, if the first five rows
of y correspond to replications from site 1, the next five rows correspond to replications from site
2, and so on, then one can set row.ids = matrix(c(1,1,1,1,1,2,2,2,2,2,...), ncol = 1)
to take this in account. While this way of coding row effects via the row. ids argument takes some
getting used to, it has been done this way partly to force the user to think more carefully about
exactly the structure of the data i.e., with great power comes great responsibility...

Without row effects, the above independent response model is basically a Bayesian analog of the
manyglm function in the mvabund package (Wang et al., 2013). Unlike manyglm though, row effects
can be added easily as a type of "row-standardization". Also, a wider range of assumed distributions
(families) are possible, as discussed below (please see the section later on distributions.)

Pure latent variable models: If no explanatory variables are included and num.1v > 0, boral fits a
pure latent variable model to perform model-based unconstrained ordination (Hui et al., 2014),

9(piz) = i + Boj + 2] 65,

where instead of measured covariates, we now have a vector of latent variables z; with 6; be-
ing the column-specific coefficients relating to these latent variables. The column-specific inter-
cept, beta_0j, accounts for differences between species prevalence, while the row effect, alpha;,
is included to account for differences in site total abundance (typically assuming a fixed effect,
row.eff = "fixed", although see Jamil and ter Braak, 2013, for a motivation for using random
site effects), so that the ordination is then in terms of species composition. If «; is omitted from the
model i.e., row.eff = FALSE, then the ordination will be in terms of relative species abundance.
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As mentioned previously, one reason for including fixed row effects is to account of any potential
differences in sampling intensity between sites.

Unconstrained ordination is used for visualizing multivariate data in a low-dimensional space, with-
out reference to covariates (Chapter 9, Legendre and Legendre, 2012). Typically, num.1v =1 to 3
latent variables is used, allowing the latent variables to plotted (using lvsplot, for instance). The
resulting plot can be interpreted in the same manner as plots from Nonmetric Multi-dimensional
Scaling (NMDS, Kruskal, 1964) and Correspondence Analysis (CA, Hill, 1974), for example. A
biplot can also be constructed by setting biplot = TRUE when using lvsplot, so that both the
latent variables and their corresponding coefficients are plotted. For instance, with multivariate
abundance data, biplots are used to visualize the relationships between sites in terms of species
abundance or composition, as well as the indicator species for the sites.

Correlated response models: When one or more latent variables are included in conjunction with
covariates i.e., X is given and num.1lv > 1, boral fits separate GLMs to each column of y while
allowing for residual correlation between columns via the latent variables. This is quite useful for
multivariate abundance data in ecology, where a separate GLM is fitted to species (modeling its
response against environmental covariates), while accounting for the fact species at a site are likely
to be correlated for reason other than similarities in environmental responses, e.g. biotic interaction,
phylogeny, and so on. Correlated response model take the following form,

9(ij) = o + Boj + wiT,@j, +Z7;TH_7‘.

This model is thus a mash of the first two types of models. The linear predictor 2} ; induces a
residual covariance between the columns of y (which is of rank num.1v). For multivariate abun-
dance data, this leads to a parsimonious method of accounting for correlation between species not
due to the shared environmental responses. After fitting the model, the residual correlation matrix
then can be obtained via the get.residual. cor function. Note num.1lv > 1 is necessarily in order
to flexibly model the residual correlations; see Pollock et al. (2014) for residual correlation matrices
in the context of Joint Species Distribution Models, and Warton et al. (2015) for an overview of
latent variable models in multivariate ecology.

Including species traits: When covariates X are included (i.e. both the independent and correlated
response models), one has the option of also including traits to help explain differences in species
environmental responses to these covariates. Specifically, when traits and which. traits are sup-
plied, then the 3y;’s and 3;’s are then regarded as random effects drawn from a normal distribution.
For the species-specific intercepts, we have

ﬂOj ~ N(KOl + t'f‘a’l:tS?K',l, O'%),

where (x01, /1) are the regression coefficients relating to the traits to the intercepts and o is the
error standard deviation. These are now the "parameters" in the model, in the sense that priors are
assigned to them and MCMC sampling is used to estimate them (see the next section on estimation).

In an analogous manner, each of the elements in 3; = (8;1,. .., 3;q4) are now drawn as random
effects from a normal distribution. That is, for k = 1,...,d where d = ncol(X), we have,

Bjk ~ N(H()k + traitsfnk, U,%),

Which traits are to included (regressed) in the mean of the normal distributions is determined by
the list which. traits. The first element in the list applies to betag;, while the remaining elements
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apply to the the 3;. Each element of which. traits is a vector indicating which traits are to be used.
For example, if which.traits[[2]] = c(2, 3), then the 3;; s are drawn from a normal distribution
with mean depending only on the second and third columns of traits. Ifwhich.traits[[2]] = 9,
then the regression coefficients are treated as independent, i.e. the values of ;1 are given their own
priors and estimated separately from each other.

Including species traits in the model can be regarded as a method of simplifying the model — rather
than each to estimates p sets of species-specific coefficients, we instead say that these coefficients
are linearly related to the corresponding values of their traits (Warton et al., 2015). That is, we
are using trait data to help explain similarities/differences in species responses to the environment.
This idea has close relations to the fourth corner problem in ecology (Brown et al., 2014). Unlike
the models of Brown et al. (2014) however, which treat the 5y;’s and §;;’s are fixed effects and
fully explained by the traits, boral adopts a random effects approach similar to Jamil et al. (2013)
to "soak up" any additional between species differences in environmental responses not explained
by traits.

Estimation: For boral models, estimation is performed using Bayesian Markov Chain Monte Carlo
(MCMC) methods via JAGS (Plummer, 2003). Please note that only one MCMC chain in run — this
point is discussed later in this help file. Regarding prior distributions, the default settings, based on
the prior.control argument, are as follows:

* Normal priors with mean zero and variance given by hypparams[1] are assigned to all inter-
cepts, cutoffs for ordinal responses, and row effects. If the row effects are assumed to random,
then the standard deviation of the normal random effect is assigned a uniform prior with max-
imum hypparams[1]. If more than two columns are ordinal responses, then the standard
deviation of the normal random species-specific intercepts is assigned a uniform prior with
maximum hypparams[1].

* Normal priors with mean zero and variance given by hypparams[2] are assigned coefficients
relating to latent variables, ;.

* Normal priors with mean zero and variance given by hypparams[3] are assigned to all coef-
ficients relating to covariates in 3;. If traits are included, the same normal priors are assigned
to the ’s, and the standard deviation oy, are assigned uniform priors with maximum equal to
hypparams[4].

* For the negative binomial, normal, lognormal, and tweedie distributions, uniform priors with
maximum equal to hypparams[4] are used on the dispersion parameters. Please note that
for the normal and lognormal distributions, these uniform priors are assigned to the standard
deviations ¢ (see Gelman, 2006).

With the default values of hypparams, all parameters are given uninformative prior distributions ex-
cept for the priors of the latent variable coefficients 8;. We recommend such a “weakly-informative"
prior for the latent variable coefficients, as this tends to be produce more stable MCMC sampling
particularly if the response matrix is large and sparse.

Using information criteria at your own risk: Using information criterion from calc.ics = TRUE
for model selection should be done with extreme caution, for two reasons: 1) The implementation
of some of these criteria is heuristic and experimental, 2) Deciding what model to fit should also
be driven by the science. For example, it may be the case that a criterion suggests a model with
3 or 4 latent variables is more appropriate. However, if we are interested in visualizing the data
for ordination purposes, then models with 1 or 2 latent variables are more appropriate. As another
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example, whether or not we include row effects when ordinating multivariate abundance data de-
pends on if we are interested in differences between sites in terms of relative species abundance
(row.eff = "none") or species composition (row.eff = "fixed").

We also make the important point that if traits are included in the model, then the regression coeffi-
cients 3y;, B; are now random effects. However, currently the calculation of all information criteria
do not take this into account!

SSVS: As an alternative to using information criterion for model selection, stochastic search vari-
able selection (SSVS, George and McCulloch, 1993) is also implemented for the column-specific
coefficients 3;. Basically, SSVS works by placing a spike-and-slab priors on these coefficients,
such that the spike is a narrow normal distribution concentrated around zero and the spike is a
normal distribution with a large variance.

p(B) = Is=1 x N(0,0%) + (1 = Ig=1) x N (0, % %),

where o2 is determined by prior.control$hypparams[3] (see section on estimation above), g
is determined by ssvs.g, and Ig—; = P(8 = 1) is an indicator function representing whether
coefficient is included in the model. It is given a Bernoulli prior with probability of inclusion
0.5. After fitting, the posterior probability of 8 being included in the model is returned based on
posterior mean of the indicator function Ig—;. Note this is NOT the same as a p-value seen in
maximum likelihood estimation — a p-value provides an indication of how much evidence there is
against the null hypothesis of 3 = 0, while the posterior probability provides a measure of how
likely it is for 8 # 0 given the data.

In boral, SSVS can be applied at a grouped or individual coefficient level, and this is governed by
prior.control$ssvs.index. For elements of ssvs.index equal to -1, SSVS is not applied on
the corresponding covariate of the model matrix X. For elements equal to 0, SSVS is applied to
each individual coefficient of the corresponding covariate in X. That is, the fitted model will return
posterior probabilities for this covariate, one for each column of y. For elements taking positive
integers 1,2,..., SSVS is applied to each group of coefficients of the corresponding covariate in
X. That is, the fitted model will return a single posterior probability for this covariate, indicating
whether this covariate should be included for all columns of y; see O’Hara and Sillanpaa (2009) and
Tenan et al. (2014) among many others for an discussion of Bayesian variable selection methods.

Note the last application of SSVS allows multiple covariates to be tested simultaneously. For exam-
ple, suppose X consists of five columns — the first two columns are environmental covariates, while
the last three correspond to quadratic terms of the two covariates as well as their interaction. If we
want to "test" whether any quadratic terms are required, then we can set
prior.control$ssvs.index = c(-1,-1,1,1,1), so a single posterior probability of inclusion is
returned for the last three columns of X.

Finally, note using information criterion (and possibly residual analysis) should probably not be
done at the same as when SSVS is used, and it is advised to separate out their applications e.g.,
choose the explanatory variables first using SSVS, and then use information criterion to select the
number of latent variables??? Obtaining summaries such as posterior medians and HPD intervals
of the coefficients from a boral model that is implementing SSVS is also (perhaps) problematic,
because the posterior distribution is multi-modal.

Value

An object of class "boral" is returned, being a list containing the following components where
applicable:
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call The matched call.
lv.coefs.mean/median/sd/iqgr
Matrices containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the latent variable coefficients. This also includes
the column-specific intercepts, and dispersion parameters if appropriate.
lv.mean/median/sd/igr
A matrix containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the latent variables.
X.coefs.mean/median/sd/iqr
Matrices containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the column-specific coefficients relating to the
model matrix X.
traits.coefs.mean/median/sd/iqr
Matrices containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the coefficients and standard deviation relating to
the species traits (please see the section on including traits above).
cutoffs.mean/median/sd/iqr
Vectors containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the common cutoffs for ordinal responses (please
see the not-so-brief tangent on distributions above).
ordinal.sigma.mean/median/sd/iqr
Scalars containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the standard deviation for the random intercept
normal distribution corresponding to the ordinal response columns.
powerparam.mean/median/sd/iqr
Scalars for the mean/median/standard deviation/interquartile range of the poste-
rior distributions of the common power parameter for tweedie responses (please
see the not-so-brief tangent on distributions above).
row.coefs.mean/median/sd/iq
A list with each element containing the vectors of mean/median/standard de-
viation/interquartile range of the posterior distributions of the row effects. The
length of the list is equal to the number of row effects included i.e., ncol (row. ids).
row.sigma.mean/median/sd/iqr
A list with each element containing the mean/median/standard deviation/interquartile
range of the posterior distributions of the standard deviation for the row random
effects normal distribution. The length of the list is equal to the number of row
effects included i.e., ncol(row. ids).
ssvs.indcoefs.mean/ssvs.indcoefs.sd
Matrices containing the SSVS posterior probabilities and associated standard
deviation of including individual coefficients in the model (please see the section
on SSVS above).
ssvs.gpcoefs.mean/ssvs.gpcoefs.sd
Matrices containing the SSVS posterior probabilities and associated standard
deviation of including grouped coefficients in the model (please see the section
on SSVS above).
hpdintervals A list containing components which correspond to the lower and upper bounds
of highest posterior density (HPD) intervals for all the parameters indicated
above. Please see get.hpdintervals for more details.
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ics If calc.ics = TRUE, then a list of different information criteria values for the
model calculated using get .measures is run. Please see help file for get.measures
regarding details on the criteria. Also, please note the ics returned are based on
get.measures with more.measures = FALSE.

jags.model If save.model = TRUE, the raw jags model fitted is returned. This can be quite
large!

n, p, family, trial.size, num.lv,
Various attributes of the model fitted, including the dimension of y, the response
and model matrix used, distributional assumptions and trial sizes, number of
latent variables, the number of covariates and traits, whether information crite-
ria values were calculated, hyperparameters used in the Bayesian estimation,
indices for SSVS, the number of levels for ordinal responses, and n.burnin,
n.iteration and n.thin.

Distributions

For multivariate abundance data in ecology (also known as community composition data, Legendre
and Gallagher, 2001), species counts are often overdispersed. Using a negative binomial distri-
bution (family = "negative.binomial") to model the counts usually helps to account for this
overdispersion. Please note the variance for the negative binomial distribution is parameterized as
Var(y) = pu + ¢u?, where ¢ is the dispersion parameter.

For non-negative continuous data such as biomass, the lognormal and tweedie distributions may
be used (Foster and Bravington, 2013). Note however that a common power parameter is used for
tweedie columns — there is almost always insufficient information to model column-specific power
parameters. Normal responses are also implemented, just in case you encounter normal stuff in
ecology (pun intended)!

The beta distribution can be used to model data between values between but not including 0 and 1.
In principle, this would make it useful for percent cover data in ecology, if it not were for the fact
that percent cover is commonly characterized by having lots of zeros (which are not permitted for
beta regression). An ad-hoc fix to this would be to add a very small value to shift the data away
from exact zeros and/or ones. This is however heuristic, and pulls the model towards producing
conservative results (see Smithson and Verkuilen, 2006, for a detailed discussion on beta regression,
and Korhonen et al., 2007, for an example of an application to forest canopy cover data). Note
the parameterization of the beta distribution used here is directly in terms of the mean p and the
dispersion parameter ¢ (more commonly know as the "sample size"). In terms of the two shape
parameters, this is equivalent to shapel = a = u¢ and shape2 =b = (1 — p)¢.

