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A02mcmc Converts A0 objects to coda MCMC objects

Description

Converts A0 objects from gibbs.A0.BSVAR into mcmc objects for analysis with coda

Usage

A02mcmc(x)

Arguments

x N2× number of free parameters in A(0) MCMC Gibbs sample object for the B-
SVAR model A0 from gibbs.A0. This matrix is a column major to row major
version of A(0) that can be used to diagnose covergence and summarize the
elements of A(0)

Details

Returns an object of the class mcmc, an N2 x number free parameters in A(0) matrix. This can then
be fed into coda for further analysis of the posterior.

Value

Object with class mcmc

Author(s)

Patrick T. Brandt

See Also

gibbs.A0,mcmc
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BCFdata Subset of Data from Brandt, Colaresi, and Freeman (2008)

Description

This data set in two matrices about the Israeli-Palestinian conflict. The first matrix is a set of
endogenous variables that gives 1) monthly Goldstein scaled means that summarize the Israeli-
Palestinian conflict from April 1996 - March 2005, 2) average Jewish peace index score [0 = no
support to 100=full support] that measure Jewish public support of the peace process based on polls
of Jewish respondents from the Tami Steinmetz Center for Peace Research. The conflict measures
are dyadic or directed actions from one party towards the other. Positive values indicate an average
of more cooperation and less conflict and negative values indicate an average with more conflict than
cooperation. These are a subset of the Levant dataset from the Kansas / Penn State / Computational
Event Data Project Levant dataset. The data are from AFP news sources and encoded into the World
Event Interaction Survey (WEIS) coding system and Goldstein scalings using the Event Data Project
TABARI program. Source data can be found on the site below.

Usage

data(BCFdata)

Format

Two matrices containing 108 observations. The first matrix "Y" is a multiple ts object of the
endogenous series that measure the average conflict-cooperation level and the public opinion data.
This matrix has three columns. Column one, "I2P", is average Goldstein scaled Israeli actions
towards the Palestinians; column two, "P2I" is average Goldstein scaled Palestinian actions towards
the Israelis; column three is the average Jewish peace index value for the month, "JPI".

The second matrix, "z2" is a set of nine control variables for shifts in the conflict, the Israeli prime
ministerial regime, and election trends. The columns of this matrix are 1) a dummy variable for
the period from the start of the second Intifada to the start of the Battle of Jenin (October 2000–
April 2002, end of the second Intifada). 2) a dummy variable for the post-Battle of Jenin period
(May 2002–March 2005), 3-5) dummy variables for the identities of the Israeli prime ministers in
each month (one each for Netanyahu, Barak, and Sharon, with Rabin/Peres treated as the reference
category). 6-9) a separate time counter that starts at the value 1 in the month after each Israeli
election and increases until the time of the next constitutionally mandated election.

Source

Brandt, Patrick T., Michael P. Colaresi and John R. Freeman. 2008. “The Dynamics of Reciprocity,
Accountability and Credibility.” Journal of Conflict Resolution. 52(3): 343-374.

Replication materials at http://jcr.sagepub.com/content/52/3/343

http://jcr.sagepub.com/content/52/3/343
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References

Goldstein, Joshua. S. 1992. "A Conflict-Cooperation Scale for WEIS Event Data" Journal of
Conflict Resolution. 36:369-385.

Computational Event Data Project http://eventdata.parusanalytics.com/

cf.forecasts Compare VAR forecasts to each other or real data

Description

Computes the root mean sqaured error and mean absolute error for a series of forecasts or for
forecasts and real data.

Usage

cf.forecasts(m1, m2)

Arguments

m1 Matrix of VAR forecasts produced by forecast.VAR.

m2 Matrix of VAR forecasts or a matrix of real data to compare to forecasts.

Details

Simple RMSE and MAE computation for the forecasts. The reported values are summed over the
series and time points.

Value

An object with two elements:

rmse Forecast RMSE

mae Forecast MAE

Author(s)

Patrick T. Brandt

See Also

forecast for forecast computations

http://eventdata.parusanalytics.com/
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Examples

data(IsraelPalestineConflict)
Y.sample1 <- window(IsraelPalestineConflict, end=c(2002, 52))
Y.sample2 <- window(IsraelPalestineConflict, start=c(2003,1))

# Fit a BVAR model
fit.bvar <- szbvar(Y.sample1, p=6, lambda0=0.6, lambda1=0.1, lambda3=2,

lambda4=0.25, lambda5=0, mu5=0, mu6=0, prior=0)

# Forecast -- this gives back the sample PLUS the forecasts!

forecasts <- forecast(fit.bvar, nsteps=nrow(Y.sample2))

# Compare forecasts to real data
cf.forecasts(forecasts[(nrow(Y.sample1)+1):nrow(forecasts),], Y.sample2)

decay.spec Lag decay specification check

Description

Provides a quick way to visualize the lag decay specification in a BVAR model for given parameters
by computing the variance of the prior VAR coefficients across various lags.

Usage

decay.spec(qm, p, lambda)

Arguments

qm Periodicity parameter: either 4 or 12 for quarterly or monthly data.

p Number of lags

lambda Lag decay parameter [>0], which is lambda3 in the Sims-Zha BVAR specifica-
tion in szbvar

Details

Computes the relative decay in the prior variance of the VAR prior across the lags from 1 to p.
Useful for visualizing the rate of decay or how tight the prior becomes at higher order lags.

Value

A time series of length p of the prior variances for each lag.

Author(s)

Patrick T. Brandt
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References

Sims, C.A. and Tao Zha. 1998. "Bayesian Methods for Dynamic Multivariate Models." Interna-
tional Economic Review. 39(4):949-968.

See Also

szbvar

Examples

# Harmonic lag decay example
harmonic <- decay.spec(4, 6, 1)

# Quadratic lag decay example
quadratic <- decay.spec(4, 6, 2)

plot(cbind(harmonic,quadratic))

dfev Decompositions of Forecast Error Variance (DFEV) for
VAR/BVAR/BSVAR models

Description

Computes the m dimensional decomposition of forecast error variance (DFEV) for a VAR, BVAR,
and BSVAR models. User can specify the decomposition of the contemporaneous innovations.

Usage

dfev(varobj, A0 = NULL, k)

Arguments

varobj VAR/BVAR/BSVAR object created from fitting a VAR/BVAR/BSVAR model
using szbvar, szbsvar, or reduced.form.var.

A0 Decomposition of the contemporaneous error covariance matrix. Default is to
use the (lower) Cholesky decomposition of the residual error covariance matrix
for VAR and BVAR models, or the inverse of A0 in B-SVAR models.

k Number of periods over which to compute the deccomposition.
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Details

The decomposition of the forecast error variance (DFEV) provides a measure of the relation-
ship among forecast errors or impact of shocks to a VAR/BVAR/BSVAR system. It is com-
puted by finding the moving average representation (MAR) of the VAR/BVAR/BSVAR model and
then tracing out the path of innovations through the system. For each of the M innovations in a
VAR/BVAR/BSVAR, the amount of the variance in these forecast errors or innovations is com-
puted and returned in a table. The table can be accessed via the print.dfev and summary.dfev
functions.

Value

Returns a list with

errors M x M x K of the percentage of the innovations in variable i explained by the
other M variables.

std.err M x k dimension matrix of the forecast standard errors.

names Variable names

Note

The interpretation of the DFEV depends on the decomposition of the contemporaneous residuals.
In the default case of a Cholesky decomposition, this means that the ordering of the variables in
the decomposition determines the effect of each innovation on the subsequent DFEVs. For high
correlated series, this will mean that the DFEV is not very robust to the ordering.

Author(s)

Patrick T. Brandt

References

Brandt, Patrick T. and John T. Williams. Multiple Time Series Models. Thousand Oaks, CA; Sage
Press.

