This vignette documents the latest developments in hierfstat
. Refer to the other vignettes for an introduction to the package
hierfstat
can now read genind
objects (from package adegenet
). Note however that only some genetic data types will be properly converted and used. The alleles need to be encoded either as integer (up to three digits per allele), or as nucleotides (c("a","c","g","t","A","C","G","T")
).
library(adegenet)
library(hierfstat)
data(nancycats)
is.genind(nancycats)
## [1] TRUE
boxplot(basic.stats(nancycats)$perloc[,1:3]) # boxplot of Ho, Hs, Ht
The function you are the most likely to want using is basic.stats
(it calculates \(H_O\), \(H_S\), \(F_{IS}\), \(F_{ST}\) etc…). You can also get e.g. allele.count
and allelic.richness
, a rarefied measure of the number of alleles at each locus and in each population. For instance, below is a boxplot of the allelic richness for the 5 first loci in the nancycats dataset
boxplot(t(allelic.richness(nancycats)$Ar[1:5,])) #5 first loci
Population statistics are obtained through basic.stats
or wc
(varcomp.glob
can also be used and will give the same result as wc
for a one level hierarchy). For instance, \(F_{IS}\) and \(F_{ST}\) in the Galba truncatula dataset provided with hierfstat
are obtained as:
data(gtrunchier)
wc(gtrunchier[,-2])
## $FST
## [1] 0.540894
##
## $FIS
## [1] 0.8154694
varcomp.glob(data.frame(gtrunchier[,1]),gtrunchier[,-c(1:2)])$F #same
## gtrunchier...1. Ind
## Total 0.540894 0.9152809
## gtrunchier...1. 0.000000 0.8154694
Confidence intervals on these statistics can be obtained via boot.vc
:
boot.vc(gtrunchier[,1],gtrunchier[,-c(1:2)])$ci
## H-Total F-Pop/Total F-Ind/Total H-Pop F-Ind/Pop Hobs
## 2.5% 0.6556 0.4856 0.9047 0.2670 0.7677 0.0557
## 50% 0.7456 0.5401 0.9147 0.3413 0.8147 0.0631
## 97.5% 0.8163 0.6200 0.9259 0.4121 0.8470 0.0699
boot.ppfis
and boot.ppfst
provide bootsrap confidence intervals (bootstrapping over loci) for population specific \(F_{IS}\) and pairwise \(F_{ST}\) respectively.
genet.dist
estimates one of 10 different genetic distances between populations as described mostly in Takezaki & Nei (1996)
(Ds<-genet.dist(gtrunchier[,-2],method="Ds")) # Nei's standard genetic distances
## 1 2 3 4 5
## 2 0.4272210
## 3 1.1402899 1.8235430
## 4 0.8387367 0.9540338 1.6638485
## 5 0.6967425 0.6205417 2.5798363 0.8767008
## 6 0.9411656 0.9742812 1.1553423 0.5243353 1.1911894
Principal coordinate analysis can be carried out on this genetic distances:
pcoa(as.matrix(Ds))
hierfstat
has a function indpca
carrying out Principal component analysis on individual genotypes
x<-indpca(gtrunchier[,-2],ind.labels=gtrunchier[,2])
plot(x,col=gtrunchier[,1],cex=0.7)
A new function to detect sex-biased dispersal, sexbias.test
based on Goudet et al. (2002) has been implemented. To illustrate its use, load the Crocidura russula data set. It consists of the genotypes and sexes of 140 shrews studied by Favre et al. (1997). In this species, mark -recapture showed an excess of dispersal from females, an unusual pattern in mammals. This is confirmed using genetic data:
data("crocrussula")
aic<-AIc(crocrussula$genot)
boxplot(aic~crocrussula$sex)
tapply(aic,crocrussula$sex,mean)
## F M
## -1.1602396 0.9770438
sexbias.test(crocrussula$genot,crocrussula$sex)
## $call
## sexbias.test(dat = crocrussula$genot, sex = crocrussula$sex)
##
## $statistic
## t
## -4.117605
##
## $p.value
## [1] 8.097862e-05
It is now possible to simulate genetic data from an island model, either at equilibrium via sim.genot
or for a given number of generations via sim.genot.t
. These two functions have several arguments, allowing to look at the effect of population sizes, inbreeding, migration and mutation. the number of independant loci and number of alleles per loci can also be specified.