For ordinal response columns, cumulative probit regression is used (Agresti, 2010). boral assumes
all ordinal columns are measured using the same scale i.e., all columns have the same number of
theoretical levels, even though some levels for some species may not be observed. The number
of levels is then assumed to be given by the maximum value from all the ordinal columns of y.
Because of this, all ordinal columns then assumed to have the same cutoffs, 7, while the column-
specific intercept effect, 3y, allow for deviations away from these common cutoffs. That is,

probit(P(y;; <k)) =1k + Boj + .-,

where probit(-) is the probit function, P(y;; < k) is the cumulative probability of element y;;
being less than or equal to level k, 71 is the cutoff linking levels k£ and k£ + 1 (and which are
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increasing in k), Bo; are the column effects, and . . . denotes what else is included in the model, e.g.
latent variables and related coefficients. To ensure model identifiability, and also because they are
interpreted as species-specific deviations from the common cutoffs, the 3y;’s are treated as random
effects and drawn from a normal distribution with mean zero and unknown standard deviation.

The parameterization above is useful for modeling ordinal in ecology. When ordinal responses
are recorded, usually the same scale is applied to all species e.g., level 1 = not there, level 2 = a
bit there, level 3 = lots there, level 4 = everywhere! The quantity 75 can thus be interpreted as
this common scale, while 3y, allows for deviations away from these to account for differences in
species prevalence. Admittedly, the current implementation of boral for ordinal data can be quite
slow.

Finally, in the event different responses are collected for different columns, e.g., some columns
of y are counts, while other columns are presence-absence, one can specify different distributions
for each column. Aspects such as variable selection, residual analysis, and plotting of the latent
variables are, in principle, not affected by having different distributions. Naturally though, one has
to be more careful with interpretation of the row effects «; and latent variables z;, as different link
functions will be applied to each column of y. A situation where different distributions may prove
useful is when y is a species—traits matrix, where each row is a species and each column a trait such
as specific leaf area. In this case, traits could be of different response types, and the goal perhaps
is to perform unconstrained ordination to look for patterns between species on an underlying trait
surface e.g., a defense index for a species (Moles et al., 2013; see also the discussion below on how
to perform model-based unconstrained ordination).

Why is only one MCMC chain run?

Much like the MCMCfactanal function in the MCMCpack package (Martin et al., 2011) for conducting
factor analysis, which is a special case of the pure latent variable model with Gaussian responses,
boral deliberately runs only one MCMC chain. This runs contrary to the recommendation of most
Bayesian analyses, where the advice is to run multiple MCMC chains and check convergence using
(most commonly) the Gelman-Rubin statistic or “Rhat” (Gelman et al., 2013). The main reason for
this is that, in the context of MCMC sampling, the latent variable model is invariant to a switch of
the sign, i.e. 270; = (—2)T(—80;), and so is actually unidentifiable. This is similar to well-known
problem of label switching that occurs during the course of MCMC sampling for mixture models
(see for instance, Section 4.9, McLachlan and Peel, 2004), and is due to the fact that the sign of the
latent variables (ordination coordinates) is inherently arbitrary.

As a result of this sign-switching problem, it means that different MCMC chains can produce la-
tent variables and corresponding coefficients values that, while having similar magnitudes, will be
different in sign. Consequently, combining MCMC chains and checking Rhats, computing poste-
rior means and medians etc...becomes inappropriate (in principle, one way to resolve this problem
would be to post-process the MCMC chains and deal with sign switching, but this is really hard!).
Therefore, to alleviate this issue together, boral chooses to only run one MCMC chain.

‘What does this mean for the user?

* For checking convergence, we recommend you look at trace plots of the MCMC chains. Using
the coda package, which is automatically loaded when the boral package is loaded, try some-
thing like traceplot(fit$jags.model, ask = TRUE). You could also try geweke.diag for
Geweke’s convergence diagnostic, although no promises this necessarily does what is meant
it!
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If you have a lot of data, e.g. lots of sites compared to species, sign-switching tends to be less
of problem and pops up less often.

IMPORTANTLY, if the goal of your analysis is to inference while account for residual corre-
lations between the columns of y, and not for model-based ordination, then the sign-switching
problem is not a problem at all! This is because while the signs of the latent variables and
associated coefficients may switch, the correlation and their signs are unaffected. In other
words, looking the point estimates and credible intervals of regression coefficients 3;, and
functions like get.residual. cor are unaffected by sign-switching.

Warnings

No intercept column is required in X. Column-specific intercepts are estimated automatically
and given by the first column of 1v.coefs. Similarly, no intercept column is required in
traits, as it is included automatically.

If num.lv > 5, a warning is printed asking whether you really want to fit an boral with more
than five latent variables. A warning is also printed if num.lv == 1, as this is not going to be
successful in modeling between the correlation between columns.

For models including both explanatory covariates and latent variables, one requires num.1lv > 1
to allow flexible modeling of the residual correlation matrix.

MCMC can take a long time to run, especially with if the response matrix y is large! The
calculation of information criteria (calc.ics = TRUE) can also take a while. Apologies for
this advance =(

MCMC with lots of ordinal columns take an especially long time to run! Moreover, estimates
for the cutoffs in cumulative probit regression may be poor for levels with little data. Major
apologies for this advance =(

As discussed in the details, the use of information criterion should be done so with caution.
What model to select should be first and foremost driven by the question of interest. Also, the
use of information criterion in the presence of model selection using SSVS is problematic.

Summaries of the coefficients such as posterior medians and HPD intervals may also be prob-
lematic when SSVS is being used, since the posterior distribution will be multi-modal.

If save.model = TRUE, the raw jags model is also returned. This can be quite very memory-
consuming, since it indirectly saves all the MCMC samples.

Author(s)

Francis K.C. Hui <fhui28@gmail.com>
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See Also

lvsplot for a scatter plot of the latent variables (and their coefficients if applicable) when num.1lv = 1
or 2, coefsplot for horizontal line or "caterpillar plot" of the regression coefficients corresponding
to X (if applicable), summary.boral for a summary of the fitted boral model, get.measures and
get.more.measures for information criteria from the fitted boral model, get.residual.cor for
calculating the residual correlation matrix.

Examples

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

X <- scale(spider$x)

n <- nrow(y); p <- ncol(y);

## NOTE: The values below MUST NOT be used in a real application;

## they are only used here to make the examples run quick!!!

example.mcmc.control <- list(n.burnin = 10, n.iteration = 100,
n.thin = 1)

## Example 1 - model with two latent variables, site effects,

## and no environmental covariates

spider.fit.nb <- boral(y, family = "negative.binomial”, num.lv = 2,
row.eff = "fixed"”, calc.ics = FALSE,
mcmc.control = example.mcmc.control)

summary (spider.fit.nb)

par(mfrow = c(2,2))

plot(spider.fit.nb) ## Plots used in residual analysis,

dev.off()

## Used to check if assumptions such an mean-variance relationship
## are adequately satisfied.

lvsplot(spider.fit.nb) ## Biplot of the latent variables,
## which can be interpreted in the same manner as an ordination plot.

## Not run:

## Example 2a - model with no latent variables, no site effects,
## and environmental covariates

spider.fit.nb <- boral(y, X = X, family = "negative.binomial”,
num.lv = @, mcmc.control = example.mcmc.control)
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summary (spider.fit.nb)
## The results can be compared with the default example from
## the manyglm() function in mvabund. Hopefully they are similar =D

## Caterpillar plots for the coefficients
par(mfrow=c(2,3), mar = c(5,6,1,1))
sapply(colnames(spider.fit.nb$X), coefsplot, x = spider.fit.nb)

## Example 2b - suppose now, for some reason, the 28 rows were

## sampled such into four replications of seven sites

## Let us account for this as a fixed effect

spider.fit.nb <- boral(y, X = X, family = "negative.binomial”,

num.lv = @, row.eff = "fixed"”, row.ids = matrix(rep(1:7,each=4),ncol=1),
mcme.control = example.mcmc.control)

spider.fit.nb$row.coefs

## Example 2c - suppose now, for some reason, the 28 rows reflected
## a nested design with seven regions, each with four sub-regions
## We can account for this nesting as a random effect

spider.fit.nb <- boral(y, X = X, family = "negative.binomial”,
num.lv = @, row.eff = "random”,

row.ids = cbind(1:n, rep(1:7,each=4)),

mcmc.control = example.mcmc.control)

spider.fit.nb$row.coefs

## Example 3a - Extend example 2 to demonstrate grouped covariate selection
## on the last three covariates.

set.prior <- list(type = c("normal”,"normal”,"”normal”,"uniform”),

hypparams = c(100, 20, 100, 50), ssvs.index = c(-1,-1,-1,1,2,3))
spider.fit.nb2 <- boral(y, X = X, family = "negative.binomial”,

num.lv = @, calc.ics = FALSE, mcmc.control = example.mcmc.control,
prior.control = set.prior)

summary(spider.fit.nb2)

## Example 3b - Extend example 2 to demonstrate individual covariate selection
## on the last three covariates.

set.prior <- list(type = c("normal”,"normal”,"normal”,"uniform”),

hypparams = c(100, 20, 100, 50), ssvs.index = c(-1,-1,-1,0,0,0))
spider.fit.nb3 <- boral(y, X = X, family = "negative.binomial”,

num.lv = @, calc.ics = FALSE, mcmc.control = example.mcmc.control,
prior.control = set.prior)

summary (spider.fit.nb3)

## Example 4 - model fitted to presence-absence data, no site effects, and
## two latent variables

17
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data(tikus)

y <- tikus$abun

yly > 0] <- 1

y <- y[1:20,] ## Consider only years 1981 and 1983

y <= y[,apply(y > 0,2,sum) > 2] ## Consider only spp with more than 2 presences

tikus.fit <- boral(y, family = "binomial”, num.lv = 2,
calc.ics = FALSE, mcmc.control = example.mcmc.control)

lvsplot(tikus.fit, biplot = FALSE)
## A strong location between the two sampling years

## Example 5 - model fitted to count data, no site effects, and

## two latent variables, plus traits included to explain environmental responses
data(antTraits)

y <- antTraits$abun

X <- as.matrix(scale(antTraits$env))

## Include only traits 1, 2, and 5

traits <- as.matrix(antTraits$traits[,c(1,2,5)]1)

which.traits <- vector(”list”,ncol(X)+1)

for(i in 1:length(which.traits)) which.traits[[i]] <- 1:ncol(traits)

## Just for fun, the regression coefficients for the second column of X,
## corresponding to the third element in the list which.traits,

## will be estimated separately and not regressed against traits.
which.traits[[3]] <- @

fit.traits <- boral(y, X = X, traits = traits, which.traits = which.traits,
family = "negative.binomial”, calc.ics = FALSE,
mcmc.control = example.mcmc.control)

summary(fit.traits)

## Example 6 - simulate Bernoulli data, based on a model with two latent variables,
## no site variables, with two traits and one environmental covariates

## This example is a proof of concept that traits can used to

## explain environmental responses

library(mvtnorm)

n <- 100; s <- 50
X <- as.matrix(scale(1:n))
colnames(X) <- c("elevation”)

traits <- cbind(rbinom(s,1,0.5), rnorm(s))
## one categorical and one continuous variable
colnames(traits) <- c("thorns-dummy”,"SLA")

simfit <- list(true.lv = rmvnorm(n, mean = rep(9,2)),

lv.coefs = cbind(rnorm(s), rmvnorm(s, mean = rep(9,2))),

traits.coefs = matrix(c(0.1,1,-0.5,1,0.5,0,-1,1), 2, byrow = TRUE))
rownames(simfit$traits.coefs) <- c("beta@"”,"elevation")
colnames(simfit$traits.coefs) <- c("kappa@"”,"thorns-dummy”,"”SLA","sigma")
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simy = create.life(true.lv = simfit$true.lv, lv.coefs = simfit$lv.coefs, X = X,
traits = traits, traits.coefs = simfit$traits.coefs, family = "binomial")

which.traits <- vector(”list”,ncol(X)+1)

for(i in 1:length(which.traits)) which.traits[[i]] <- 1:ncol(traits)

fit.traits <- boral(y = simy, X = X, traits = traits, which.traits = which.traits,
family = "binomial”, num.lv = 2, save.model = TRUE, calc.ics = FALSE,
mcme.control = example.mcmc.control)

## End(Not run)

calc.condloglLik Conditional log-likelihood for an boral model

Description
Calculates the conditional log-likelihood for a set of parameter estimates from an boral model,
where everything is treated as "fixed effects" including latent variables, row effects, and so on.
Usage

calc.condloglLik(y, X = NULL, family, trial.size = 1, lv.coefs,
X.coefs = NULL, row.coefs = NULL, row.ids = NULL,
lv = NULL, cutoffs = NULL, powerparam = NULL)

Arguments
The response matrix the boral model was fitted to.
The model matrix used in the boral model. Defaults to NULL, in which case it is
assumed no model matrix was used.
family Either a single element, or a vector of length equal to the number of columns

in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial" (with log link), "normal" (with identity link), "Inormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).

For the negative binomial distribution, the variance is parameterized as Var(y) =
1+ ¢u?, where ¢ is the column-specific dispersion parameter. For the normal
distribution, the variance is parameterized as Var(y) = ¢?, where ¢ is the
column-specific standard deviation. For the tweedie distribution, the variance
is parameterized as Var(y) = ¢uP where ¢ is the column-specific dispersion
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trial.size

lv.coefs

X.coefs

row.coefs

row.ids

1v

cutoffs

powerparam

Details

calc.condlogLik

parameter and p is a power parameter common to all columns assumed to be
tweedie, with 1 < p < 2. For the gamma distribution, the variance is parameter-
ized as Var(y) = p/¢ where ¢ is the column-specific rate (henceforth referred
to also as dispersion parameter). For the beta distribution, the parameterization
is in terms of the mean p and sample size ¢ (henceforth referred to also as dis-
persion parameter), so that the two shape parameters are given by a = ¢ and
b= (1-p)g.

All columns assumed to have ordinal responses are constrained to have the same
cutoffs points, with a column-specific intercept to account for differences be-
tween the columns (please see Details for formulation).

Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

The column-specific intercept, coefficient estimates relating to the latent vari-
ables, and dispersion parameters from the boral model.

The coefficients estimates relating to the model matrix X from the boral model.
Defaults to NULL, in which it is assumed there are no covariates in the model.

Row effect estimates for the boral model. The conditional likelihood is defined
conditional on these estimates i.e., they are also treated as “fixed effects". De-
faults to NULL, in which case it is assumed there are no row effects in the model.

A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (7, j) indicates to the cluster ID of row ¢ in y for random effect
eqnj; please see the help file for the main boral function for details. Defaults
to NULL, so that if row.coefs = NULL then the argument is ignored, otherwise
if row. coefs is supplied then row.ids = matrix(1:nrow(y), ncol = 1)
i.e., a single, row effect unique to each row. An internal check is done to see
row.coefs and row. ids are consistent in terms of arguments supplied.

Latent variables "estimates" from the boral model, which the conditional like-
lihood is based on. Defaults to NULL, in which case it is assumed no latent
variables were included in the model.

Common cutoff estimates from the boral model when any of the columns of y
are ordinal responses. Defaults to NULL.

Common power parameter from the boral model when any of the columns of y
are tweedie responses. Defaults to NULL.

For an nxp response matrix y, suppose we fit an boral model with one or more latent variables. If
we denote the latent variables by z;;¢ = 1, ..., n, then the conditional log-likelihood is given by,

log(f) = Zzlog(f(yiﬂzu 0;,Boj,--.),

i=1 j=1
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where f(y;;|-) is the assumed distribution for column j, z; are the latent variables and 6; are
the coefficients relating to them, (y; are column-specific intercepts, and . .. denotes anything else
included in the model, such as row effects, regression coefficients related X and traits, etc...