See Also

See also print.dfev and summary.dfev for a nicely formatted tables and an output example

Examples

data(IsraelPalestineConflict)
varnames <- colnames(IsraelPalestineConflict)
fitted.BVAR <- szbvar(IsraelPalestineConflict, p=6, z=NULL,

lambda0=0.6, lambda1=0.1,
lambda3=2, lambda4=0.25, lambda5=0, mu5=0,
mu6=0, nu=3, qm=4, prior=0,
posterior.fit=FALSE)

A0 <- t(chol(fitted.BVAR$mean.S))
dat.dfev <- dfev(fitted.BVAR, A0, 24)
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print(dat.dfev)
summary(dat.dfev)

forc.ecdf Empirical CDF computations for posterior forecast samples

Description

Computes (pointwise over time) empirical density (error bands) and mean forecasts for a Monte
Carlo or Bayesian posterior sample of forecasts.

Usage

forc.ecdf(forecasts, probs = c(0.05, 0.95), start = c(0, 1), ...)

Arguments

forecasts Posterior sample of VAR forecasts produced by hc.forecast.VAR() or uc.forecast.VAR()

probs Error band width in percentiles, default is 90% error band.

start Start value for the time series – as in the ts() for the forecast horizon

... Other ecdf() parameters

Details

For each endogenous variable in the VAR and each point in the forecast horizon this function es-
timates the percentile based confidence interval. It then returns a time series matrix beginning at
start of the mean forecast and the limits of the confidence region for each variable in the forecast
sample.

Value

A multiple time series object is returned where the first column is the mean estimate followed by
the upper and lower bounds of the confidence region.

Author(s)

Patrick T. Brandt



10 forecast

forecast Generate forecasts for fitted VAR objects

Description

Forecasting for VAR/BVAR/BSVAR/MSBVAR objects with structural (endogenous) and exoge-
nous shocks.

Usage

forecast(varobj, nsteps, A0=t(chol(varobj$mean.S)),
shocks=matrix(0, nrow=nsteps, ncol=dim(varobj$ar.coefs)[1]),
exog.fut=matrix(0, nrow=nsteps, ncol=nrow(varobj$exog.coefs)),
N1, N2)

Arguments

varobj Fitted VAR model of the class VAR, BVAR, BSVAR, or MSBVAR produced by
reduced.form.var, szbvar, szbsvar or gibbs.msbvar.

nsteps Number of periods in the forecast horizon

A0 m ×m matrix of the decomposition of the contemporaneous endogenous fore-
cast innovations for BSVAR models.

shocks Structural shocks to the VAR, BVAR, or BSVAR models. These must be scaled
consistent with the structural identification in A0.

exog.fut nsteps x number of exogenous variables matrix of the future values of exogenous
variable shocks. Only implemented for VAR, BVAR, and BSVAR models at
present.

N1 integer, number of burnin draws for the MSBVAR forecasts.

N2 integer, number of final posterior draws for MSBVAR forecasts.

Details

VAR / BVAR / BSVAR models:

This function computes forecasts for the classical and Bayesian VAR models that are estimated in
the MSBVAR package. Users can specify shocks to the system over the forecast horizon (both
structural and exogenous shocks) for VAR, BVAR, and BSVAR models. The forecasting model is
that described by Waggoner and Zha (1999) and can be used to construct unconditional forecasts
based on the structural shocks and the contemporaneous decomposition of the innovation variance,
A0.

MSBVAR:

Generates a set of N2 draws from the posterior forecast density. Forecasts are constructed using data
augmentation, so the forecasts account for both forecast and parameter uncertainty. The function
for the MSBVAR model takes as arguments varobj, which is the posterior parameters from a call
to gibbs.msbvar, and N1 and N2 to set the burnin and number of draws from the posterior. The
posterior forecasts are based on the mixture over the h regimes for the specified model.
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Value

For VAR, BVAR, and BSVAR models:

A matrix time series object, ((T + nsteps)×m) of the original series and forecasts.

For MSBVAR models, a list of 4 elements:

forecasts N2× nsteps×m array of the posterior forecasts.

ss.sample bit compressed version of the MS state space. (can be summarized with plot.SS
or mean.SS.)

k number of forecast steps, nsteps

h integer, number of MS regimes used in the forecasts.

Note

The forecasts can be plotted using the plot.forecast() command to select the appropriate sample-
forecast horizon.

Author(s)

Patrick T. Brandt

References

Waggoner, Daniel F. and Tao Zha. 1999. "Conditional Forecasts in Dynamic Multivariate Models"
Review of Economics and Statistics, 81(4):639-651.

See Also

reduced.form.var, szbvar and szbsvar for estimation methods that create the elements needed
to forecast

Examples

data(IsraelPalestineConflict)
Y.sample1 <- window(IsraelPalestineConflict, end=c(2002, 52))
Y.sample2 <- window(IsraelPalestineConflict, start=c(2003,1))

# Fit a BVAR model
fit.bvar <- szbvar(Y.sample1, p=6, lambda0=0.6, lambda1=0.1, lambda3=2,

lambda4=0.25, lambda5=0, mu5=0, mu6=0, prior=0)

# Forecast -- this gives back the sample PLUS the forecasts!

forecasts <- forecast(fit.bvar, nsteps=nrow(Y.sample2))
forecasts.only <- forecasts[(nrow(Y.sample1)+1):nrow(forecasts),]

# Plot forecasts and actual data
i2p <- ts(cbind(Y.sample2[,1], forecasts.only[,1]),

start=c(2003,1), freq=52)
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p2i <- ts(cbind(Y.sample2[,2], forecasts.only[,2]),
start=c(2003,1), freq=52)

par(mfrow=c(2,1))
plot(i2p, plot.type=c("single"))
plot(p2i, plot.type=c("single"))

## Not run:
# MSBVAR forecasts

# Fit model
m1 <- msbvar(Y.sample1, p=1, h=2, lambda0=0.8, lambda1=0.2,

lambda3=1, lambda4=0.2, lambda5=0, mu5=0, mu6=0,
qm=12, prior=0)

# Gibbs sampling
m1id <- gibbs.msbvar(m1, N1=1000, N2=10000, permute=FALSE, Sigma.idx=1)

# Forecast density estimation
msforc <- forecast(m1id, nsteps=nrow(Y.sample2), N1=1000, N2=10000)

# Summarize forecasts
apply(msforc$forecasts, c(2,3), mean)

## End(Not run)

gibbs.A0 Gibbs sampler for posterior of Bayesian structural vector autoregres-
sion models

Description

Samples from the structural contemporaneous parameter matrix A0 of a Bayesian Structural Vector
Autoregression (B-SVAR) model.

Usage

gibbs.A0(varobj, N1, N2, thin=1, normalization="DistanceMLA")

Arguments

varobj A structural BVAR object created by szbsvar

N1 Number of burn-in iterations for the Gibbs sampler (should probably be greater
than or equal to 1000).

N2 Number of iterations in the posterior sample.
thin Thinning parameter for the Gibbs sampler.
normalization Normalization rule as defined in normalize.svar. Default is "DistanceMLA"

as recommended in Waggoner and Zha (2003b).
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Details

Samples the posterior pdf of an A0 matrix for a Bayesian structural VAR using the algorithm de-
scribed in Waggoner and Zha (2003a). This function is meant to be called after szbsvar, so one
should consult that function for further information. The function draws N2 * thin draws from the
sampler and returns the N2 draws that are the thin’th elements of the Gibbs sampler sequence.

The computations are done using compiled C++ code as of version 0.3.0. See the package source
code for details about the implementation.

Value

A list of class gibbs.A0 with five elements:

A0.posterior A list of three elements containing the results of the N2 A0 draws. The list
contains a vector storing all of the draws, the location of the drawn elements
in and the dimension of A0. A0.posterior$A0 is a vector of length equal to
the number of parameters in A0 times N2. A0.posterior$struct is a vector
of length equal to the number of free parameters in A0 that gives the index
positions of the elements in A0. A0.posterior$m is m, an integer, the number
of equations in the system.

W.posterior A list of three elements that describes the vectorized W matrices that charac-
terize the covariance of the restricted parameter space of each column of A0.
W.posterior$W is a vector of the elements of all the sampled W matrices.
W.posterior$W.index is a cumulative index of the elements of W that defines
how the W matrices for each iteration of the sampler are stored in the vector.
W.posterior$m is m, an integer, the number of equations in the system.

ident ident matrix from the varobj of binary elements that defined the free and re-
stricted parameters, as specified in szbsvar

thin thin value that was input into the function for thinning the Gibbs sampler.