The key difference between this and the marginal likelihood (see calc.margloglik) is that the
conditional likelihood treats everything as "fixed effects" i.e., conditions on them. These include
the latent variables z; and other parameters that were included in the model as random effects e.g.,

row effects if row.eff = "random”, regression coefficients related to X if traits were included in
the model (see the section titled “Including species traits" in the main boral fitting function), and
SO on.

The conditional DIC, WAIC, EAIC, and EBIC returned from get.measures are based on the condi-
tional likelihood calculated from this function. Additionally, get.measures returns the conditional
likelihood evaluated at all MCMC samples of a fitted boral model.

Value
A list with the following components:

loglik Value of the conditional log-likelihood.

loglLik.comp A matrix of the log-likelihood values for each element in y,
such that sum(loglLik.comp) = loglLik.

Author(s)

Francis K.C. Hui <fhui28@gmail.com>

See Also

get.measures for some information criteria based on the conditional log-likelihood; calc.loglLik.1ve@
to calculate the conditional/marginal log-likelihood for an boral model with no latent variables;
calc.marglogl ik for calculation of the marginal log-likelihood;

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

n <- nrow(y); p <- ncol(y);

## Example 1 - model with 2 latent variables, site effects,

## and no environmental covariates

spider.fit.nb <- boral(y, family = "negative.binomial”, num.lv = 2,
row.eff = "fixed", save.model = TRUE, calc.ics = FALSE)

## Extract all MCMC samples
fit.memc <- mcmc(spider.fit.nb$jags.model$BUGSoutput$sims.matrix)

## Find the posterior medians
coef.mat <- matrix(apply(fit.mcmc[,grep(”all.params”,colnames(fit.memc))],
2,median),nrow=p)
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site.coef <- list(ID1 = apply(fit.mcmc[,grep(”"row.params”, colnames(fit.mcmc))],
2,median))
lvs.mat <- matrix(apply(fit.mcmc[,grep(”lvs”,colnames(fit.mcmc))],2,median),nrow=n)

## Calculate the conditional log-likelihood at the posterior median
calc.condloglik(y, family = "negative.binomial”,
lv.coefs = coef.mat, row.coefs = site.coef, lv = lvs.mat)

## Example 2 - model with no latent variables and environmental covariates

X <- scale(spider$x)

spider.fit.nb2 <- boral(y, X = X, family = "negative.binomial”, num.lv = 0,
save.model = TRUE, calc.ics = FALSE)

## Extract all MCMC samples
fit.mcmc <- mcmc(spider.fit.nb2$jags.model$BUGSoutput$sims.matrix)

## Find the posterior medians

coef.mat <- matrix(apply(fit.mcmc[,grep(”all.params”,colnames(fit.memc))],
2,median),nrow=p)

X.coef.mat <- matrix(apply(fit.mcmc[,grep("X.params”,colnames(fit.memc))],

2,median),nrow=p)

## Calculate the log-likelihood at the posterior median
calc.condloglLik(y, X = X, family = "negative.binomial”,

lv.coefs = coef.mat, X.coefs = X.coef.mat)

## End(Not run)

calc.loglLik.1lve Log-likelihood for a boral model with no latent variables

Description

Calculates the log-likelihood for a set of parameter estimates from an boral model with no latent
variables. If the row effects are assumed to be random, they are integrated over using Monte Carlo
integration.

Usage

calc.loglLik.1lv@e(y, X = NULL, family, trial.size = 1, lv.coefs,
X.coefs = NULL, row.eff = "none"”, row.params = NULL,
row.ids = NULL, cutoffs = NULL,powerparam = NULL)

Arguments

The response matrix the boral model was fitted to.

X The model matrix used in the boral model. Defaults to NULL, in which case it is
assumed no model matrix was used.
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family Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial” (with log link), "normal" (with identity link), "Inormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).
For the negative binomial distribution, the variance is parameterized as Var(y) =
1+ ¢u?, where ¢ is the column-specific dispersion parameter. For the normal
distribution, the variance is parameterized as Var(y) = ¢?*, where ¢ is the
column-specific standard deviation. For the tweedie distribution, the variance
is parameterized as Var(y) = ¢uP where ¢ is the column-specific dispersion
parameter and p is a power parameter common to all columns assumed to be
tweedie, with 1 < p < 2. For the gamma distribution, the variance is parameter-
ized as Var(y) = /¢ where ¢ is the column-specific rate (henceforth referred
to also as dispersion parameter). For the beta distribution, the parameterization
is in terms of the mean p and sample size ¢ (henceforth referred to also as dis-
persion parameter), so that the two shape parameters are given by a = ¢ and
b=(1-p)o.
All columns assumed to have ordinal responses are constrained to have the same
cutoffs points, with a column-specific intercept to account for differences be-
tween the columns (please see Details for formulation).

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

lv.coefs The column-specific intercept, coefficient estimates relating to the latent vari-
ables, and dispersion parameters from the boral model.

X.coefs The coefficients estimates relating to the model matrix X from the boral model.
Defaults to NULL, in which it is assumed there are no covariates in the model.

row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the boral model. If ran-
dom effects, they are drawn from a normal distribution with mean zero and
standard deviation given by row.params. Defaults to "none".

row.params Parameters corresponding to the row effect from the boral model. If
row.eff = "fixed", then these are the fixed effects and should have length
equal to the number of columns in y. If row.eff = "random”, then this is the
standard deviation for the random effects normal distribution. If row.eff = "none”,
then this argument is ignored.

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (7, j) indicates to the cluster ID of row ¢ in y for random effect
eqnj; please see the help file for the main boral function for details. Defaults to
NULL, so that if row.params = NULL then the argument is ignored, otherwise
if row. params is supplied then row.ids = matrix(1:nrow(y), ncol = 1)
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i.e., a single, row effect unique to each row. An internal check is done to see
row.params and row. ids are consistent in terms of arguments supplied.

cutoffs Common cutoff estimates from the boral model when any of the columns of y
are ordinal responses. Defaults to NULL.

powerparam Common power parameter from the boral model when any of the columns of y
are tweedie responses. Defaults to NULL.

Details

For an nxp response matrix y, the log-likelihood for a model with no latent variables included is
given by,

log(f) = > > log(f(yij|Boj» tir - )
i=1 j=1

where f(y;;|-) is the assumed distribution for column j, fy; is the column-specific intercepts, o
is the row effect, and . .. generically denotes anything else included in the model, e.g. row effects,
dispersion parameters etc...

Please note the function is written conditional on all regression coefficients. Therefore, if traits
are included in the model, in which case the regression coefficients 3, 3; become random effects
instead (please see section titled “Including species traits" in the main boral function), then the
calculation of the log-likelihood does NOT take this into account, i.e. does not marginalize over
them!

Likewise if more than two columns are ordinal responses, then the regression coefficients Sy; cor-
responding to these columns become random effects, and the calculation of the log-likelihood also
does NOT take this into account, i.e. does not marginalize over them!

In the special case where «; is a random row effect, then the log-likelihood is calculated by inte-
grating over this,

log(f) = Zlog(/ H(f(yijlﬁ()jaai’ ) f(ag)das),

where f(a;) is the random effects distribution with mean zero and standard deviation given by
the row.params. The integration is performed using standard Monte Carlo integration. Beyond
this however, for more complicated random row effects structures the function currently does not
permit the calculation of the log-likelihood in such cases, as the integration over these random
effects becomes too complicated to perform in such case. Sorry!

Value

A list with the following components:

loglik Value of the log-likelihood
loglLik.comp A vector of the log-likelihood values for each row of y, such that sum(logLik.comp) = loglLik.
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Author(s)

Francis K.C. Hui <fhui28@gmail.com>

See Also

calc.marglogl ik for calculation of the log-likelihood marginalizing over one or more latent vari-
ables, and calc.condloglLik for calculation of the conditional log-likelihood for models where
everything is treated as "fixed effects", including latent variables, row effects, and so on.

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

n <- nrow(y); p <- ncol(y);

## Example 1 - NULL model with site effects only
spider.fit.nb <- boral(y, family = "negative.binomial”,
row.eff = "fixed", save.model = TRUE, calc.ics = FALSE)

## Extract all MCMC samples
fit.memc <- mcmc(spider.fit.nb$jags.model$BUGSoutput$sims.matrix)

## Find the posterior medians

coef.mat <- matrix(apply(fit.mcmc[,grep(”all.params”,colnames(fit.memc))],
2,median),nrow=p)

site.coef <- list(ID1 = apply(fit.mcmc[,grep("row.params”, colnames(fit.mcmc))],
2,median))

## Calculate the log-likelihood at the posterior median
calc.loglik.1lve(y, family = "negative.binomial”,
lv.coefs = coef.mat, row.eff = "fixed"”, row.params = site.coef)

## Example 2 - Model with environmental covariates and random row effects

X <- scale(spider$x)

spider.fit.nb2 <- boral(y, X = X, family = "negative.binomial”, row.eff = "random”,
save.model = TRUE, calc.ics = FALSE)

## Extract all MCMC samples
fit.memc <- mcmc(spider.fit.nb2$jags.model$BUGSoutput$sims.matrix)

## Find the posterior medians

coef.mat <- matrix(apply(fit.mcmc[,grep(”all.params”,colnames(fit.memc))],
2,median),nrow=p)

X.coef.mat <- matrix(apply(fit.mcmc[,grep("X.params”,colnames(fit.memc))],

2,median),nrow=p)

site.sigma <- 1list(ID1 =

median(fit.memc[,grep("row.ranef.sigma”, colnames(fit.mcmc))1))
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## Calculate the log-likelihood at the posterior median
calc.loglik.1lv@(y, X = spider$x, family = "negative.binomial”, row.eff = "random",

lv.coefs

## End(Not run)

coef.mat, X.coefs = X.coef.mat, row.params = site.sigma)

calc.margloglik

Marginal log-likelihood for an boral model

Description

Calculates the marginal log-likelihood for a set of parameter estimates from an boral model, whereby
the latent variables and random effects (if applicable) are integrated out. The integration is per-
formed using Monte Carlo integration.

Usage

calc.margloglLik(y, X = NULL, family, trial.size = 1, lv.coefs,

X.coefs

NULL, row.eff = "none"”, row.params = NULL, row.ids = NULL,

num.lv, lv.mc = NULL, cutoffs = NULL, powerparam = NULL)

Arguments

y

family

The response matrix that the boral model was fitted to.

The model matrix used in the boral model. Defaults to NULL, in which case it is
assumed no model matrix was used.

Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial" (with log link), "normal" (with identity link), "Inormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).

For the negative binomial distribution, the variance is parameterized as Var(y) =
w + ¢u?, where ¢ is the column-specific dispersion parameter. For the normal
distribution, the variance is parameterized as Var(y) = ¢?, where ¢ is the
column-specific standard deviation. For the tweedie distribution, the variance
is parameterized as Var(y) = ¢uP where ¢ is the column-specific dispersion
parameter and p is a power parameter common to all columns assumed to be
tweedie, with 1 < p < 2. For the gamma distribution, the variance is parameter-
ized as Var(y) = u/¢ where ¢ is the column-specific rate (henceforth referred
to also as dispersion parameter). For the beta distribution, the parameterization
is in terms of the mean x and sample size ¢ (henceforth referred to also as dis-
persion parameter), so that the two shape parameters are given by a = ¢ and

b=(1-p)o.



calc.marglogLik 27

All columns assumed to have ordinal responses are constrained to have the same
cutoffs points, with a column-specific intercept to account for differences be-
tween the columns (please see Details for formulation).

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

lv.coefs The column-specific intercept, coefficient estimates relating to the latent vari-
ables, and dispersion parameters from the boral model.

X.coefs The coefficients estimates relating to the model matrix X from the boral model.
Defaults to NULL, in which it is assumed there are no covariates in the model.

row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the boral model. If ran-
dom effects, they are drawn from a normal distribution with mean zero and
standard deviation given by row.params. Defaults to "none".

row.params Parameters corresponding to the row effect from the boral model. If
row.eff = "fixed", then these are the fixed effects and should have length
equal to the number of columns in y. If row.eff = "random”, then this is stan-
dard deviation for the random effects normal distribution. If row.eff = "none”,
then this argument is ignored.

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (4, j) indicates to the cluster ID of row ¢ in y for random effect
eqnj; please see the help file for the main boral function for details. Defaults to
NULL, so that if row.params = NULL then the argument is ignored, otherwise
if row. params is supplied then row.ids = matrix(1:nrow(y), ncol = 1)
i.e., a single, row effect unique to each row. An internal check is done to see
row.params and row. ids are consistent in terms of arguments supplied.

num. lv The number of latent variables used in the boral model. For boral models with
no latent variables, please use calc.loglLik.1v@ to calculate the log-likelihood.

lv.mc A matrix used for performing the Monte Carlo integration. Defaults to NULL, in
which case a matrix is generated within the function.

cutoffs Common cutoff estimates from the boral model when any of the columns of y
are ordinal responses. Defaults to NULL.

powerparam Common power parameter from the boral model when any of the columns of y
are tweedie responses. Defaults to NULL.

Details

For an nxp response matrix y, suppose we fit an boral model with one or more latent variables. If
we denote the latent variables by z;;¢ = 1, ..., n, then the marginal log-likelihood is given by

log(f) = 3 log( / T1 #5120, Bos, 65, ) F(z)d=),
i=1 j=1
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where f(y;;|-) is the assumed distribution for column j, fy; are the column-specific intercepts,
0; are the column-specific latent variable coefficients, and ... generically denotes anything else
included in the model, e.g. row effects, dispersion parameters etc... The quantity f(z;) denotes the
distribution of the latent variable, which is assumed to be standard multivariate Gaussian. Standard
Monte Carlo integration is used for calculating the marginal likelihood. If 1v.mc = NULL, the
function automatically generates a matrix as

lv.mc <- cbind(1, rmvnorm(2000, rep(@,num.lv))). If there is a need to apply this function
numerous times, we recommend a matrix be inserted into 1v.mc to speed up computation.

The key difference between this and the conditional likelihood (see calc.condloglik) is that the
marginal likelihood treats the latent variables as "random effects" and integrates over them, whereas
the conditional likelihood treats the latent variables as "fixed effects".

Please note the function is written conditional on all regression coefficients. Therefore, if traits
are included in the model, in which case the regression coefficients 3, 3; become random effects
instead (please see section titled “Including species traits" in the main boral function), then the
calculation of the log-likelihood does NOT take this into account, i.e. does not marginalize over
them!

Likewise if more than two columns are ordinal responses, then the regression coefficients 3y; cor-
responding to these columns become random effects, and the calculation of the log-likelihood also
does NOT take this into account, i.e. does not marginalize over them!

In the special case where «; is a random row effect, then the log-likelihood is calculated by inte-
grating over this as well,

log(1) = > log [ T[(Fusslzs 50y 0510 ) (20 (i) dzadn),

where f(«;) is the random effects distribution with mean zero and standard deviation given by
the row.params. The integration is performed using standard Monte Carlo integration. Beyond
this however, for more complicated random row effects structures the function currently does not
permit the calculation of the log-likelihood in such cases, as the integration over these random
effects becomes too complicated to perform in such case. Sorry!

Value

A list with the following components:

loglLik Value of the marginal log-likelihood.

logLik.comp A vector of the log-likelihood values for each row of y,
such that sum(loglLik.comp) = loglLik.

Note

The AIC and BIC at posterior median returned from get.measures are all based on the marginal
log-likelihood calculated from this function. Additionally, get.more.measures returns even more
information criteria based on the marginal log-likelihood. As mentioned in the details though, these
information criteria do not take into account that traits are included in the model!
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Author(s)

Francis K.C. Hui <fhui28@gmail.com>

See Also

get.measures and get.more.measures for information criteria based on the marginal log-likelihood;
calc.condlogLik for calculation of the conditional log-likelihood; calc.loglik.1v® to calculate
the conditional/marginal log-likelihood for an boral model with no latent variables.

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

n <- nrow(y); p <- ncol(y);

## Example 1 - model with two latent variables, site effects,

## and no environmental covariates

spider.fit.nb <- boral(y, family = "negative.binomial”, num.lv = 2,
row.eff = "fixed", save.model = TRUE, calc.ics = FALSE)

## Extract all MCMC samples
fit.mcmc <- mcmc(spider.fit.nb$jags.model$BUGSoutput$sims.matrix)

## Find the posterior medians

coef.mat <- matrix(apply(fit.mcmc[,grep(”all.params”,colnames(fit.memc))],
2,median),nrow=p)

site.coef <- 1list(ID1 = apply(fit.mcmc[,grep(”"row.params”, colnames(fit.mcmc))],
2,median))

## Calculate the marginal log-likelihood at the posterior median
calc.margloglLik(y, family = "negative.binomial”,

lv.coefs = coef.mat, row.eff = "fixed”, row.params = site.coef,
num.lv = 2)

## Example 2 - model with one latent variable, no site effects,

## and environmental covariates

spider.fit.nb2 <- boral(y, X = spider$x, family = "negative.binomial”,
num.lv = 2, save.model = TRUE, calc.ics = FALSE)

## Extract all MCMC samples
fit.mcmc <- mcmc(spider.fit.nb2$jags.model$BUGSoutput$sims.matrix)

## Find the posterior medians

coef.mat <- matrix(apply(fit.mcmc[,grep(”all.params”,colnames(fit.memc))],
2,median),nrow=p)

X.coef.mat <- matrix(apply(fit.mcmc[,grep("”X.params”,colnames(fit.memc))],

2,median),nrow=p)

## Calculate the log-likelihood at the posterior median
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calc.margloglLik(y, X = spider$x, family = "negative.binomial”,
lv.coefs = coef.mat, X.coefs = X.coef.mat, num.lv = 2)

## End(Not run)

coefsplot Caterpillar plots of the regression coefficients from a boral model

Description

Constructs horizontal line plot (point estimate and HPD intervals), otherwise known as "caterpillar
plots", for the column-specific regression coefficients corresponding to a covariate in X fitted in the
boral model.

Usage
coefsplot(covname, x, labely = NULL, est = "median”, ...)
Arguments
covname The name of one of the covariates fitted in the boral model. That is, it must be a
character vector corresponding to one of the elements in colnames (x) $X. coefs.median.
X An object for class "boral".
labely Controls the labels on the y-axis for the line plot. If it is not NULL, then it must
be a vector either of length 1 or the same length as the number of columns in the
y in the fitted boral object. In the former, it is treated as the y-axis label. In the
latter, it is used in place of the column names of y to label each line. Defaults to
NULL, in which the each line in the plot is labeled according to the columns of y,
or equivalently rownames (x$X. coefs.median).
est A choice of either the posterior median (est = "median”) or posterior mean
(est = "mean"), which are then used as the point estimates in the lines. Default
is posterior median.
Additional graphical options to be included in. These include values for
cex, cex.lab, cex.axis, cex.main, lwd, and so on.
Details

For each species (column of y), the horizontal line or "caterpillar” is constructed by first marking
the point estimate (posterior mean or median) with an "x" symbol. Then the line is construed
based on the lower and upper limits of the highest posterior density (HPD) intervals as found in
x$hpdintervals. By default these intervals of 95% HPD intervals. To complete the plot, a vertical
dotted line is drawn to denote the zero value. All HPD intervals that include zero are colored gray,

while HPD intervals that exclude zero are colored black.
The graph is probably better explained by, well, plotting it using the toy example below =P

Thanks to Robert O’Hara for suggesting and providing the original code for this function.
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Value

If SSVS was applied individually to each coefficient of X when fitting the boral model, then the pos-
terior probabilities of including the specified covariate are printed outi.e., those from x$ssvs. indcoefs.mean.

Author(s)
Francis K.C. Hui <fhui28@gmail.com>

See Also

caterplot from the mcmcplots package for other, sexier caterpillar plots.

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

n <= nrow(y); p <- ncol(y);

X <- scale(spiders$x)
spider.fit.nb <- boral(y, X = X, family = "negative.binomial”,
num.lv = 2)

## Do separate line plots for all the coefficients of X
par(mfrow=c(2,3), mar = c(5,6,1,1))
sapply(colnames(spider.fit.nb$X), coefsplot,
spider.fit.nb)

## End(Not run)

create.life Simulate a Multivariate Response Matrix

Description

Simulate a multivariate response matrix, given parameters such as but not necessarily all of: family,
number of latent variables and related coefficients, an matrix of explanatory variables and related
coefficients, row effects, cutoffs for cuamulative probit regression of ordinal responses.

Usage

create.life(true.lv = NULL, lv.coefs, X = NULL, X.coefs = NULL,
traits = NULL, traits.coefs = NULL, family, row.eff = "none",
row.params = NULL, row.ids = NULL, trial.size = 1, cutoffs = NULL,
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powerparam = NULL, manual.dim = NULL, save.params = FALSE)

## S3 method for class 'boral'

simulate(object, nsim = 1, seed = NULL, est = "median”, ...)
Arguments
object An object of class "boral".
nsim Number of multivariate response matrices to simulate. Defaults to 1.
seed Seed for dataset simulation. Defaults to NULL, in which case no seed is set.
est A choice of either the posterior median (est == "median"”) or posterior mean
(est == "mean"), which are then treated as estimates and the fitted values are

calculated from. Default is posterior median.

true.lv A matrix of true latent variables. With multivariate abundance data in ecology
for instance, each row corresponds to the true site ordination coordinates. De-
faults to NULL, in which case no latent variables are included.

lv.coefs A matrix containing column-specific intercepts, latent variable coefficients re-
lating to true.lv, and dispersion parameters.

X An model matrix of covariates, which can be included as part of the data gen-
eration. Defaults to NULL, in which case no model matrix is used. No intercept
column should be included in X.

X.coefs The coefficients relating to the model matrix X. Defaults to NULL. This argument
needs to be supplied if X is supplied and no traits are supplied.

traits A model matrix of species covariates, which can be included as part of the data
generation. Defaults to NULL, in which case no matrix is used. No intercept
column should be included in traits, as it is included automatically.

traits.coefs A matrix of coefficients that are used to generate "new" column-specific inter-
cepts and X.coefs. The number of rows should equal to (ncol(X)+1) and the
number of columns should equal to (ncol(traits)+2).
How this argument works is as follows: when both traits and traits.coefs
are supplied, then new column-specific intercepts (i.e. the first column of 1v. coefs
is overwritten) are generated by simulating from a normal distribution with mean
equal to
traits.coefs[1,1] + traits*traits.coefs[1,2:(ncol(traits.coefs)-1)]
and standard deviation
traits.coefs[1,ncol(traits.coefs)]. In other words, the last column of
trait.coefs provides the standard deviation of the normal distribution, with
the other columns being the regression coefficients in the mean of the normal
distribution. Analogously, new X.coefs are generated in the same manner us-
ing the remaining rows of trait.coefs. Please see the section on including
species traits in the help file for boral for more information.
It is important that highlight then with in this data generation mechanism, the
new column-specific intercepts and X.coefs are now random effects, being
drawn from a normal distribution.

Defaults to NULL, in conjuction with traits = NULL.
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family Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial” (with log link), "normal" (with identity link), "Inormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).
For the negative binomial distribution, the variance is parameterized as Var(y) =
1+ ¢u?, where ¢ is the column-specific dispersion parameter. For the normal
distribution, the variance is parameterized as Var(y) = ¢2, where ¢ is the
column-specific standard deviation. For the tweedie distribution, the variance
is parameterized as Var(y) = ¢uP where ¢ is the column-specific dispersion
parameter and p is a power parameter common to all columns assumed to be
tweedie, with 1 < p < 2. For the gamma distribution, the variance is parameter-
ized as Var(y) = /¢ where ¢ is the column-specific rate (henceforth referred
to also as dispersion parameter). For the beta distribution, the parameterization
is in terms of the mean p and sample size ¢ (henceforth referred to also as dis-
persion parameter), so that the two shape parameters are given by a = ¢ and
b=(1-p)o.
All columns assumed to have ordinal responses are constrained to have the same
cutoffs points, with a column-specific intercept to account for differences be-
tween the columns (please see Details for formulation).

row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the boral model. If ran-
dom effects, they are drawn from a normal distribution with mean zero and
standard deviation given by row.params. Defaults to "none".

row.params Parameters corresponding to the row effect from the boral model. If
row.eff = "fixed", then these are the fixed effects and should have length
equal to the number of columns in y. If row.eff = "random”, then this is the
standard deviation for the random effects normal distribution. If row.eff = "none”,
then this argument is ignored.

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (7, j) indicates to the cluster ID of row ¢ in y for random effect
eqnj; please see the help file for the main boral function for details. Defaults to
NULL, so that if row.params = NULL then the argument is ignored, otherwise
if row. params is supplied then row.ids = matrix(1:nrow(y), ncol = 1)
i.e., a single, row effect unique to each row. An internal check is done to see
row.params and row. ids are consistent in terms of arguments supplied.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

cutoffs A vector of common common cutoffs for proportional odds regression when any
of family is ordinal. They should be increasing order. Defaults to NULL.
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powerparam

manual.dim

save.params

Details

create.life

A common power parameter for tweedie regression when any of family is
tweedie. Defaults to NULL.

A vector of length 2, containing the number of rows (n) and columns (p) for the
multivariate response matrix. This is a "backup" argument only required when
create.life can not determine how many rows or columns the multivariate
response matrix should be.

If save.params = TRUE, then all parameters provided as input and/or generated
(e.g. when traits and traits.coefs are supplied then X.coef's is generated
internally; please see traits.coefs argument above) are returned, in addition
to the simulated multivariate response matrix. Defaults to FALSE.

Not used.

create.life gives the user full capacity to control the true parameters of the model from which
the multivariate responses matrices are generated from.

simulate makes use of the generic function of the same name in R: it takes a fitted boral model,
treats either the posterior medians and mean estimates from the model as the true parameters, and
generates response matrices based off that.

Value

If create.life is used, then: 1) if save.params = FALSE, a n by p multivariate response matrix
is returned only, 2) if save.params = TRUE, then a list containing the element resp which is a n
times p multivariate response matrix, as well as other elements for the parameters used in the true
model, e.g. true.lv, lv.coefs = lv.coefs, traits.coef, isreturned.

If simulate is used, then a three dimensional array of dimension n by p by nsim is returned.

Author(s)

Francis K.C. Hui <fhui28@gmail.com>

See Also

boral for the default function for fitting a boral model.

Examples

## Example 1a - Simulate a response matrix of normally distributed data
library(mvtnorm)

## 30 rows (sites) with two latent variables

true.lv <- rbind(rmvnorm(n=15,mean=c(1,2)),rmvnorm(n=15,mean=c(-3,-1)))
## 30 columns (species)

lv.coefs <- cbind(matrix(runif(30%3),30,3),1)

X <- matrix(rnorm(30%4),30,4)
## 4 explanatory variables
X.coefs <- matrix(rnorm(30x4),30,4)
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sim.y <- create.life(true.lv, lv.coefs, X, X.coefs, family = "normal")

## Not run:
fit.boral <- boral(sim.y, X = X, family = "normal”, num.lv = 2)

summary (fit.boral)

## End(Not run)

## Example 1b - Include a nested random row effect

## 30 subregions nested within six regions

row.ids <- cbind(1:30, rep(1:6,each=5))

## Subregion has a small std deviation; region has a larger one
true.row.sigma <- list(ID1 = 0.5, ID2 = 2)

sim.y <- create.life(true.lv, lv.coefs, X, X.coefs, row.eff = "random”,
row.params = true.row.sigma, row.ids = row.ids, family = "normal”,
save.params = TRUE)

## Example 2 - Simulate a response matrix of ordinal data

## 30 rows (sites) with two latent variables

true.lv <- rbind(rmvnorm(15,mean=c(-2,-2)),rmvnorm(15,mean=c(2,2)))

## 10 columns (species)

true.lv.coefs <- rmvnorm(10,mean = rep(0,3));

## Impose a sum-to-zero constraint on the column effects
true.lv.coefs[nrow(true.lv.coefs),1] <- -sum(true.lv.coefs[-nrow(true.lv.coefs),1])
## Cutoffs for proportional odds regression (must be in increasing order)
true.ordinal.cutoffs <- seq(-2,10,length=10-1)

sim.y <- create.life(true.lv = true.lv, lv.coefs = true.lv.coefs,
family = "ordinal”, cutoffs = true.ordinal.cutoffs, save.params = TRUE)

## Not run:
fit.boral <- boral(y = sim.y$resp, family = "ordinal”, num.lv = 2)

## End(Not run)

## Not run:

## Example 3 - Simulate a response matrix of count data based off
## a fitted boral model involving traits (ants data from mvabund)
library(mvabund)

data(antTraits)

y <- antTraits$abun

X <- as.matrix(antTraits$env)

## Include only traits 1, 2, and 5, plus an intercept

traits <- as.matrix(antTraits$traits[,c(1,2,5)]1)

## Please see help file for boral regarding the use of which.traits
which.traits <- vector(”list”,ncol(X)+1)
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for(i in 1:length(which.traits)) which.traits[[i]] <- 1:ncol(traits)

fit.traits <- boral(y, X = X, traits = traits, which.traits = which.traits,
family = "negative.binomial”, num.lv = 2)

## The hard way

sim.y <- create.life(true.lv = NULL, lv.coefs = fit.traits$lv.coefs.median,
X = X, X.coefs = fit.traits$X.coefs.median,

traits = traits, traits.coefs = fit.traits$traits.coefs.median,

family = "negative.binomial”)

## The easy way
sim.y <- simulate(object = fit.traits)

## End(Not run)

## Example 4 - simulate Bernoulli data, based on a model with two latent variables,
## no site variables, with two traits and one environmental covariates

## This example is a proof of concept that traits can used

## to explain environmental responses

library(mvtnorm)

n <- 100; s <- 50
X <- as.matrix(scale(1:n))
colnames(X) <- c("elevation”)

traits <- cbind(rbinom(s,1,0.5), rnorm(s))
## one categorical and one continuous variable
colnames(traits) <- c("thorns-dummy”,"SLA")

simfit <- list(true.lv = rmvnorm(n, mean = rep(0,2)),

lv.coefs = cbind(rnorm(s), rmvnorm(s, mean = rep(9,2))),

traits.coefs = matrix(c(0.1,1,-0.5,1,0.5,0,-1,1), 2, byrow = TRUE))
rownames (simfit$traits.coefs) <- c("beta®"”,"elevation”)
colnames(simfit$traits.coefs) <- c("kappa@”,"thorns-dummy” K "SLA","sigma")

simy = create.life(true.lv = simfit$true.lv, lv.coefs = simfit$lv.coefs, X = X,
traits = traits, traits.coefs = simfit$traits.coefs, family = "binomial”)

## Not run:

which.traits <- vector(”list"”,ncol(X)+1);

for(i in 1:length(which.traits)) which.traits[[i]] <- 1:ncol(traits)

fit.traits <- boral(y = simy, X = X, traits = traits, which.traits = which.traits,
family = "binomial”, num.lv = 2, save.model = TRUE, calc.ics = FALSE)

## End(Not run)



ds.residuals 37

ds.residuals Dunn-Smyth Residuals for a boral model

Description

Calculates the Dunn-Smyth residuals for a fitted boral model and, if some of the responses are
ordinal, a confusion matrix between predicted and true levels.