N2 N2, size of the posterior sample.

Note

You must have called / loaded an szbsvar object to use this Gibbs sampler.

Author(s)

Patrick T. Brandt

References

Waggoner, Daniel F. and Tao A. Zha. 2003a. "A Gibbs sampler for structural vector autoregres-
sions" Journal of Economic Dynamics \& Control. 28:349–366.

Waggoner, Daniel F. and Tao A. Zha, 2003b. "Likelihood Preserving Normalization in Multiple
Equation Models" Journal of Econometrics, 114: 329–347
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See Also

szbsvar for estimation of the posterior moments of the B-SVAR model,

normalize.svar for a discussion of and references on A0 normalization.

posterior.fit for computing the marginal log likelihood for the model after sampling the poste-
rior,

and plot for a unique density plot of the A0 elements.

Examples

# SZ, B-SVAR model for the Levant data
data(BCFdata)
m <- ncol(Y)
ident <- diag(m)
ident[1,] <- 1
ident[2,1] <- 1

# estimate the model's posterior moments
set.seed(123)
model <- szbsvar(Y, p=2, z=z2, lambda0=0.8, lambda1=0.1, lambda3=1,

lambda4=0.1, lambda5=0.05, mu5=0, mu6=5,
ident, qm=12)

# Set length of burn-in and size of posterior. These are only an
# example. Production runs should set these much higher.
N1 <- 1000
N2 <- 1000

A0.posterior.obj <- gibbs.A0(model, N1, N2, thin=1)

# Use coda to look at the posterior.
A0.free <- A02mcmc(A0.posterior.obj)

plot(A0.free)

gibbs.msbvar Gibbs sampler for a Markov-switching Bayesian reduced form vector
autoregression model

Description

Draws a Bayesian posterior sample for a Markov-switching Bayesian reduced form vector autore-
gression model based on the setup from the msbvar function.

Usage

gibbs.msbvar(x, N1 = 1000, N2 = 1000, permute = TRUE,
Beta.idx = NULL, Sigma.idx = NULL, Q.method="MH")
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Arguments

x MSBVAR setup and posterior mode estimate generated using the msbvar func-
tion.

N1 Number of burn-in iterations for the Gibbs sampler (should probably be greater
than or equal to 1000)

N2 Number of iterations in the posterior sample.

permute Logical (default = TRUE). Should random permutation sampling be used to
explore the h! posterior modes?

Beta.idx A two element vector indicating the MSBVAR ceofficient matrix that is to be
ordered for non-permutation sampling, i.e., the ordering of the states. The states
will be put into ascending order for the parameter selected. The two elements
provide are for the two-dimensional array of the VAR coefficients. The first
number gives the coefficient, the second the equation numbers. Coefficients are
ordered by lag, then variable. So for an m equation VAR where we want the
AR(1) coefficient on the second variable’s equation, use c(2,2). The intercept
is the last value, or mp+ 1. So the intercept for the first equation in a 4 variable
model with two lags is c(9,1).

Sigma.idx Scalar integer giving the equation variance that is to be ordered for non-permutation
sampling, i.e., the ordering of the states. The states will be put into ascending
order for the variance parameter selected. So if you want to identify the results
based on equation three, set Sigma.idx=3

Q.method choice of the sampler step for the transition matrix, Q. default=MH uses a Metropolis-
Hastings algorithm that assumes a stationary Markov process. The other op-
tion is Gibbs which uses a Gibbs sampler Dirichlet draw for a non-stationary
Markov-switching process. See Fruwirth-Schnatter (2006: 318, 340-341 for
details)

Details

This function implements a Gibbs sampler for the posterior of a MSBVAR model setup with
msbvar. This is a reduced form MSBVAR model. The estimation is done in a mixture of na-
tive R code and Fortran. The sampling of the BVAR coefficients, the transition matrix, and the error
covariances for each regime are done in native R code. The forward-filtering-backward-sampling
of the Markov-switching process (The most computationally intensive part of the estimation) is
handled in compiled Fortran code. As such, this model is reasonably fast for small samples / small
numbers of regimes (say less than 5000 observations and 2-4 regimes). The reason for this mixed
implementation is that it is easier to setup variants of the model (E.g., Some coefficients switching,
others not; different sampling methods, etc. Details will come in future versions of the package.)

The random permuation of the states is done using a multinomial step: at each draw of the Gibbs
sampler, the states are permuted using a multinomial draw. This generates a posterior sample where
the states are unidentified. This makes sense, since the user may have little idea of how to select
among the h! posterior models of the reduced form MSBVAR model (see e.g., Fruhwirth-Schnatter
(2006)). Once a posterior sample has been draw with random permuation, a clustering algorithm
(see plotregimeid) can be used to identify the states, for example, by examining the intercepts or
covariances across the regimes (see the example below for details).
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Only the Beta.idx or Sigma.idx value is followed. If the first is given the second will be ignored.
So variance ordering for identification can only be used when Beta.idx=NULL. See plotregimeid
for plotting and summary methods for the permuted sampler.

The Gibbs sampler is estimated using six steps:

Drawing the state-space for the Markov process This step uses compiled code to draw the 0-1
matrix of the regimes. It uses the Baum-Hamilton-Lee-Kim (BHLK) filter and smoother to
estimate the regime probabilities. Draws are based on the standard forward-filter-backward-
sample algorithm.

Drawing the Markov transition matrix Q Conditional on the other parameters, this takes a draw
from a Dirichlet posterior with the alpha.prior prior.

Regression step update Conditional on the state-space and the Markov-switching process data
augmentation steps, estimate a set of h regressions, one for each regime.

Draw the error covariances, Σh Conditional on the other steps, compute and draw the error co-
variances from an inverse Wishart pdf.

Draw the regression coefficients For each set of classified observations’ (based on the previous
step) BVAR regression coefficients, take a draw from their multivariate normal posterior.

Permute the states If permute = TRUE, then permute the states and the respective coefficients.

The state-space for the MS process is a T × h matrix of zeros and ones. Since this matrix classifies
the observations infor states for the N2 posterior draws, it does not make sense to store it in double
precisions. We use the bit package to compress this matrix into a 2-bit integer representation
for more efficient storage. Functions are provided (see below) for summarizing and plotting the
resulting state-space of the MS process.

Value

A list summarizing the reduced form MSBVAR posterior:

Beta.sample N2 × h(m2p + m) of the BVAR regression coefficients for each regime. The
ordering is based on regime, equation, intercept (and in the future covariates).
So the first p coefficients are the the first equation in the first regime, ordered by
lag, not variable; the next is the intercept. This pattern repeats for the remaining
coefficents across the regimes.

Sigma.sample N2× h(m(m+1)
2 ) matrix of the covariance parameters for the error covariances

Σh. Since these matrices are symmetric p.d., we only store the upper (or lower)
portion. The elements in the matrix are the first, second, etc. columns / rows of
the lower / upper version of the matrix.

Q.sample N2× h2
transition.sample

An array of N2 h× h transition matrices.

ss.sample List of class SS for the N2 estimates of the state-space matrices coded as bit
objects for compression / efficiency.

pfit A list of the posterior fit statistics for the MSBVAR model.

init.model Initial model – a varobj from a BVAR like szbvar that sets up the data and
priors. See szbvar for a description.
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alpha.prior Prior for the state-space transitions Q. This is set in the call to msbvar and in-
herited here.

h integer, number of regimes fit in the model.

p integer, lag length

m integer, number of equations

Note

Users need to call this function twice (unless they have really good a priori identification informa-
tion!) The first call will be using the random permutation sampler (so with permute = TRUE) and
then some exploration of the clustering of the posterior. Then, once the posterior is identified (i.e.,
you have chosen one of the h! posterior modes), the function is called with permute = FALSE and
values specified for Beta.idx or Sigma.idx. See the example below for usage.

Author(s)

Patrick T. Brandt

References

Brandt, Patrick T. 2009. "Empirical, Regime-Specific Models of International, Inter-group Conflict,
and Politics"

Fruhwirth-Schnatter, Sylvia. 2001. "Markov Chain Monte Carlo Estimation of Classical and Dy-
namic Switching and Mixture Models". Journal of the American Statistical Association. 96(153):194–
209.

Fruhwirth-Schnatter, Sylvia. 2006. Finite Mixture and Markov Switching Models. Springer Series
in Statistics New York: Springer.

Sims, Christopher A. and Daniel F. Waggoner and Tao Zha. 2008. "Methods for inference in large
multiple-equation Markov-switching models" Journal of Econometrics 146(2):255–274.

Krolzig, Hans-Martin. 1997. Markov-Switching Vector Autoregressions: Modeling, Statistical
Inference, and Application to Business Cycle Analysis.

See Also

msbvar for initial mode finding, plot.SS for plotting regime probabilities, mean.SS for computing
the mean regime probabilities, plotregimeid for identifying the regimes from a permuted sample.

Examples

## Not run:
# This example can be pasted into a script or copied into R to run. It
# takes a few minutes, but illustrates how the code can be used

data(IsraelPalestineConflict)

# Find the mode of an msbvar model
# Initial guess is based on random draw, so set seed.
set.seed(123)
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xm <- msbvar(IsraelPalestineConflict, p=3, h=2,
lambda0=0.8, lambda1=0.15,
lambda3=1, lambda4=1, lambda5=0, mu5=0,
mu6=0, qm=12,
alpha.prior=matrix(c(10,5,5,9), 2, 2))

# Plot out the initial mode
plot(ts(xm$fp))
print(xm$Q)

# Now sample the posterior
N1 <- 1000
N2 <- 2000

# First, so this with random permutation sampling
x1 <- gibbs.msbvar(xm, N1=N1, N2=N2, permute=TRUE)

# Identify the regimes using clustering in plotregimeid()
plotregimeid(x1, type="all")

# Now re-estimate based on desired regime identification seen in the
# plots. Here we are using the intercept of the first equation, so
# Beta.idx=c(7,1).

x2 <- gibbs.msbvar(xm, N1=N1, N2=N2, permute=FALSE, Beta.idx=c(7,1))

# Plot regimes
plot.SS(x2)

# Summary of transition matrix
summary(x2$Q.sample)

# Plot of the variance elements
plot(x2$Sigma.sample)

## End(Not run)

granger.test Bivariate Granger causality testing

Description

Bivariate Granger causality testing for multiple time series.

Usage

granger.test(y, p)
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Arguments

y T x m time series or matrix.

p Lag length to be used for computing the test

Details

Estimates all possible bivariate Granger causality tests for m variables. Bivariate Granger causality
tests for two variables X and Y evaluate whether the past values of X are useful for predicting Y
once Y’s history has been modeled. The null hypothesis is that the past p values of X do not help in
predicting the value of Y.

The test is implemented by regressing Y on p past values of Y and p past values of X. An F-test is
then used to determine whether the coefficients of the past values of X are jointly zero.

This produces a matrix with m*(m-1) rows that are all of the possible bivariate Granger causal
relations. The results include F-statistics and p-values for each test. Tests are estimated using single
equation OLS models.

Value

A matrix with 2 columns. Column 1 are the F-statistic values. Column 2 are the p-values for the
F-tests. Row labels specifying the Granger causality relationship tested will be included if variables
in the input time series y include variable or dimnames.

Note

These are bivariate tests – not block exogeneity tests for a fitted VAR model. Note also that these
tests are highly sensitive to lag length (p) and the presence of unit roots. Results in the matrix
include row labels for nice printing with xtable()

Author(s)

Patrick T. Brandt

References

Granger, C.W.J. 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral
Methods" Econometrica 37:424-438.

Sims, C.A. 1972. "Money, Income, and Causality" American Economic Review. 62:540-552.

See Also

reduced.form.var for frequentist VAR estimation, szbvar for Bayesian VAR estimation with
Sims-Zha prior, var.lag.specification for VAR lag length testing.

Examples

data(IsraelPalestineConflict)
granger.test(IsraelPalestineConflict, p=6)
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HamiltonGDP Quarterly U.S. GDP Growth, 1952Q3-1984Q4

Description

Hamilton’s (1989) quarterly data on U.S. GDP growth.

Usage

data(HamiltonGDP)

Format

ts object of quarterly GDP growth named gdp. This ts classed object has 130 observations.

Source

Hamilton, James. 1989. "A new approach to the economic analysis of nonstationary time series
and the business cycle." Econmetrica, 357–384.

References

Hamilton, James. 1989. "A new approach to the economic analysis of nonstationary time series
and the business cycle." Econmetrica, 357–384.

hc.forecast Forecast density estimation of hard condition forecasts for VAR mod-
els via MCMC

Description

Implements a "hard condition" forecast density estimator for VAR/BVAR/B-SVAR models as de-
scribed in Waggoner and Zha (1999). A "hard condition" forecast is one where the forecast path
of one or more variables in a VAR is constrained to be an exact value. The forecast densities are
estimated as the posterior sample for the VAR model using Markov Chain Monte Carlo with data
augmentation to account for the uncertainty of the forecasts and the parameters. This function
DOES account for parameter uncertainty in the MCMC algorithm.

Usage

hc.forecast(varobj, yconst, nsteps, burnin,
gibbs, exog = NULL)
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Arguments

varobj VAR object produced for an unrestricted VAR or BVAR using szbvar or reduced.form.var

yconst nsteps x m matrix of the constrained forecasts that matches the variables in the
endogenous variables of the VAR object. Unconstrained forecasts should be set
to NA or zero.

nsteps Number of periods in the forecast horizon

burnin Burnin cycles for the MCMC algorithm

gibbs Number of cycles of the Gibbs sampler after the burnin that are returned in the
output

exog num.exog x nsteps matrix of the exogenous variable values for the forecast hori-
zon. If left at the NULL default, they are set to zero.

Details

"Hard conditions" are restrictions of the future forecast path of a variable in a VAR. Once a variable
has been constrained along the forecast path, the paths of the other variables in the VAR forecasts
must be re-estimated to satisfy the forecast constraint, since the constrained variable has a forecast
variance of zero (it is assumed known). Thus, an MCMC algorithm must be used to determine the
posterior of the forecasts and a consistent set of VAR parameter estimates that satisfy the forecast
constraints. This function accounts for the uncertainty of the VAR parameters by sampling from
them in the computation of the VAR forecasts.

Value

A list with two components:

forecast gibbs x nsteps x m array of the samples of the VAR forecasts

orig.y T x m time series object of the original endogenous variables

Author(s)

Patrick T. Brandt

References

Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and
the Study of Politics: Theory Testing, Forecasting, and Policy Analysis" Political Analysis 14(1):1-
36.

Waggoner, Daniel F. and Tao Zha. 1999. "Conditional Forecasts in Dynamic Multivariate Models"
Review of Economics and Statistics, 81(4):639-651.

See Also

plot.forecast for plotting, forecast for unconditional forecasting of forecast means, uc.forecast
for MCMC estimation of forecast densities for unconstrained or unconditional forecasts
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Examples

## Not run:
## Uses the example from Brandt and Freeman 2006. Will not run unless
## you have their data from the Politcal
## Analysis website!
library(MSBVAR)

# Read the data and set up as a time series
data <- read.dta("levant.weekly.79-03.dta")
attach(data)

# Set up KEDS data
KEDS.data <- ts(cbind(a2i,a2p,i2a,p2a,i2p,p2i),

start=c(1979,15),
freq=52,
names=c("A2I","A2P","I2A","P2A","I2P","P2I"))

# Select the sample we want to use.
KEDS <- window(KEDS.data, end=c(1988,50))

#############################
# Estimate the BVAR models
#############################

# Fit a flat prior model
KEDS.BVAR.flat <- szbvar(KEDS, p=6, z=NULL, lambda0=1,

lambda1=1, lambda3=1, lambda4=1, lambda5=0,
mu5=0, mu6=0, nu=0, qm=4, prior=2,
posterior.fit=F)

# Reference prior model -- Normal-IW prior pdf
KEDS.BVAR.informed <- szbvar(KEDS, p=6, z=NULL, lambda0=0.6,

lambda1=0.1, lambda3=2, lambda4=0.5,
lambda5=0, mu5=0, mu6=0,
nu=ncol(KEDS)+1, qm=4, prior=0,
posterior.fit=F)