Usage
ds.residuals(object, est = "median”)
Arguments
object An object for class "boral".
est A choice of either the posterior median (est == "median") or posterior mean
(est == "mean"), which are then treated as parameter estimates and the resid-
uals are calculated from. Default is posterior median.
Details

Details regarding Dunn-Smyth residuals, based on the randomized quantile residuals of Dunn and
Smyth (1996), can be found in plot.manyglm function in the mvabund package (Wang et al., 2012)
where they are implemented in all their glory. Due their inherent stochasticity, Dunn-Smyth resid-
uals will be slightly different each time this function is run. As with other types of residuals,
Dunn-Smyth residuals can be used in the context of residual analysis.

For ordinal responses, a single confusion matrix between the predicted levels (as based on the class
with the highest probability) and true levels is aso returned. The table pools the results over all
columns assumed to be ordinal.

The Dunn-Smyth residuals are calculated based on a point estimate of the parameters, as determined
by the argument est. A fully Bayesian approach would calculate the residuals by averaging over
the posterior distribution of the parameters i.e., ergodically average over the MCMC samples. In
general however, the results (as in the trends seen in residual analysis) from either approach should
be very similar.

Value
A list containing agree.ordinal which is a single confusion matrix for ordinal columns, and
residuals which contains Dunn-Smyth residuals.

Author(s)

Francis K.C. Hui <fhui28@gmail.com>
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References

e Dunn, P. K., and Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computa-
tional and Graphical Statistics, 5, 236-244.

* Wang, Y. et al. (2012). mvabund-an R package for model-based analysis of multivariate
abundance data. Methods in Ecology and Evolution, 3, 471-474.

See Also
plot.boral for constructing residual analysis plots directly; fitted.boral which calculated fitted

values from a boral model.

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

spider.fit.nb <- boral(y, family = "negative.binomial”, num.lv = 2,
row.eff = "fixed")

ds.residuals(spider.fit.nb)

## End(Not run)

fitted.boral Extract Model Fitted Values for an boral object

Description

Calculated the predicted mean responses based on the fitted boral model, by using the posterior
medians or means of the parameters.

Usage

## S3 method for class 'boral'

fitted(object, est = "median”,...)
Arguments
object An object of class "boral".
est A choice of either the posterior median (est == "median") or posterior mean
(est == "mean"), which are then treated as estimates and the fitted values are

calculated from. Default is posterior median.

Not used.
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Details

This fitted values here are calculated based on a point estimate of the parameters, as determined by
the argument est. A fully Bayesian approach would calculate the fitted values by averaging over
the posterior distribution of the parameters i.e., ergodically average over the MCMC samples. For
simplicity and speed though (to avoid generation of a large number of predicted values), this is not
implemented.

Value

A list containing ordinal.probs which is an array with dimensions (no. of rows of y) x (no. of
rows of y) x (no. of levels) containing the predicted probabilities for ordinal columns, and out
which is a matrix of the same dimension as the original response matrix y containing the fitted
values. For ordinal columns, the "fitted values" are defined as the level/class that had the highest
fitted probability.

Author(s)
Francis K.C. Hui <fhui28@gmail.com>

See Also

plot.boral which uses the fitted values calculated from this function to construct plots for residual
analysis; ds.residuals for calculating the Dunn-Smyth residuals for a fitted boral model.

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

spider.fit.nb <- boral(y, family = "negative.binomial”, num.lv = 2,
row.eff = "fixed")

fitted(spider.fit.nb)

## End(Not run)

get.dic Extract Deviance Information Criterion for boral model

Description

Calculates the Deviance Information Criterion (DIC) for a boral model fitted using JAGS.

Usage
get.dic(jagsfit)
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Arguments
jagsfit The jags.model component of the output, from a model fitted using boral with
save.model = TRUE.
Details

Details regarding the Deviance Information Criterion may be found in (Spiegelhalter et al., 2002;
Ntzoufras, 2011; Gelman et al., 2013). The DIC here is based on the conditional log-likelihood i.e.,
the latent variables (and row effects if applicable) are treated as "fixed effects". A DIC based on the
marginal likelihood is obtainable from get.more.measures, although this requires a much longer
time to compute. For models with overdispered count data, conditional DIC may not perform as
well as marginal DIC (Millar, 2009)

Value

DIC value for the jags model.

Note

This function and consequently the DIC value is automatically returned when a boral model is fitted
using boral with calc.ics = TRUE.

Author(s)

Francis K.C. Hui <fhui28@gmail.com>

References

* Gelman et al. (2013). Bayesian data analysis. CRC press.

Millar, R. B. (2009). Comparison of hierarchical Bayesian models for overdispersed count
data using DIC and Bayes’ factors. Biometrics, 65, 962-969.

Ntzoufras, I. (2011). Bayesian modeling using WinBUGS (Vol. 698). John Wiley & Sons.

Spiegelhalter, et al. (2002). Bayesian measures of model complexity and fit. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 64, 583-639.

See Also

get.measures and get.more.measures for other information criteria which could potentially be
used for variable selection.

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

n <- nrow(y); p <- ncol(y);

spider.fit.nb <- boral(y, family = "negative.binomial”, num.lv = 2,
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save.model = TRUE, calc.ics = TRUE)
spider.fit.nb$ics ## DIC returned as one of several information criteria.

## End(Not run)

get.enviro.cor Extract covariances and correlations due to shared environmental re-
sponses from boral models

Description

Calculates the correlation between columns of the response matrix, due to similarities in the re-
sponse to explanatory variables (i.e., shared environmental response)

Usage
get.enviro.cor(object, est = "median”, prob = 0.95)
Arguments
object An object for class "boral".
est A choice of either the posterior median (est = "median”) or posterior mean
(est = "mean"), which are then treated as estimates and the fitted values are
calculated from. Default is posterior median.
prob A numeric scalar in the interval (0,1) giving the target probability coverage of
the intervals, by which to determine whether the correlations are "significant”.
Defaults to 0.95.
Details

In both independent response and correlated response models, where the each of the columns of
the response matrix y are fitted to a set of explanatory variables given by X, the covariance and thus
between two columns j and ;' due to similarities in their response to the model matrix is calculated
based on the linear predictors ! 3; and = 3;/), where (3; are column-specific coefficients relating
to the explanatory variables (see also the help file for boral).

For multivariate abundance data, the correlation calculated by this function can be interpreted as
the correlation attributable to similarities in the environmental response between species. Such
correlation matrices are discussed and found in Ovaskainen et al., (2010), Pollock et al., 2014.

Value

A list with the following components:

cor A p X p correlation matrix based on model matrix and the posterior or mean
estimators of the associated regression coefficients.
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sig.cor A p X p correlation matrix containing only the “significant” correlations whose
95% highest posterior interval does not contain zero. All non-significant corre-
lations are zero to zero.

cov A p X p covariance matrix based on model matrix and the posterior or mean
estimators of the associated regression coefficients.

Author(s)
Francis K.C. Hui <fhui28@gmail.com>

References

* Ovaskainen et al. (2010). Modeling species co-occurrence by multivariate logistic regression
generates new hypotheses on fungal interactions. Ecology, 91, 2514-2521.

* Pollock et al. (2014). Understanding co-occurrence by modelling species simultaneously with
a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5, 397-406.

See Also

get.residual.cor, which calculates the residual correlation matrix for boral models involving
latent variables.

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
library(corrplot) ## For plotting correlations

data(spider)

y <- spider$abun

X <- scale(spider$x)

n <= nrow(y); p <- ncol(y);

spider.fit.nb <- boral(y, X = X, family = "negative.binomial”,
save.model = TRUE)

enviro.cors <- get.enviro.cor(spider.fit.nb)

corrplot(enviro.cors$sig.cor, title = "Shared response correlations”,
type = "lower"”, diag = FALSE, mar = ¢(3,0.5,2,1), tl.srt = 45)

## End(Not run)

get.hpdintervals Highest posterior density intervals for an boral model

Description

Calculates the lower and upper bounds of the highest posterior density intervals for parameters and
latent variables in a fitted boral model.
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Usage

get.hpdintervals(y, X = NULL, traits = NULL, row.ids = NULL,
fit.mcmc, num.lv, prob = 0.95)

Arguments
The response matrix that the boral model was fitted to.
X The model matrix used in the boral model. Defaults to NULL, in which case it is
assumed no model matrix was used.
traits The matrix of species traits used in the boral model. Defaults to NULL, in which
case it is assumed no traits were included.
row.ids A matrix with the number of rows equal to the number of rows in y, and the

number of columns equal to the number of row effects to be included in the
model. Element (¢, j) indicates to the cluster ID of row ¢ in y for random effect
eqnj; please see help file for the main boral function for details. Defaults to
NULL, in which case iti assumed no random effects were included in the model.

fit.memc All MCMC samples for the fitted boral model, as obtained from JAGS. These
can be extracted by fitting an boral model using boral with save.model = TRUE,
and then accessing the jags.model component of the output.

num.lv The number of latent variables used in the boral model. If zero, then HPD
intervals will not be produced for latent variables.

prob A numeric scalar in the interval (0,1) giving the target probability coverage of
the intervals. Defaults to 0.95.

Details

The function uses the HPDinterval function from the coda package to obtain the HPD intervals.
See HPDinterval for details regarding the definition of the HPD interval.

Value

lv.coefs.hpd.lower/upper
Two matrices corresponding to the lower and upper bounds of the HPD intervals
for the column-specific intercepts, latent variable coefficients, and dispersion
parameters if appropriate.

1lv.hpd. lower/upper
Two matrices corresponding to the lower and upper bounds of the HPD intervals
for the latent variables.

row.coefs. lower/upper
A list with each element containing two vectors corresponding to the lower and
upper bounds of the HPD intervals for row effects. The number of elements
in the list should equal the number of row effects included in the model i.e.,
ncol(row. ids).

row.sigma.lower/upper
A list with each element containing two scalars corresponding to the lower and
upper bounds of the HPD interval for the standard deviation of the normal dis-
tribution for the row effects, if they were assumed to be random. The number
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of elements in the list should equal the number of row effects included in the
model i.e., ncol (row.ids).
X.coefs.hpd.lower/upper
Two matrices corresponding to the lower and upper bounds of the HPD intervals
for coefficients relating to the model matrix X.
traits.coefs.hpd.lower/upper
Two matrices corresponding to the lower and upper bounds of the HPD intervals
for coefficients and standard deviation relating to the traits matrix traits.
cutoffs.hpd.lower/upper
Two vectors corresponding to the lower and upper bounds of the HPD intervals
for common cutoffs in proportional odds regression.
powerparam.hpd. lower/upper
Two scalars corresponding to the lower and upper bounds of the HPD interval
for common power parameter in tweedie regression.

Warnings

* HPD intervals tend to be quite wide, and inference is somewhat tricky with them. This is
made more difficult by the multiple comparison problem due to the construction one interval
for each parameter!

* Be very careful with interpretation of coefficients and HPD intervals if different columns of y
have different distributions!

* HPD intervals for the cutoffs in proportional odds regression may be poorly estimated for
levels with few data.

Note

boral fits the boral model and returns the HPD intervals by default.

Author(s)
Francis K.C. Hui <fhui28@gmail.com>

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

n <- nrow(y); p <- ncol(y);

## Example 1 - model with two latent variables, site effects,

## and no environmental covariates

spider.fit.nb <- boral(y, family = "negative.binomial”, num.lv = 2,
row.eff = "fixed"”, save.model = TRUE)

## Returns a list with components corresponding to values described above.
spider.fit.nb$hpdintervals
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## Example 2 - model with two latent variable, site effects,
## and environmental covariates
spider.fit.nb2 <- boral(y, X = spider$x, family = "negative.binomial”,

num.lv =

2, row.eff = "fixed", save.model = TRUE)

## Returns a list with components corresponding to values described above.
spider.fit.nb2$hpdintervals

## End(Not run)

get.measures Information Criteria for boral models

Description

Calculates some information criteria for an boral model, which could be used for model selection.

Usage
get.measures(y, X = NULL, family, trial.size = 1, row.eff = "none”,
row.ids = NULL, num.lv, fit.mcmc)
Arguments
y The response matrix that the boral model was fitted to.
X The model matrix used in the boral model. Defaults to NULL, in which case it is
assumed no model matrix was used.
family Either a single element, or a vector of length equal to the number of columns

in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial” (with log link), "normal" (with identity link), "Inormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).

For the negative binomial distribution, the variance is parameterized as Var(y) =
w + ¢u?, where ¢ is the column-specific dispersion parameter. For the normal
distribution, the variance is parameterized as Var(y) = ¢, where ¢ is the
column-specific standard deviation. For the tweedie distribution, the variance
is parameterized as Var(y) = ¢uP where ¢ is the column-specific dispersion
parameter and p is a power parameter common to all columns assumed to be
tweedie, with 1 < p < 2. For the gamma distribution, the variance is parameter-
ized as Var(y) = u/¢ where ¢ is the column-specific rate (henceforth referred
to also as dispersion parameter). For the beta distribution, the parameterization
is in terms of the mean x and sample size ¢ (henceforth referred to also as dis-
persion parameter), so that the two shape parameters are given by a = ¢ and

b=(1-p)o.
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All columns assumed to have ordinal responses are constrained to have the same
cutoffs points, with a column-specific intercept to account for differences be-
tween the columns (please see Details for formulation).

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the boral model. If ran-
dom effects, they are drawn from a normal distribution with mean zero and
unknown standard deviation. Defaults to "none".

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (7, j) indicates to the cluster ID of row ¢ in y for random effect
eqnj; please see the help file for the main boral function for details. Defaults to
NULL, so that if row.eff = "none” then the argument is ignored, otherwise if
row.eff = "fixed" or "random”, then row.ids = matrix(1:nrow(y), ncol = 1)
i.e., a single, row effect unique to each row.

num. lv The number of latent variables used in the fitted boral model.

fit.memc All MCMC samples for the fitted boral model, as obtained from JAGS. These
can be extracted by fitting an boral model using boral with save.model = TRUE,
and then accessing the jags.model component of the output.

Details

The following information criteria are currently calculated, when permitted: 1) Widely Applicable
Information Criterion (WAIC, Watanabe, 2010) based on the conditional log-likelihood; 2) ex-
pected AIC (EAIC, Carlin and Louis, 2011); 3) expected BIC (EBIC, Carlin and Louis, 2011); 4)
AIC (using the marginal likelihood) evaluated at the posterior median; 5) BIC (using the marginal
likelihood) evaluated at the posterior median.

1) WAIC has been argued to be more natural and extension of AIC to the Bayesian and hierarchical
modeling context (Gelman et al., 2013), and is based on the conditional log-likelihood calculated at
each of the MCMC samples.

2 & 3) EAIC and EBIC were suggested by (Carlin and Louis, 2011). Both criteria are of the form
-2*mean(conditional log-likelihood) + penalty*(no. of parameters in the model), where the mean
is averaged all the MCMC samples. EAIC applies a penalty of 2, while EBIC applies a penalty of
log(n).

4 & 5) AIC and BIC take the form -2*(marginal log-likelihood) + penalty*(no. of parameters
in the model), where the log-likelihood is evaluated at the posterior median. If the parameter-
wise posterior distributions are unimodal and approximately symmetric, these will produce similar
results to an AIC and BIC where the log-likelihood is evaluated at the posterior mode. EAIC applies
a penalty of 2, while EBIC applies a penalty of log(n).

Intuitively, comparing boral models with and without latent variables (using information criteria
such as those returned) amounts to testing whether the columns of the response matrix y are corre-
lated. With multivariate abundance data for example, where y is a matrix of n sites and p species,
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comparing models with and without latent variables tests whether there is any evidence of correla-
tion between species.

Please note that criteria 4 and 5 are not calculated all the time. In models where traits are included in
the model (such that the regression coefficients g5, 3; are random effects), more than two columns
are ordinal responses (such that the intercepts (y; for these columns are random effects), or more
than one random row effect is included (such that row. ids contains more than one column), then
criteria 4 and 5 are will not calculated. This is because the calculation of the marginal log-likelihood
in such cases currently fail to marginalize over such random effects; see the details in the help files
for calc.loglik.1v@ and calc.margloglLik.

Value

A list with the following components:

waic WAIC based on the conditional log-likelihood.
eaic EAIC based on the mean of the conditional log-likelihood.
ebic EBIC based on the mean of the conditional log-likelihood.

all.cond.loglLik
The conditional log-likelihood evaluated at all MCMC samples. This is done
via repeated application of calc.condloglLik.

cond. num.params
Number of estimated parameters used in the fitted model, when all parameters
are treated as "fixed" effects.

do.marglik.ics A boolean indicating whether marginal log-likelihood based information criteria
are calculated.

If do.marglik.ics = TRUE, then we also have:

aic.median AIC (using the marginal log-likelihood) evaluated at the posterior median.

bic.median BIC (using the marginal log-likelihood) evaluated at the posterior median.
marg.num.params
Number of estimated parameters used in the fitted model, when all parameters
are treated as "fixed" effects.

Warning

Using information criterion for variable selection should be done with extreme caution, for two rea-
sons: 1) The implementation of these criteria are both heuristic and experimental. 2) Deciding what
model to fit for ordination purposes should be driven by the science. For example, it may be the case
that a criterion suggests a model with 3 or 4 latent variables. However, if we interested in visualizing
the data for ordination purposes, then models with 1 or 2 latent variables are far more appropriate.
As an another example, whether or not we include row effects when ordinating multivariate abun-
dance data depends on if we are interested in differences between sites in terms of relative species
abundance (row.eff = FALSE) or in terms of species composition (row.eff = "fixed").

Also, the use of information criterion in the presence of variable selection using SSVS is question-
able.
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Note

When a boral model is fitted using boral with calc.ics = TRUE, then this function is applied and
the information criteria are returned as part of the model output.

Author(s)

Francis K.C. Hui <fhui28@gmail.com>

References

* Carlin, B. P, and Louis, T. A. (2011). Bayesian methods for data analysis. CRC Press.

* Gelman et al. (2013). Understanding predictive information criteria for Bayesian models.
Statistics and Computing, 1-20.

* Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. The Journal of Machine Learning Research,
11, 3571-3594.

See Also

get.dic for calculating the Deviance Information Criterion (DIC) based on the conditional log-
likelihood; get.more.measures for even more information criteria.

Examples
## Not run:
library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y); p <- ncol(y);

spider.fit.pois <- boral(y, family = "poisson”,
num.lv = 2, row.eff = "random")

spider.fit.pois$ics ## Returns information criteria

spider.fit.nb <- boral(y, family = "negative.binomial”,
num.lv = 2, row.eff = "random")

spider.fit.nb$ics ## Returns the information criteria

## End(Not run)
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get.more.measures

Additional Information Criteria for boral models

Description

Calculates some information criteria beyond those from get . measures for a boral model, although
this set of criteria takes much longer to compute!

Usage

get.more.measures(y, X = NULL, family, trial.size =1,
row.eff = "none”, row.ids = NULL, num.lv, fit.mcmc,

verbose = TRUE)

Arguments

y
X

family

trial.size

The response matrix that the boral model was fitted to.

The model matrix used in the boral model. Defaults to NULL, in which case it is
assumed no model matrix was used.

Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial” (with log link), "normal" (with identity link), "Inormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).

For the negative binomial distribution, the variance is parameterized as Var(y) =
i+ ¢p?, where ¢ is the column-specific dispersion parameter. For the normal
distribution, the variance is parameterized as Var(y) = ¢?, where ¢ is the
column-specific standard deviation. For the tweedie distribution, the variance
is parameterized as Var(y) = ¢uP where ¢ is the column-specific dispersion
parameter and p is a power parameter common to all columns assumed to be
tweedie, with 1 < p < 2. For the gamma distribution, the variance is parameter-
ized as Var(y) = p/¢ where ¢ is the column-specific rate (henceforth referred
to also as dispersion parameter). For the beta distribution, the parameterization
is in terms of the mean p and sample size ¢ (henceforth referred to also as dis-
persion parameter), so that the two shape parameters are given by a = u¢ and
b=(1-p)o.

All columns assumed to have ordinal responses are constrained to have the same
cutoffs points, with a column-specific intercept to account for differences be-
tween the columns (please see Details for formulation).

Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.
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row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the boral model. If ran-
dom effects, they are drawn from a normal distribution with mean zero and
unknown standard deviation. Defaults to "none".

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (7, j) indicates to the cluster ID of row ¢ in y for random effect
eqnj; please see the help file for the main boral function for details. Defaults to
NULL, so that if row.eff = "none” then the argument is ignored, otherwise if
row.eff = "fixed"” or "random”, then row.ids = matrix(1:nrow(y), ncol = 1)
i.e., a single, row effect unique to each row.

num. lv The number of latent variables used in the fitted boral model.

fit.mcmc All MCMC samples for the fitted boral model, as obtained from JAGS. These
can be extracted by fitting an boral model using boral with save.model = TRUE,
and then accessing the jags.model component of the output.

verbose If TRUE, a notice is printed every 100 samples indicating progress in calculation
of the marginal log-likelihood. Defaults to TRUE.

Details

Currently, four information criteria are calculated using this function, when permitted: 1) AIC (us-
ing the marginal likelihood) evaluated at the posterior mode; 2) BIC (using the marginal likelihood)
evaluated at the posterior mode; 3) Deviance information criterion (DIC) based on the marginal
log-likelihood; 4) Widely Applicable Information Criterion (WAIC, Watanabe, 2010) based on the
marginal log-likelihood. Since flat priors are used in fitting boral models, then the posterior mode
should be approximately equal to the maximum likelihood estimates.

All four criteria require computing the marginal log-likelihood across all MCMC samples. This
takes a very long time to run, since Monte Carlo integration needs to be performed for all MCMC
samples. Consequently, this function is currently not implemented as an argument in main boral
fitting function, unlike get.measures which is available via the calc.ics = TRUE argument.

Moreover, note these criteria are not calculated all the time. In models where traits are included in
the model (such that the regression coefficients 85, 3; are random effects), more than two columns
are ordinal responses (such that the intercepts (y; for these columns are random effects), or more
than one random row effect is included (such that row. ids contains more than one column), then
these extra information criteria are will not calculated, and the function returns nothing except a sim-
ple message. This is because the calculation of the marginal log-likelihood in such cases currently
fail to marginalize over such random effects; see the details in the help files for calc.loglLik.1ve
and calc.margloglik.

The two main differences between the criteria and those returned from get.measures are:

e The AIC and BIC computed here are based on the log-likelihood evaluated at the posterior
mode, whereas the AIC and BIC from get.measures are evaluated at the posterior median.
The posterior mode and median will be quite close to one another if the component-wise
posterior distributions are unimodal and symmetric. Furthermore, given uninformative priors
are used, then both will be approximate maximum likelihood estimators.

* The DIC and WAIC computed here are based on the marginal log-likelihood, whereas the DIC
and WAIC from get.measures are based on the conditional log-likelihood. Criteria based on
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the two types of log-likelihood are equally valid, and to a certain extent, which one to use
depends on the question being answered i.e., whether to condition on the latent variables or
treat them as "random effects" (see discussions in Spiegelhalter et al. 2002, and Vaida and
Blanchard, 2005).

Value

If calculated, then a list with the following components:

marg.aic AIC (using on the marginal log-likelihood) evaluated at posterior mode.
marg.bic BIC (using on the marginal log-likelihood) evaluated at posterior mode.
marg.dic DIC based on the marginal log-likelihood.

marg.waic WAIC based on the marginal log-likelihood.

all.marg.loglLik
The marginal log-likelihood evaluated at all MCMC samples. This is done via
repeated application of calc.margloglLik.

num.params Number of estimated parameters used in the fitted model.

Warning

Using information criterion for variable selection should be done with extreme caution, for two rea-
sons: 1) The implementation of these criteria are both heuristic and experimental. 2) Deciding what
model to fit for ordination purposes should be driven by the science. For example, it may be the case
that a criterion suggests a model with 3 or 4 latent variables. However, if we interested in visualizing
the data for ordination purposes, then models with 1 or 2 latent variables are far more appropriate.
As an another example, whether or not we include row effects when ordinating multivariate abun-
dance data depends on if we are interested in differences between sites in terms of relative species
abundance (row.eff = FALSE) or in terms of species composition (row.eff = "fixed").

Also, the use of information criterion in the presence of variable selection using SSVS is question-
able.

Author(s)

Francis K.C. Hui <fhui28@gmail.com>

References

» Spiegelhalter et al. (2002). Bayesian measures of model complexity and fit. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 64, 583-639.

e Vaida, F., and Blanchard, S. (2005). Conditional Akaike information for mixed-effects mod-
els. Biometrika, 92, 351-370.

* Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. The Journal of Machine Learning Research,
11, 3571-3594.
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See Also

get.measures for several information criteria which take considerably less time to compute, and
are automatically implemented in boral with calc.ics = TRUE.

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

n <- nrow(y); p <- ncol(y);

spider.fit.nb <- boral(y, family = "negative.binomial”, num.lv = 2,
row.eff = "fixed", save.model = TRUE, calc.ics = TRUE)

## Extract MCMC samples
fit.memc <- mcmc(spider.fit.nb$jags.model$BUGSoutput$sims.matrix)

## WATCH OUT! The following takes a very long time to run!

get.more.measures(y, family = "negative.binomial”,
num.lv = spider.fit.nb$num.lv, fit.mcmc = fit.mcmc,
row.eff = "fixed", row.ids = spider.fit.nb$row.ids)

## Illustrating what happens in a case where these criteria will

## not be calculated.

data(antTraits)

y <- antTraits$abun

X <- as.matrix(scale(antTraits$env))

## Include only traits 1, 2, and 5

traits <- as.matrix(antTraits$traits[,c(1,2,5)])

which.traits <- vector(”list”,ncol(X)+1)

for(i in 1:length(which.traits)) which.traits[[i]] <- 1:ncol(traits)

fit.traits <- boral(y, X = X, traits = traits, num.lv = 2,
which.traits = which.traits, family = "negative.binomial”,

calc.ics = FALSE, save.model = TRUE)

## Extract MCMC samples
fit.memc <- mcmc(fit.traits$jags.model$BUGSoutput$sims.matrix)

get.more.measures(y, X = X, family = "negative.binomial”,
num.lv = fit.traits$num.lv, fit.mecmc = fit.mcmc)

## End(Not run)

get.residual.cor Extract residual correlations from boral models
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Description

Calculates the residual correlation from models that include latent variables.

Usage
get.residual.cor(object, est = "median”, prob = 0.95)
Arguments
object An object for class "boral".
est A choice of either the posterior median (est = "median”) or posterior mean
(est = "mean"), which are then treated as estimates and the fitted values are
calculated from. Default is posterior median.
prob A numeric scalar in the interval (0,1) giving the target probability coverage of
the intervals, by which to determine whether the correlations are "significant”.
Defaults to 0.95.
Details

In models with latent variables, the residual covariance matrix is calculated based on the matrix of
latent variables regression coefficients formed by stacking the rows of €;. That is, if we denote
®=(0... 0p)’ , then the residual covariance and hence residual correlation matrix is calculated
based on @O’ (see also the help file for boral).

For multivariate abundance data, the inclusion of latent variables provides a parsimonious method
of accounting for correlation between species. Specifically, the linear predictor,

Boj + :BZTﬂ] + zz-TGj

is normally distributed with a residual covariance matrix given by @®’. A strong residual co-
variance/correlation matrix between two species can then be interpreted as evidence of species
interaction (e.g., facilitation or competition), missing covariates, as well as any additional species
correlation not accounted for by shared environmental responses (see also Pollock et al., 2014, for
residual correlation matrices in the context of Joint Species Distribution Models).

In addition to the residual correlation matrix, the median or mean point estimator of trace of the

residual covariance matrix is returned, i [@O©’];;. Often used in other areas of multivariate statis-
=1

tics, the trace may be interpreted as tljle amount of covariation explained by the latent variables.
One situation where the trace may be useful is when comparing a pure LVM versus a model with
latent variables and some predictors (correlated response models) — the proportional difference in
trace between these two models may be interpreted as the proportion of covariation between species
explained by the predictors. Of course, the trace itself is random due to the MCMC sampling, and
so it is not always guranteed to produce sensible answers =P

Value

A list with the following components:
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cor A p X p residual correlation matrix based on posteriori median or mean estima-
tors of the latent variables and coefficients.

sig.cor A p x p correlation matrix containing only the “significant" correlations whose
95% highest posterior interval does not contain zero. All non-significant corre-
lations are zero to zero.

cov A p X p covariance correlation matrix based on posteriori median or mean esti-
mators of the latent variables and coefficients.

trace The median/mean point estimator of the trace (sum of the diagonal elements) of
the residual covariance matrix.