# Set up conditional forecast matrix conditions
nsteps <- 12
a2i.condition <- rep(mean(KEDS[,1]) + sqrt(var(KEDS[,1])) , nsteps)

yhat<-matrix(c(a2i.condition,rep(0, nsteps*5)), ncol=6)

# Set the random number seed so we can replicate the results.
set.seed(11023)

# Conditional forecasts
conditional.forcs.ref <- hc.forecast(KEDS.BVAR.informed, yhat, nsteps,

burnin=3000, gibbs=5000, exog=NULL)

conditional.forcs.flat <- hc.forecast(KEDS.BVAR.flat, yhat, nsteps,
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burnin=3000, gibbs=5000, exog=NULL)

# Unconditional forecasts
unconditional.forcs.ref <-uc.forecast(KEDS.BVAR.informed, nsteps,

burnin=3000, gibbs=5000)

unconditional.forcs.flat <- uc.forecast(KEDS.BVAR.flat, nsteps,
burnin=3000, gibbs=5000)

# Set-up and plot the unconditional and conditional forecasts. This
# code pulls for the forecasts for I2P and P2I and puts them into the
# appropriate array for the figures we want to generate.
uc.flat <- NULL
hc.flat <- NULL
uc.ref <- NULL
hc.ref <- NULL

uc.flat$forecast <- unconditional.forcs.flat$forecast[,,5:6]
hc.flat$forecast <- conditional.forcs.flat$forecast[,,5:6]
uc.ref$forecast <- unconditional.forcs.ref$forecast[,,5:6]
hc.ref$forecast <- conditional.forcs.ref$forecast[,,5:6]

par(mfrow=c(2,2), omi=c(0.25,0.5,0.25,0.25))
plot(uc.flat,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"),

compare.level=KEDS[nrow(KEDS),5:6], lwd=2)
plot(hc.ref,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"),

compare.level=KEDS[nrow(KEDS),5:6], lwd=2)

## End(Not run)

initialize.msbvar Initializes the mode-finder for a Markov-switching Bayesian VAR
model

Description

Sets up the initial values for the mode optimization of an MSBVAR model with a Sims-Zha prior.
This sets up the initialize.opt argument of the msbvar function. Users can inputs values outside
of the defaults for the Q transition matrix and other arguments with this function. This function also
serves as a model for alternative, user-defined initial values for the Gibbs sampler.

Usage

initialize.msbvar(y, p, z = NULL, lambda0, lambda1, lambda3, lambda4,
lambda5, mu5, mu6, nu, qm, prior, h, Q = NULL)
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Arguments

y T ×m multiple time series object created with ts().

p Lag length, an integer

z NOT IMPLEMENTED AT PRESENT: THIS SHOULD BE A T × k matrix of
exogenous variables. Can be z = NULL if there are none (the default).

lambda0 [0, 1], Overall tightness of the prior (discounting of prior scale).

lambda1 [0, 1], Standard deviation or tightness of the prior around the AR(1) parameters.

lambda3 Lag decay (> 0, with 1=harmonic)

lambda4 Standard deviation or tightness around the intercept > 0

lambda5 Standard deviation or tightness around the exogneous variable coefficients > 0

mu5 Sum of coefficients prior weight ≥ 0. Larger values imply difference stationar-
ity.

mu6 Dummy initial observations or drift prior ≥ 0. Larger values allow for common
trends.

nu Prior degrees of freedom, m+ 1

qm Frequency of the data for lag decay equivalence. Default is 4, and a value of
12 will match the lag decay of monthly to quarterly data. Other values have the
same effect as "4"

prior One of three values: 0 = Normal-Wishart prior, 1 = Normal-flat prior, 2 = flat-flat
prior (i.e., akin to MLE)

h Number of regimes / states, an integer

Q h dimensional transition matrix for the MS process. h × h Markov transition
matrix whose rows sum to 1 with the main weights on the diagonal elements.
Default is NULL and the initial value is defined by qtune.

Details

This function sets the initial or starting values for the the optimization algorithm for the mode of the
MSBVAR models in msbvar. This is an attempt to (1) allow for a robust, smart guess for starting
the block-optimization algorithm and (2) allow for user inputs to initialize.opt.

The function does three things:

(1) Estimates an initial szbvar model as a baseline, non-regime switching model.

(2) Estimates a set of h VAR regressions based on a kmeans clustering of the time series with h
clusters or centers. The VAR models fit to each of the h subsets of data are used to initialize the
msbvar function.

(3) Sets an initial value for Q in the block optimization algorithm for the mode of the MLE / posterior
for the MSBVAR model. If Q=NULL, for an h × h transition matrix Q, this initial value is set based
on the results from the kmeans clustering of the data. If the user inputs a value of Q, this is used and
error checked to make sure it has the correct format (i.e., rows sum to 1, etc.)
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Value

A list with three elements (these are the inputs for the initialize.opt argument in msbvar)

init.model An object of the class SZBVAR, see szbvar for details

thetahat.start

The starting values for the regression parameters for the block optimization al-
gorithm in msbvar. This is an m × (mp + 1 + m) × h array of the initial
coefficients. For the ith element of the array, the m rows refer to the equations,
the first column elements are the intercepts, the next 2 : (mp + 1) columns are
the AR(p) coefficients, and the final m × m elements are the error covariance
for the regime, for that array element.

Qhat.start Initial value of Q

Note

This function can be used to model other ways to set the initial conditions. The subsequent calls
to the msbvar function only require an object that satisfies having the elements returned from this
function — computed by this function or the user in some way.

Author(s)

Patrick T. Brandt

See Also

msbvar

Examples

##

irf Impulse Response Function (IRF) Computation for a VAR

Description

Computes the impulse response function (IRF) or moving average representation (MAR) for an
m-dimensional set of VAR/BVAR/B-SVAR coefficients.

Usage

irf(varobj, nsteps, A0=NULL)



26 irf

Arguments

varobj VAR, BVAR, or BSVAR objects for a fitted VAR, BVAR, or BSVAR model
from szbvar, szbsvar or reduced.form.var

nsteps Number or steps, or the horizon over which to compute the IRFs (typically 1.5
to 2 times the lag length used in estimation

A0 Decomposition contemporaneous error covariance of a VAR/BVAR/BSVAR,
default is a Cholesky decomposition of the error covariance matrix for VAR
and BVAR models, A0 = chol(varobj$mean.S), and the inverse of A0 for
B-SVAR models, A0 = solve(varobj$A0.mode)

Details

This function should rarely be called by the user. It is a working function to compute the IRFs for
a VAR model. Users will typically want to used one of the simulation functions that also compute
error bands for the IRF, such as mc.irf which calls this function and simulates its multivariate
posterior distribution.

Value

A list of the AR coefficients used in computing the IRF and the impulse response matrices:

B m ×m × nstep Autoregressive coefficient matrices in lag order. Note that all
AR coefficient matrices for nstep > p are zero.

mhat m ×m × ×nstep impulse response matrices. mhat[,,i] are the impulses for
the i’th period for the m variables.

Note

The IRF depends on the ordering of the variables and the structure of the decomposition in A0.

Author(s)

Patrick T. Brandt

References

Sims, C.A. and Tao Zha. 1999. "Error Bands for Impulse Responses." Econometrica 67(5): 1113-
1156.

Hamilton, James. 1994. Time Series Analysis. Chapter 11.

See Also

See also dfev for the related decompositions of the forecast error variance, mc.irf for Bayesian
and frequentist computations of IRFs and their variances (which is what you probably really want).
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Examples

data(IsraelPalestineConflict)
rf.var <- reduced.form.var(IsraelPalestineConflict, p=6)
plot(irf(rf.var, nsteps = 12))

IsraelPalestineConflict

Weekly Goldstein Scaled Israeli-Palestinian Conflict Data, 1979-2003

Description

This data set gives Goldstein scaled totals that summarize the Israeli-Palestinian conflict from April
1979 - December 2003. These are dyadic or directed actions from one party towards the other. Data
are weekly starting April 15, 1979. Positive values indicate cooperation, negative values indicate
aggression. These are a subset of the Levant dataset from the Kansas / Penn State Event Data
System Levant dataset. The data are from Reuters and AFP news sources and encoded into the
World Event Interaction Survey (WEIS) coding system and Goldstein scalings using the Penn State
Event Data System TABARI program. Source data can be found on the KEDS site below.