Note

Residual correlation matrices are reliably modeled only with two or more latent variables i.e.,
num.lv > 1 when fitting the model using boral.

Author(s)

Francis K.C. Hui <fhui28@gmail.com>

References

 Pollock et al. (2014). Understanding co-occurrence by modelling species simultaneously with
a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5, 397-406.

See Also

get.enviro.cor, which calculates the correlation matrix due to similarities in the response to the
explanatory variables (i.e., similarities due to a shared environmental response).

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
library(corrplot) ## For plotting correlations

data(spider)

y <- spider$abun

n <- nrow(y); p <- ncol(y);

spider.fit.nb <- boral(y, X = spider$x, family = "negative.binomial”,
num.lv = 2, save.model = TRUE)

res.cors <- get.residual.cor(spider.fit.nb)

corrplot(res.cors$sig.cor, title = "Residual correlations”,
type = "lower"”, diag = FALSE, mar = c(3,0.5,2,1), tl.srt = 45)

## End(Not run)
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lvsplot

Plot the latent variables from an boral model

Description

Construct a 1-D index plot or 2-D scatterplot of the latent variables, and their corresponding coeffi-
cients i.e., a biplot, from a fitted boral model.

Usage
lvsplot(x, jitter = FALSE, biplot = TRUE, ind.spp = NULL, alpha = 0.5,
main = NULL, est = "median”, which.lvs = c(1,2), return.vals = FALSE, ...)
Arguments

X An object for class "boral".

jitter If jitter = TRUE, then some jittering is applied so that points on the plots
do not overlap exactly (which can often occur with discrete data, small sample
sizes, and if some sites are identical in terms species co-occurence). Please see
jitter for its implementation. Defaults to FALSE.

biplot If biplot = TRUE, then a biplot is construct such that both the latent variables
and their corresponding coefficients are plotted. Otherwise, only the latent vari-
able scores are plotted. Defaults to TRUE.

ind.spp Controls the number of latent variable coefficients to plot if biplot = TRUE.
If ind.spp is an integer, then only the first ind.spp "most important” latent
variable coefficients are included in the biplot, where "most important" means
the latent variable coefficients with the largests L2-norms. Defaults to NULL, in
which case all latent variable coefficients are included in the biplot.

alpha A numeric scalar between 0 and 1 that is used to control the relative scaling of
the latent variables and their coefficients, when constructing a biplot. Defaults
to 0.5, and we typically recommend between 0.45 to 0.55 so that the latent
variables and their coefficients are on roughly the same scale.

main Title for resulting ordination plot. Defaults to NULL, in which case a "standard"
title is used.

est A choice of either the posterior median (est = "median”) or posterior mean
(est = "mean"), which are then treated as estimates and the ordinations based
off. Default is posterior median.

which.1lvs A vector of length two, indicating which latent variables (ordination axes) to plot

return.vals

which x is an object with two or more latent variables. The argument is ignored
is x only contains one latent variables. Defaults to which.lvs = c(1,2).

If return.vals = TRUE, then the scaled latent variables scores and correspond-
ing scaled coefficients are returned (based on the value of alpha used). This is
useful is the user wants to construct their own custom model-based ordinations.
Defaults to FALSE.
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Additional graphical options to be included in. These include values for
cex, cex.lab, cex.axis, cex.main, lwd, and so on.

Details

This function allows an ordination plot to be constructed, based on either the posterior medians
and posterior means of the latent variables respectively depending on the choice of est. The latent
variables are labeled using the row index of the response matrix y. If the fitted model contains more
than two latent variables, then one can specify which latent variables i.e., ordination axes, to plot
based on the which.1lvs argument. This can prove useful (to check) if certain sites are outliers on
one particular ordination axes.

If the fitted model did not contain any covariates, the ordination plot can be interpreted in the exactly
same manner as unconstrained ordination plots constructed from methods such as Nonmetric Multi-
dimensional Scaling (NMDS, Kruskal, 1964) and Correspondence Analysis (CA, Hill, 1974). With
multivariate abundance data for instance, where the response matrix y consists of n sites and p
species, the ordination plots can be studied to look for possible clustering of sites, location and/or
dispersion effects, an arch pattern indicative of some sort species succession over an environmental
gradient, and so on.

If the fitted model did include covariates, then a “residual ordination" plot is produced, which can
be interpreted can offering a graphical representation of the (main patterns of) residual covarations,
i.e. covariations after accounting for the covariates. With multivariate abundance data for instance,
these residual ordination plots represent could represent residual species co-occurrence due to phy-
logency, species competition and facilitation, missing covariates, and so on (Warton et al., 2015)

Ifbiplot = TRUE, then a biplot is constructed so that both the latent variables and their correspond-
ing coefficients are included in their plot (Gabriel, 1971). The latent variable coefficients are shown
in red, and are indexed by the column names of y. The number of latent variable coefficients to plot
is controlled by ind. spp. In ecology for example, often we are only be interested in the "indicator"
species, e.g. the species with most represent a particular set of sites or species with the strongest
covariation (see Chapter 9, Legendre and Legendre, 2012, for additional discussion). In such case,
we can then biplot only the ind. spp "most important" species, as indicated by the the L2-norm of
their latent variable coefficients.

As with correspondence analysis, the relative scaling of the latent variables and the coefficients in
a biplot is essentially arbitrary, and could be adjusted to focus on the sites, species, or put even
weight on both (see Section 9.4, Legendre and Legendre, 2012). In 1vsplot, this relative scaling is
controlled by the alpha argument, which basically works by taking the latent variables to a power
alpha and the latent variable coefficients to a power 1-alpha.

For latent variable models, we are generally interested in "symmetric plots" that place the latent vari-
ables and their coefficients on the same scale. In principle, this is achieved by setting alpha = 0.5,
the default value, although sometimes this needs to be tweaked slighlty to a value between 0.45 and
0.55 (see also the corresp function in the MASS package that also produces symmetric plots, as well
as Section 5.4, Borcard et al., 2011 for more details on scaling).

Author(s)

Francis K.C. Hui <fhui28@gmail.com>
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References

* Borcard et al. (2011). Numerical Ecology with R. Springer.

* Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal
component analysis. Biometrika, 58, 453-467.

» Hill, M. O. (1974). Correspondence analysis: a neglected multivariate method. Applied statis-
tics, 23, 340-354.

* Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychome-
trika, 29, 115-129.

* Legendre, P. and Legendre, L. (2012). Numerical ecology, Volume 20. Elsevier.

* Warton et al. (2015). So Many Variables: Joint Modeling in Community Ecology. Trends in
Ecology and Evolution, in review.

Examples

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

n <- nrow(y); p <- ncol(y);

## NOTE: The values below MUST NOT be used in a real application;

## they are only used here to make the examples run quick!!!

example.mcmc.control <- list(n.burnin = 10, n.iteration = 100,
n.thin = 1)

spider.fit.nb <- boral(y, family = "negative.binomial”, num.lv = 2,
row.eff = "fixed”, calc.ics = FALSE,
mcmc. control = example.mcmc.control)

lvsplot(spider.fit.nb)

make . jagsboralmodel Write a text file containing an boral model for use into JAGS

Description

This function is designed to write boral models with one or more latent variables.

Usage

make. jagsboralmodel (family, num.X = @, num.traits = 0,
which.traits = NULL, num.lv = 2, row.eff = "none"”, row.ids = NULL,
trial.size = 1, n, p, model.name = NULL,
prior.control = list(type = c(”"normal”,"”normal”,”normal”,"uniform™),
hypparams = c(100, 20, 100, 50), ssvs.index = -1, ssvs.g = le-6))
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Arguments

family Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial” (with log link), "normal" (with identity link), "Inormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).
For the negative binomial distribution, the variance is parameterized as Var(y) =
i+ ¢p?, where ¢ is the column-specific dispersion parameter. For the normal
distribution, the variance is parameterized as Var(y) = ¢*, where ¢ is the
column-specific standard deviation. For the tweedie distribution, the variance
is parameterized as Var(y) = ¢uP where ¢ is the column-specific dispersion
parameter and p is a power parameter common to all columns assumed to be
tweedie, with 1 < p < 2. For the gamma distribution, the variance is parameter-
ized as Var(y) = /¢ where ¢ is the column-specific rate (henceforth referred
to also as dispersion parameter). For the beta distribution, the parameterization
is in terms of the mean p and sample size ¢ (henceforth referred to also as dis-
persion parameter), so that the two shape parameters are given by a = ¢ and
b=(1-p)o.
All columns assumed to have ordinal responses are constrained to have the same
cutoffs points, with a column-specific intercept to account for differences be-
tween the columns (please see Details for formulation).

num. X Number of columns in the model matrix X. Defaults to 0, in which case it is
assumed that no covariates are included in the model. Recall that no intercept
should be included in X.

num.traits Number of columns in the model matrix traits. Defaults to 0, in which case
it is assumed no traits are included in model. Recall that no intercept should be
included in traits.

which.traits  Alist of length equal to (number of columns in X + 1), informing which columns
of traits the column-specific intercepts and each of the column-specific re-
gression coefficients should be regressed against. The first element in the list
applies to the column-specific intercept, while the remaining elements apply to
the regression coefficients. Each element of which. traitsis a vector indicating
which traits are to be used.

For example, if which.traits[[2]] = c(2,3), then the regression coefficients
corresponding to the first column in X are regressed against the second and third
columns of traits. If which.traits[[2]] = 0, then the regression coeffi-
cients for each column are treated as independent. Please see help file below for
more details.

Defaults to NULL, in conjunction with traits = NULL).

num. lv Number of latent variables to fit. Can take any non-negative integer value. De-
faults to 2.
row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),

random effects ("random") or not included ("none") in the boral model. If ran-
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dom effects, they are drawn from a normal distribution with mean zero and
unknown standard deviation. Defaults to "none".

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (¢, j) indicates to the cluster ID of row ¢ in y for random effect
eqnj; please see the help file for the main boral function for details. Defaults to
NULL, so that if row.eff = "none” then the argument is ignored, otherwise if
row.eff = "fixed" or "random”, then row.ids = matrix(1:nrow(y), ncol = 1)
i.e., a single, row effect unique to each row.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

n The number of rows in the response matrix y.
p The number of columns in the response matrix y.
model . name Name of the text file that the JAGS model is written to. Defaults to NULL, in

which case the default of "jagsboralmodel.txt" is used.
prior.control A list of parameters for controlling the prior distributions. These include:

* type: Vector of four strings indicating the type of prior distributions to use.
In order, these are: 1) priors for all column-specific intercepts, row effects,
and cutoff points for ordinal data; 2) priors for the latent variable coeffi-
cients (ignored if num.lv = 0); 3) priors for all column-specific coeffi-
cients relating to the model matrix X (ignored if X = NULL). When traits are
included in the model, this is also the prior for the trait regression coeffi-
cients (please see section Including species traits in the help file for boral
for more information); 4) priors for any dispersion parameters.

For elements 1-3, the prior distributions currently available include: I) “nor-
mal", which is normal prior with the variance controlled by the hypparams
argument; II) “cauchy”, which is a Cauchy prior with variance controlled
by the hypparams argument. Gelman, et al. (2008) considers using Cauchy
priors with variance 2.52 as weakly informative priors for regression coef-
ficients; III) “uniform", which is uniform prior with minimum values given
by -hypparams and maximum values given by +hypparams.

For element 4, the prior distributions currently available include: I) “uni-
form", which is uniform prior with minimum zero and maximum con-
trolled by hypparams[41]; II) “halfnormal”, which is half-normal prior with
variance controlled by hypparams[4]; III) “halfcauchy”, which is a half-
Cauchy prior with variance controlled by the hypparams[4] argument.
Defaults to the vector c("normal”, "normal”,"normal”,"uniform"”).

* hypparams: Vector of four hyperparameters used in the set up of prior
distributions. In order, these are: 1) affects the prior distribution for all
column-specific intercepts, row effects, and cutoff points for ordinal data.
If row.eff = "random”, this also controls the maximum of the uniform
prior for the standard deviation of the random effects normal distribution.
Also, if more than two of the columns are ordinal, then this also controls
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the maximum of the uniform prior for the standard deviation of the column-
specific random intercepts for these columns; 2) affects the prior distribu-
tion for all latent variable coefficients (ignored if num.1lv = @); 3) affects
the prior distribution for column-specific coefficients relating to the model
matrix X (ignored if X = NULL). When traits are included in the model, it
also affects the prior distribution for the trait regression coefficients, and
controls the maximum of the uniform prior for the standard deviation of the
normally distributed random effects; 4) affects the prior distribution used
for any dispersion parameters.

Defaults to the vector c(100, 20, 100, 50).

ssvs.index: Indices to be used for stochastic search variable selection (SSVS,
George and McCulloch, 1993). Either a single element or a vector with
length equal to the number of columns in the implied model matrix X. Each
element can take values of -1 (no SSVS is performed on this covariate),
0 (SSVS is performed on individual coefficients for this covariate), or any
integer exceeding 1 (SSVS is performed on collectively all coefficients on
this covariate/s.)

This argument is only read if X.eff = TRUE. Please see the boral help file
for more information regarding the implementation of SSVS. Defaults to
-1, in which case no model selection is performed on the fitted model at all.

ssvs.g: Multiplicative, shrinkage factor for SSVSS, which controls the strength
of the "spike" in the SSVS mixture prior. In summary, if the coefficient is
included in the model, the "slab" prior is a normal distribution with mean
zero and variance given by hypparams, while if the coefficient is not in-
cluded in the model, the "spike" prior is normal distribution with mean zero
and variance given by hypparams*ssvs.g. Please see the boral help file
for more information regarding the implementation of SSVS. Defaults to
le-6.

This function is automatically executed inside boral, and therefore does not need to be run sepa-
rately before fitting the boral model. It can however be run independently if one is: 1) interested
in what the actual JAGS file for a particular boral model looks like, 2) wanting to modify a basic
JAGS model file to construct more complex model e.g., include environmental variables.

Please note that boral currently does not allow the user to manually enter a script to be run.

When running the main function boral, setting save.model = TRUE which automatically save
the JAGS model file as a text file (with name based on the model.name) in the current working

directory.

Value

A text file is created, containing the JAGS model to be called by the boral function for entering into
jags. This file is automatically deleted once boral has finished running save.model = TRUE.

Author(s)

Francis K.C. Hui <fhui28@gmail.com>
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References

* Gelman, et al. (2008). A weakly informative default prior distribution for logistic and other
regression models. The Annals of Applied Statistics, 2, 1360-1383.

See Also

make. jagsboralnullmodel for writing boral models JAGS scripts with no latent variables (so-
called "null models").