Usage

data(IsraelPalestineConflict)

Format

A matrix containing 1278 observations. Column one, "i2p", is the Israeli actions towards the Pales-
tinians and column two, "p2i" is the Palestinian actions towards the Israelis.

Source

Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and
the Study of Politics: Theory Testing, Forecasting, and Policy Analysis" Political Analysis 14(1):1-
36.

References

Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and
the Study of Politics: Theory Testing, Forecasting, and Policy Analysis" Political Analysis 14(1):1-
36.

Goldstein, Joshua. S. 1992. "A Conflict-Cooperation Scale for WEIS Event Data" Journal of
Conflict Resolution. 36:369-385.

Computational Event Data Project http://eventdata.parusanalytics.com

http://eventdata.parusanalytics.com
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ldwishart Log density for a Wishart variate

Description

Computes log density for a Wishart random variable.

Usage

ldwishart(W, v, S)

Arguments

W Wishart variate for which the log density is to be computed

v degrees of freedom for the Wishart variate

S scale factor for the Wishart variate (typically the inverse covariance if you are
working with a multivariate random normal setup

Details

Computes the log density for a Wishart variate with mean S and degrees of freedom v. Special care
has been taken to avoid underflow in the computation.

Value

A scalar, the value of the log density for the variate W with mean S and degrees of freedom v.

Note

This is modifed from the log density function in MCMCpack. It better handles underflows.

Author(s)

Patrick T. Brandt

See Also

rwishart

Examples

x <- matrix(rnorm(100), 50, 2)
XX <- crossprod(x)
ldwishart(solve(XX), 50, diag(2))
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list.print Prints a list object for the VAR and BVAR models in MSBVAR

Description

Provides a smartly formatted print method for the list objects created by MSBVAR objects. This
will provide a table of estimates for the VAR and BVAR methods in this package.

Usage

list.print(x)

Arguments

x Fitted model object from szbvar or szbsvar

Details

This is a way to view the coefficients from a B(S)-VAr model fit with this package.

Value

None. Results are send to STDOUT.

Author(s)

Patrick T. Brandt and Justin Appleby.

See Also

szbvar, szbsvar

mae Mean absolute error of VAR forecasts

Description

Computes the mean absolute error of VAR forecasts

Usage

mae(m1, m2)

Arguments

m1 nsteps×m matrix of VAR forecasts

m2 nsteps×m matrix of VAR forecasts or true values
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Details

Computes the mean absolute error (MAE) across a series of VAR forecasts.

Value

MAE value

Author(s)

Patrick T. Brandt

See Also

cf.forecasts, rmse

Examples

data(IsraelPalestineConflict)
Y.sample1 <- window(IsraelPalestineConflict, end=c(2002, 52))
Y.sample2 <- window(IsraelPalestineConflict, start=c(2003,1))

# Fit a BVAR model
fit.bvar <- szbvar(Y.sample1, p=6, lambda0=0.6, lambda1=0.1, lambda3=2,

lambda4=0.25, lambda5=0, mu5=0, mu6=0, prior=0)

# Forecast -- this gives back the sample PLUS the forecasts!

forecasts <- forecast(fit.bvar, nsteps=nrow(Y.sample2))

# Compare forecasts to real data
mae(forecasts[(nrow(Y.sample1)+1):nrow(forecasts),], Y.sample2)

mc.irf Monte Carlo Integration / Simulation of Impulse Response Functions

Description

Simulates a posterior of impulse response functions (IRF) by Monte Carlo integration. This can
handle Bayesian and frequentist VARs and Bayesian (structural) VARs estimated with the szbvar,
szbsvar or reduced.form.var functions. The decomposition of the contemporaneous innovations
is handled by a Cholesky decomposition of the error covariance matrix in reduced form (B)VAR
object, or for the contemporaneous structure in S-VAR models. Simulations of IRFs from the
Bayesian model utilize the posterior estimates for that model.

Usage

mc.irf(varobj, nsteps, draws=1000, A0.posterior=NULL,
sign.list=rep(1, ncol(varobj$Y)))
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Arguments

varobj VAR objects for a fitted VAR model from either reduced.form.var, szbvar or
szbsvar.

nsteps Number of periods over which to compute the impulse responses

draws Number of draws for the simulation of the posterior distribution of the IRFs (if
not a szbsvar object. For the MSBVAR model, this is the value of N2 from
the MCMC sampling (default). You probably should use more than the default
given here.

A0.posterior Posterior sample objects generated by gibbs.A0() for B-SVAR models, based
on the structural identification in varobj$ident.

sign.list A list of signs (length = number of variables) for normalization given as either
1 or -1.

Details

VAR/BVAR:

Draws a set of posterior samples from the VAR coefficients and computes impulse responses for
each sample. These samples can then be summarized to compute MCMC-based estimates of the
responses using the error band methods described in Sims and Zha (1999).

B-SVAR: Generates a set of N2 draws from the impulse responses for the Bayesian SVAR model
in varobj. The function takes as its arguments the posterior moments of the B-SVAR model in
varobj, the draws of the contemporaneous structural coefficients A0 from gibbs.A0, and a list of
signs for normalization. This function then computes a posterior sample of the impulse responses
based on the Schur product of the sign list and the draws ofA0 and draws from the normal posterior
pdf for the other coefficients in the model.

The computations are done using compiled C++ code as of version 0.3.0. See the package source
code for details about the implementation.

MSBVAR:

Computes a set of regime specific impulse responses. There will be h of the m× responses, per the
discussion above (shocks in columns, equations / responses in rows. The default is for these to be
presented serially. Finally, a regime averaged set of responses, based on the ergodic probability of
being in each regime is presented as the "long run" responses. At present this is experimental and
open to changes.

Value

VAR/BVAR:

An mc.irf.VAR or mc.irf.BVAR class object object that is the array of impulse response samples
for the Monte Carlo samples

impulse draws× nsteps×m2 array of the impulse responses

B-SVAR: mc.irf.BSVAR object which is an (N2, nsteps,m2) array of the impulse responses for
the associated B-SVAR model in varobj and the posterior A0.

MS-BVAR mc.irf.MSBVAR object which is a list of two arrays. The first array are (N2, nsteps,m2, h)
array of the short-run, regime specific impulse shock-response combinations. The second array are
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the regime averaged, long run responses based on the ergodic regime probabilities. This second list
item is an array of dimensions (N2, nsteps,m2).

Note

Users need to think carefully about the number of steps and the size of the posterior sample in
A0, since enough memory needs to be available to store and process the posterior of the impulse
responses. The number of bytes consumed by the impulse responses will be approximately m2 ×
nsteps × N2 × 16 where N2 is the number of draws of A0 from the gibbs.A0. Be sure you have
enough memory available to store the object you create!

Author(s)

Patrick T. Brandt

References

Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and
the Study of Politics: Theory Testing, Forecasting, and Policy Analysis" Political Analysis 14(1):1-
36.

Sims, C.A. and Tao Zha. 1999. "Error Bands for Impulse Responses." Econometrica 67(5): 1113-
1156.

Hamilton, James. 1994. Time Series Analysis. Chapter 11.

Waggoner, Daniel F. and Tao A. Zha. 2003. "A Gibbs sampler for structural vector autoregressions"
Journal of Economic Dynamics \& Control. 28:349–366.

See Also

See also as plot.mc.irf for plotting methods and error band construction for the posterior of
these impulse response functions, szbsvar for estimation of the posterior moments of the B-SVAR
model, gibbs.A0 for drawing posterior samples of A0 for the B-SVAR model before the IRF com-
putations, and msbvar and gibbs.msbvar for the specification and computation of the posterior for
the MSBVAR models.

Examples

# Example 1
data(IsraelPalestineConflict)
varnames <- colnames(IsraelPalestineConflict)

fit.BVAR <- szbvar(Y=IsraelPalestineConflict, p=6, z=NULL,
lambda0=0.6, lambda1=0.1,
lambda3=2, lambda4=0.25, lambda5=0, mu5=0,
mu6=0, nu=3, qm=4,
prior=0, posterior.fit=FALSE)

# Draw from the posterior pdf of the impulse responses.
posterior.impulses <- mc.irf(fit.BVAR, nsteps=10, draws=5000)

# Plot the responses
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plot(posterior.impulses, method=c("Sims-Zha2"), component=1,
probs=c(0.16,0.84), varnames=varnames)

# Example 2
ident <- diag(2)
varobj <- szbsvar(Y=IsraelPalestineConflict, p=6, z = NULL,

lambda=0.6, lambda1=0.1, lambda3=2, lambda4=0.25,
lambda5=0, mu5=0, mu6=0, ident, qm = 4)

A0.posterior <- gibbs.A0(varobj, N1=1000, N2=1000)

# Note you need to explcitly reference the sampled A0.posterior object
# in the following call for R to find it in the namespace!

impulse.sample <- mc.irf(varobj, nsteps=12, A0.posterior=A0.posterior)

plot(impulse.sample, varnames=colnames(IsraelPalestineConflict),
probs=c(0.16,0.84))

mcmc.szbsvar Gibbs sampler for coefficients of a B-SVAR model

Description

Draws a posterior sample of the reduced form coefficients for a Bayesian SVAR model

Usage

mcmc.szbsvar(varobj, A0.posterior)

Arguments

varobj A B-SVAR object created by szbsvar

A0.posterior A posterior sample object generated by gibbs.A0

Details

This function draws the parameters from the Bayesian SVAR model described by Waggoner and
Zha (2003). The details can be found in szbsvar. The draws are done for the SVAR model and
then translated into the reduced form parameters.

Value

A list of the class "mcmc.bsvar.posterior" with the following components:

A0.posterior m×m×N2 array of the posterior matrices A0.

B.sample N2× ncoef matrix of the reduced form coefficients for the SVAR.



34 mean.SS

Author(s)

Patrick T. Brandt

References

Waggoner, Daniel F. and Tao A. Zha. 2003. "A Gibbs sampler for structural vector autoregressions"
Journal of Economic Dynamics \& Control. 28:349–366.

See Also

szbsvar

Examples

## Not run:
varobj <- szbsvar(Y, p, z = NULL, lambda0, lambda1, lambda3, lambda4,

lambda5, mu5, mu6, ident, qm = 4)
posterior <- mcmc.szbsvar(varobj, N1, N2)

## End(Not run)

mean.SS Summary measures and plots for MS-B(S)VAR state-spaces

Description

Provides a summary and plotting methods for the SS class objects produced from sampling the
posterior of an MSBVAR model. These functions provide the mean regime probabilities and a
plotting method for them.

Usage

## S3 method for class 'SS'
mean(x, ...)
## S3 method for class 'SS'
sum(x, ...)
## S3 method for class 'SS'
plot(x, ylab="State Probabilities", ...)

Arguments

x SS class object produced by sampling the posterior of a Markov-switching BVAR
model in MSBVAR. These are produced by gibbs.msbvar.

ylab y-axis label for the regime plot.

... Other argument or graphics parameters for plot.
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Details

The first two provide the sum and mean of the number of time periods in each state of Markov-
process. The last produces a time series plot of the regime or state probabilities. These are computed
from the Markov Chain Monte Carlo sample computed from gibbs.msbvar

Value

Mean and sum are T × h matrices for the first two summary functions. The plot function generates
a plot in the current device. These are the posterior probability measures of the Markov process
regimes across T periods.

Author(s)

Patrick T. Brandt

See Also

gibbs.msbvar, msbvar

mountains Mountain plots for summarizing forecast densities

Description

"Mountain plots" summarize the bivariate density of 2 variables for two competing forecasts of
those variables.

Usage

mountains(fcasts1, fcasts2, varnames, pts, ...)

Arguments

fcasts1 gibbs× 2 set of forecasts from model 1

fcasts2 gibbs× 2 set of forecasts from model 2

varnames c("name1","name2") object of the variable names

pts c(pt1,pt2) which are reference points to be plotted.

... Other graphics parameters.
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Details

A "mountain plot" provide a 2 × 2 graph of plots that summarize the bivariate forecasts for two
competing forecasts. This function presents four perspectives on the bivariate density or ’hills’ for
a set of forecasts. Starting from the bottom right plot and working counter-clockwise, the first plot is
the bivariate density of the two competing forecasts. The next plot is a contour map that provide the
topography of the densities. The third and fourth plots are projections of densities in each variable.
The first forecast in the function is presented in black, the second in red. The densities are estimated
from the Gibbs Monte Carlo sample of forecasts using the bkde2D bivariate kernel density estimator
with an optimal plug-in bandwidth selected using dpill.

Value

None. Produces the mountain plot described above in the current graphics device.

Note

This function requires the bivariate kernel smoother in the package bkde2D

Author(s)

Patrick T. Brandt

References

Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and
the Study of Politics: Theory Testing, Forecasting, and Policy Analysis" Political Analysis 14(1):1-
36.

See Also

bkde2D for details of the density estimators

Examples

## Not run:
data(IsraelPalestineConflict)

# Fit a BVAR model
fit.BVAR <- szbvar(IsraelPalestineConflict, p=6, z=NULL, lambda0=0.6,

lambda1=0.1, lambda3=2, lambda4=0.5, lambda5=0,
mu5=0, mu6=0, nu=3, qm=4, prior=0,
posterior.fit=FALSE)

# Fit a flat prior / MLE model
fit.FREQ <- szbvar(IsraelPalestineConflict, p=6, z=NULL, lambda0=0.6,

lambda1=0.1, lambda3=2, lambda4=0.5, lambda5=0,
mu5=0, mu6=0, nu=3, qm=4, prior=2,
posterior.fit=FALSE)

# Generate unconditional forecasts for both models
forecast.BVAR <- uc.forecast.var(fit.BVAR, nsteps=2,
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burnin=100, gibbs=1000)

forecast.FREQ <- uc.forecast.var(fit.FREQ, nsteps=2,
burnin=100, gibbs=1000)

# Plot the densities for the forecasts in period of the forecast horizon

mountains(forecast.BVAR$forecast[,2,1:2],
forecast.FREQ$forecast[,2,1:2], varnames=c("I2P","P2I"), pts=c(0,0))

## End(Not run)

msbvar Markov-switching Bayesian reduced form vector autoregression
model setup and posterior mode estimation

Description

Sets up and estimates the posterior mode of a reduced form Markov-switching Bayesian vector
autoregression model with a Sims-Zha prior. This is the setup and input function for the Gibbs
sampler for this model.

Usage

msbvar(Y, z=NULL, p, h, lambda0, lambda1, lambda3,
lambda4, lambda5, mu5, mu6, qm,
alpha.prior=100*diag(h) + matrix(2, h, h),
prior=0, max.iter=40, initialize.opt=NULL)

Arguments

Y A T ×m multiple time series object created with ts().

z NOT IMPLEMENTED AT PRESENT: THIS SHOULD BE A T × k matrix of
exogenous variables. Can be z = NULL if there are none (the default).

p Lag length, aninteger

h Number of regimes / states, an integer

lambda0 Value in [0, 1], Overall tightness of the prior (discounting of prior scale).

lambda1 Value in [0, 1], Standard deviation or tightness of the prior around the AR(1)
parameters.

lambda3 Lag decay (> 0, with 1=harmonic)

lambda4 Standard deviation or tightness around the intercept > 0

lambda5 Standard deviation or tightness around the exogneous variable coefficients > 0

mu5 Sum of coefficients prior weight ≥ 0. Larger values imply difference stationar-
ity.
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mu6 Dummy initial observations or drift prior ≥ 0. Larger values allow for common
trends.

qm Frequency of the data for lag decay equivalence. Default is 4, and a value of
12 will match the lag decay of monthly to quarterly data. Other values have the
same effect as "4"

alpha.prior Prior for the Dirichlet process for the MS process. Default is 100 * diag(h) + matrix(2, h, h),
but the model will be sensitive to this.

prior One of three values: 0= Normal-Wishart prior, 1 = Normal-flat prior, 2 = flat-
flat prior (i.e., akin to MLE). The conjugate prior is the first one, which is the
default.

max.iter Maximum number of iterations for the block EM algorithm used to fit an initial
guess of the model posterior. Default value is 40 iterations. Larger problems
will need more iterations.

initialize.opt

Initial values for the block optimization algorithm. If default=NULL initialize.msbvar
is called to provide values. User can specify values as long as they conform to
the structure produced by initialize.msbvar.