Examples

library(mvtnorm)

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

n <- nrow(y); p <- ncol(y);

## Example 1 - Create a boral model JAGS script, where distributions alternative
## between Poisson and negative binomial distributions

## across the rows of y.
make. jagsboralmodel (family
row.eff = "fixed", num.X =

"o

= rep(c("poisson”,"negative.binomial”),length=p),
0, n=n, p=p)

## Example 2 - Create a boral model JAGS script, where distributions are all
## negative binomial distributions and covariates will be included.

make . jagsboralmodel (family = "negative.binomial”, num.X = ncol(spider$x),
n=n,p=p

## Example 3 - Simulate some ordinal data and create a JAGS model script

## 30 rows (sites) with two latent variables

true.lv <- rbind(rmvnorm(15,mean=c(-2,-2)),rmvnorm(15,mean=c(2,2)))

## 10 columns (species)

true.lv.coefs <- rmvnorm(10,mean = rep(@,3));

true.lv.coefs[nrow(true.lv.coefs),1] <- -sum(true.lv.coefs[-nrow(true.lv.coefs),1])
## Impose a sum-to-zero constraint on the column effects

true.ordinal.cutoffs <- seq(-2,10,length=10-1)

sim.y <- create.life(true.lv = true.lv, lv.coefs = true.lv.coefs,
family = "ordinal”, cutoffs = true.ordinal.cutoffs)

make. jagsboralmodel (family = "ordinal”, num.X = @,
row.eff = FALSE, n=30, p=10, model.name = "myawesomeordmodel.txt")

## Have a look at the JAGS model file for a boral model involving traits,
## based on the ants data from mvabund.

library(mvabund)

data(antTraits)

y <- antTraits$abun
X <- as.matrix(antTraits$env)
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## Include only traits 1, 2, and 5, plus an intercept

traits <- as.matrix(antTraits$traits[,c(1,2,5)])

## Please see help file for boral regarding the use of which.traits
which.traits <- vector("list”,ncol(X)+1)

for(i in 1:length(which.traits)) which.traits[[i]] <- 1:ncol(traits)

## Not run:

fit.traits <- boral(y, X = X, traits = traits, which.traits = which.traits,
family = "negative.binomial”, num.lv = 2, model.name = "anttraits.txt")

## End(Not run)

make. jagsboralnullmodel

Write a text file containing an boral model for use into JAGS

Description

This function is designed to write boral models with no latent variables (so-called "null" models).

Usage

make. jagsboralnullmodel (family, num.X = @, num.traits = 0,

which.traits

trial.size

NULL, row.eff = "none"”, row.ids = NULL,

=1, n, p, model.name = NULL,

prior.control = list(type = c("normal”,”normal”,”normal”,"uniform”),
hypparams = c(100, 20, 100, 50), ssvs.index = -1, ssvs.g = le-6))

Arguments

family

Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial” (with log link), "normal" (with identity link), "Inormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).

For the negative binomial distribution, the variance is parameterized as Var(y) =
1+ ¢u?, where ¢ is the column-specific dispersion parameter. For the normal
distribution, the variance is parameterized as Var(y) = ¢*, where ¢ is the
column-specific standard deviation. For the tweedie distribution, the variance
is parameterized as Var(y) = ¢uP where ¢ is the column-specific dispersion
parameter and p is a power parameter common to all columns assumed to be
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tweedie, with 1 < p < 2. For the gamma distribution, the variance is parameter-
ized as Var(y) = /¢ where ¢ is the column-specific rate (henceforth referred
to also as dispersion parameter). For the beta distribution, the parameterization
is in terms of the mean p and sample size ¢ (henceforth referred to also as dis-
persion parameter), so that the two shape parameters are given by a = ¢ and
b=(1—p)o.

All columns assumed to have ordinal responses are constrained to have the same
cutoffs points, with a column-specific intercept to account for differences be-
tween the columns (please see Details for formulation).

num. X Number of columns in the model matrix X. Defaults to 0, in which case it is
assumed that no covariates are included in the model. Recall that no intercept
should be included in X.

num.traits Number of columns in the model matrix traits. Defaults to O, in which case
it is assumed no traits are included in model. Recall that no intercept should be
included in traits.

which.traits A list of length equal to (number of columns in X + 1), informing which columns
of traits the column-specific intercepts and each of the column-specific re-
gression coefficients should be regressed against. The first element in the list
applies to the column-specific intercept, while the remaining elements apply to
the regression coefficients. Each element of which. traitsis a vector indicating
which traits are to be used.

For example, if which.traits[[2]] = c(2, 3), then the regression coefficients
corresponding to the first column in X are regressed against the second and third
columns of traits. If which.traits[[2]] = 0, then the regression coeffi-
cients for each column are treated as independent. Please see help file below for
more details.

Defaults to NULL, in conjunction with traits = NULL).

row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the boral model. If ran-
dom effects, they are drawn from a normal distribution with mean zero and
unknown standard deviation. Defaults to "none".

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (7, j) indicates to the cluster ID of row ¢ in y for random effect
eqnj; please see the help file for the main boral function for details. Defaults to
NULL, so that if row.eff = "none” then the argument is ignored, otherwise if
row.eff = "fixed" or "random”, then row.ids = matrix(1:nrow(y), ncol = 1)
i.e., a single, row effect unique to each row.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

n The number of rows in the response matrix y.

p The number of columns in the response matrix y.
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model . name Name of the text file that the JAGS model is written to. Defaults to NULL, in
which case the default of "jagsboralmodel.txt" is used.

prior.control A list of parameters for controlling the prior distributions. These include:

* type: Vector of four strings indicating the type of prior distributions to use.
In order, these are: 1) priors for all column-specific intercepts, row effects,
and cutoff points for ordinal data; 2) priors for the latent variable coeffi-
cients (ignored if num.1lv = 0); 3) priors for all column-specific coeffi-
cients relating to the model matrix X (ignored if X = NULL). When traits are
included in the model, this is also the prior for the trait regression coeffi-
cients (please see section Including species traits in the help file for boral
for more information); 4) priors for any dispersion parameters.

For elements 1-3, the prior distributions currently available include: I) “nor-
mal", which is normal prior with the variance controlled by the hypparams
argument; II) “cauchy”, which is a Cauchy prior with variance controlled
by the hypparams argument. Gelman, et al. (2008) considers using Cauchy
priors with variance 2.52 as weakly informative priors for regression coef-
ficients; III) “uniform", which is uniform prior with minimum values given
by -hypparams and maximum values given by +hypparams.

For element 4, the prior distributions currently available include: I) “uni-
form", which is uniform prior with minimum zero and maximum con-
trolled by hypparams[41]; II) “halfnormal”, which is half-normal prior with
variance controlled by hypparams[4]; III) “halfcauchy", which is a half-
Cauchy prior with variance controlled by the hypparams[4] argument.
Defaults to the vector c("normal”, "normal”, "normal”,"uniform"”).

* hypparams: Vector of four hyperparameters used in the set up of prior
distributions. In order, these are: 1) affects the prior distribution for all
column-specific intercepts, row effects, and cutoff points for ordinal data.
If row.eff = "random”, this also controls the maximum of the uniform
prior for the standard deviation of the random effects normal distribution.
Also, if more than two of the columns are ordinal, then this also controls
the maximum of the uniform prior for the standard deviation of the column-
specific random intercepts for these columns; 2) affects the prior distribu-
tion for all latent variable coefficients (ignored if num.1lv = @); 3) affects
the prior distribution for column-specific coefficients relating to the model
matrix X (ignored if X = NULL). When traits are included in the model, it
also affects the prior distribution for the trait regression coefficients, and
controls the maximum of the uniform prior for the standard deviation of the
normally distributed random effects; 4) affects the prior distribution used
for any dispersion parameters.

Defaults to the vector c(100, 20, 100, 50).

* ssvs.index: Indices to be used for stochastic search variable selection (SSVS,
George and McCulloch, 1993). Either a single element or a vector with
length equal to the number of columns in the implied model matrix X. Each
element can take values of -1 (no SSVS is performed on this covariate),
0 (SSVS is performed on individual coefficients for this covariate), or any
integer exceeding 1 (SSVS is performed on collectively all coefficients on
this covariate/s.)

This argument is only read if X.eff = TRUE. Please see the boral help file
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for more information regarding the implementation of SSVS. Defaults to
-1, in which case no model selection is performed on the fitted model at all.

* ssvs.g: Multiplicative, shrinkage factor for SSVS, which controls the strength
of the "spike" in the SSVS mixture prior. In summary, if the coefficient is
included in the model, the "slab" prior is a normal distribution with mean
zero and variance given by hypparams, while if the coefficient is not in-
cluded in the model, the "spike" prior is normal distribution with mean zero
and variance given by hypparams*ssvs.g. Please see the boral help file
for more information regarding the implementation of SSVS. Defaults to
le-6.

Details

This function is automatically executed inside boral, and therefore does not need to be run sepa-
rately before fitting the boral model. It can however be run independently if one is: 1) interested
in what the actual JAGS file for a particular boral model looks like, 2) wanting to modify a basic
JAGS model file to construct more complex model e.g., include environmental variables.

Please note that boral currently does not allow the user to manually enter a script to be run.

When running the main function boral, setting save.model = TRUE which automatically save
the JAGS model file as a text file (with name based on the model.name) in the current working
directory.
Value
A text file is created, containing the JAGS model to be called by the boral function for entering into
jags. This file is automatically deleted once boral has finished running unless save.model = TRUE.
Author(s)
Francis K.C. Hui <fhui28@gmail.com>

References

* Gelman, et al. (2008). A weakly informative default prior distribution for logistic and other
regression models. The Annals of Applied Statistics, 2, 1360-1383.

See Also

make. jagsboralmodel for writing boral model JAGS scripts with one or more latent variables.

Examples

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

n <- nrow(y); p <- ncol(y);

## Create a boral "null” model JAGS script, where distributions alternative
## between Poisson and negative distributions
##  across the rows of y.
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non

make. jagsboralnullmodel (family = rep(c(”"poisson”,"negative.binomial”),length=p),
num.X = ncol(spider$x), row.eff = "fixed”, n =n, p = p)

## Create a boral "null” model JAGS script, where distributions are all negative
## binomial distributions and covariates will be included!
make. jagsboralnullmodel (family = "negative.binomial”,
num.X = ncol(spider$x), n = n, p = p, model.name = "myawesomeordnullmodel.txt")

## Have a look at the JAGS model file for a boral model involving traits,
## based on the ants data from mvabund.

library(mvabund)

data(antTraits)

y <- antTraits$abun

X <- as.matrix(antTraits$env)

## Include only traits 1, 2, and 5, plus an intercept

traits <- as.matrix(antTraits$traits[,c(1,2,5)])

## Please see help file for boral regarding the use of which.traits
which.traits <- vector(”list”,ncol(X)+1)

for(i in 1:length(which.traits)) which.traits[[i]] <- 1:ncol(traits)

## Not run:
fit.traits <- boral(y, X = X, traits = traits, which.traits = which.traits,
family = "negative.binomial”, num.lv = @, model.name = "anttraits.txt")

## End(Not run)

plot.boral Plots of a fitted boral object

Description

Produces four plots relating to the fitted boral object, which can be used for residual analysis. If
some of the columns are ordinal, then a single confusion matrix is also produced.

Usage
## S3 method for class 'boral'
plot(x, est = "median”, jitter = FALSE, ...)
Arguments
X An object of class "boral".
est A choice of either the posterior median (est == "median") or posterior mean
(est == "mean") of the parameters, which are then treated as parameter esti-

mates and the fitted values/residuals used in the plots are calculated from. De-
fault is posterior median.
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jitter If jitter = TRUE, then some jittering is applied so that points on the plots

Details

do not overlap exactly (which can often occur with discrete data). Please see
jitter for its implementation.

Additional graphical options to be included in. These include values for
cex, cex.lab, cex.axis, cex.main, lwd, and so on.

Four plots are provided:

1.

Plot of Dunn-Smyth residuals against the linear predictors. This can be useful to assess
whether the assumed mean-variance relationship is adequately satisfied, as well as to look
for particular outliers. For ordinal responses things are more ambiguous due to the lack of sin-
gle definition for "linear predictor”". Therefore, instead of linear predictors the Dunn-Smyth
residuals are plotted against the fitted values (defined as the level with the highest fitted prob-
ability). It is fully acknowledged that this makes things VERY hard to interpret if only some
of your columns are ordinal.

Plot of Dunn-Smyth residuals against the row index/row names.

. Plot of Dunn-Smyth residuals against the column index/column names. Both this and the

previous plot are useful for assessing how well each row/column of the response matrix is
being modeled.

A normal quantile plot of the Dunn-Smyth residuals, which can be used to assess the normality
assumption and overall goodness of fit.

For ordinal responses, a single confusion matrix between the predicted levels (as based on the class
with the highest probability) and true levels is aso returned. The table pools the results over all
columns assumed to be ordinal.

Note

Due the inherent stochasticity, Dunn-Smyth residuals and consequently the plots will be slightly
different time this function is run. Note also the fitted values and residuals are calculated from

point

estimates of the parameters, as opposed to a fully Bayesian approach (please see details in

fitted.boral and ds.residuals). Consequently, it is recommended that this function is run
several times to ensure that any trends observed in the plots are consistent throughout the runs.

As m

entioned above, for ordinal responses things are much more challenging as there is no single

definition for "linear predictor”. Instead of linear predictors then, for the first plot the Dunn-Smyth
residuals are plotted against the fitted values, defined as the level with the highest fitted probability.
It is fully acknowledged that this makes things VERY hard to interpret if only some of your columns
are ordinal though. Suggestions to improve this are welcome!!!

Author(s)

Francis K.C. Hui <fhui28@gmail.com>

See Also

fitted.boral to obtain the fitted values, ds.residuals to obtain Dunn-Smyth residuals and de-
tails as to what they are.
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Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

spider.fit.p <- boral(y, family = "poisson”, num.lv = 2,
row.eff = "fixed")

par(mfrow = c(2,2))

plot(spider.fit.p)

dev.off()

## A distinct fan pattern is observed in the plot of residuals
## versus linear predictors plot.

spider.fit.nb <- boral(y, family = "negative.binomial”, num.lv = 2,
row.eff = "fixed")

par(mfrow = c(2,2))

plot(spider.fit.nb)

dev.off()

## The fan shape is not as clear now,

## and the normal quantile plot also suggests a better fit to the data

## End(Not run)

summary.boral Summary of fitted boral object

Description

A summary of the fitted boral objects including the type of model fitted e.g., error distribution,
number of latent variables parameter estimates, values of the information criteria (if applicable),
and so on.

Usage

## S3 method for class 'boral'
summary(object, est = "median”, ...)

## S3 method for class 'summary.boral'
print(x,...)
Arguments

object An object of class "boral".

X An object of class "boral".
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est A choice of either whether to print the posterior median (est == "median") or
posterior mean (est == "mean") of the parameters.
Not used.
Value

Attributes of the model fitted, parameter estimates, and values of the information criteria if calc.ics = TRUE
in the boral object, and posterior probabilities of including individual and/or grouped coefficients
in the model based on SSVS if appropriate.

Author(s)

Francis K.C. Hui <fhui28@gmail.com>

See Also
boral for the fitting function on which summary is applied, get .measures for details regarding the
information criteria returned.

Examples

## Not run:

library(mvabund) ## Load a dataset from the mvabund package
data(spider)

y <- spider$abun

spider.fit.nb <- boral(y, family = "negative.binomial”, num.lv = 2,
row.eff = "fixed")

summary(spider.fit.nb)

## End(Not run)
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