Details

This function estimates the posterior mode of a reduced form Bayesian Markov-switching VAR
model. The MSBVAR mode is estimated using block EM algorithm where the blocks are 1) the
BVAR regression coefficients for each regime (separating optimands for intercepts, AR coefficients,
and error covariances) and 2) the transition matrix. Starting values are randomly drawn, so a random
number seed should be set prior to calling the function in order to make the results replicable.

The steps of the blockwise optimization follow the suggestions of Sims, Waggoner, and Zha (2008).
The joint optimization problem is partitioned into the following separate blocks. For each block, a
separate call to optim is made, holding all of the other blocks constant:

1. Maximize over the intercepts

2. Maximize over the AR(p) coefficients

3. Maximize over the error covariances Σ

4. Maximize over the transition matrix Q

These four blocks are iterated a total of max.iter times. Internal to each block, the state-space fil-
tering algorithm for the regime classifications is computing using compiled Fortran code for speed.
Despite the use of compiled code, this algorithm can take several minutes to compute.

The user should try multiple starting values and number of iterations to ensure convergence. The
algorithm will improve with each step of the optimization, although sometimes this can be very
incremental improvement.

The results for posterior sampling via gibbs.msbvar will be sensitive to the choice of alpha.prior.
This is the prior for the independent Dirichlet process for the MS process. Note that the prior is
roughly proportionate to the number of time periods spent in each regime, since the estimated MS
probabilities map to the duration of the regime via 1/(1 − p) where p is the probability of staying
in the regime.
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This function should NOT be used for inference, since it only finds the posterior mode of the
model. This function is intended to generate starting values for the Gibbs sampling of the model.
See gibbs.msbvar for further details of the Gibbs sampling.

Value

A list describing the posterior mode of the MSBVAR model and the inputs necessary for the subse-
quent Gibbs sampler.

init.model An object of the class BVAR that describes the setup of the model. See szbvar
for details.

hreg A list containing the regime-specific moment matrices, VAR coefficients, and
error covariances

Q The h× h Markov transition matrix.
fp The T × h matrix of the filtered regime probabilities. First column is the first

regime, etc.
m Integer, the number of endogenous variables in the system.
p Integer, the lag length of the VAR.
h Integer, the number of regimes in the MS process.
alpha.prior The h× h matrix for the prior for the Dirichlet density for the MS process.

Note

Users should consult the reference papers and the (coming) package vignette to see how this func-
tion is used to setup an MSBVAR model. An example is currently in gibbs.msbvar.

Author(s)

Patrick T. Brandt

References

Brandt, Patrick T. 2009. "Empirical, Regime-Specific Models of International, Inter-group Conflict,
and Politics"

Fruhwirth-Schnatter, Sylvia. 2001. "Markov Chain Monte Carlo Estimation of Classical and Dy-
namic Switching and Mixture Models". Journal of the American Statistical Association. 96(153):194–
209.

Fruhwirth-Schnatter, Sylvia. 2006. Finite Mixture and Markov Switching Models. Springer Series
in Statistics New York: Springer.

Kim, Chang-Jin and Charles R. Nelson. 1999. State-Space Models with Regime Switching: Clas-
sical and Gibbs-Sampling Approaches with Applications. Cambridge: MIT Press.

Sims, Christopher A. and Daniel F. Waggoner and Tao Zha. 2008. "Methods for inference in large
multiple-equation Markov-switching models" Journal of Econometrics 146(2):255–274.

Sims, Christopher A. and Tao A. Zha. 1998. "Bayesian Methods for Dynamic Multivariate Models"
International Economic Review 39(4):949-968.

Sims, Christopher A. and Tao A. Zha. 2006. "Were There Regime Switches in U.S. Monetary
Policy?" American Economic Review. 96(1):54–81.
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See Also

gibbs.msbvar for the MCMC sampler after using this function, szbvar for a non-switching,
Bayesian VAR and more details.

Examples

## Not run:
# Simple replication of Hamilton (1989) as in
# Kim and Nelson (1999: 79, 220)

data(HamiltonGDP)
set.seed(214)

m2 <- msbvar(HamiltonGDP, p=1, h=2,
lambda0=0.8, lambda1=0.15, lambda3=1, lambda4=0.25,
lambda5=1, mu5=0, mu6=0, qm=12,
alpha.prior=c(100, 30)*diag(2) +
matrix(12, 2, 2), prior=0, max.iter=30,
initialize.opt=NULL)

# Now plot the filtered probabilities of a recession
# Compare to Kim and Nelson (1999: 79, 220)

fp.rec <- ts(m2$fp[,1], start=tsp(HamiltonGDP)[1],
freq=tsp(HamiltonGDP)[3])

plot(fp.rec)

## End(Not run)

msvar Markov-switching vector autoregression (MSVAR) estimator

Description

Estimates a Markov-swtiching vector autoregression (MSVAR) model with h regimes (states) by
maximum likelihood. The Hamilton filtering algorithm is used to estimate the regimes. The numer-
ical optimization to compute the MLE is based on the block-wise algorithm of Sims, Waggoner and
Zha (2008).

Usage

msvar(Y, p, h, niterblkopt = 10)
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Arguments

Y T ×m multiple time series object created with ts().

p Lag length, an integer

h Number of regimes / states, an integer

niterblkopt Number of iterations to allow for the block-wise optimization.

Details

This function computes ML estimates for an MSVAR(p,h) model where p is the number of lags and
h is the number of regimes. The model is estimated using the block-wise algorithm of Sims, Wag-
goner, and Zha (2008). This ML optimization algorithm splits the parameter space of the MSVAR
model into separate block components: (1) the transition matrixQ, (2) the intercepts, (3) the autore-
gressive coefficients, (4) the error covariances. The algorithm does 4 separate optimizations for each
niterblkopt calls. Each component of the model is optimized separately over the niterblkopt
values using separate calls to optim. Within each optim call, Fortran code is used to do the work
of the filtering algorithm for the regimes in the model

Value

A list of class MSVAR and the appropriate inputs objects to feed the results into subsequent functions
like gibbs.msbvar (though you should use msbvar and specify a prior!).

init.model Description of ’comp1’

hreg Description of ’comp2’

Q h× h Markov transition matrix

fp T × h Transition probability matrix

m Integer, number of equations

p Integer, number of lags

h Integer, number of regimes

llfval Vector of length niterblkopt

DirectBFGSLastSuccess

optim convergence code returned in the last optimization used in the last block-
wise optimization

Note

Consult the msbvar function for more details on the model. This function is only included as a
baseline or helper to the overall estimation goal of fitting MSBVAR models.

Author(s)

Patrick T. Brandt and Ryan Davis
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References

Hamilton, James. 1989. "A new approach to the economic analysis of nonstationary time series
and the business cycle." Econmetrica, 357–384.

Sims, Christopher A. and Daniel F. Waggoner and Tao Zha. 2008. "Methods for inference in large
multiple-equation Markov-switching models" Journal of Econometrics 146(2):255–274.

See Also

msbvar for the Bayesian estimator, szbvar for the Bayesian, non-regime-switching version, gibbs.msbvar
for posterior sampling.

Examples

## Not run:
# Simple replication of Hamilton (1989) as in
# Kim and Nelson (1999: 79, 220)

data(HamiltonGDP)
set.seed(1)

m2 <- msvar(HamiltonGDP, p=1, h=2, niterblkopt=20)

# Now plot the filtered probabilities of a recession
# Compare to Kim and Nelson (1999: 79, 220)

fp.rec <- ts(m2$fp[,1], start=tsp(gdp)[1], freq=tsp(gdp)[3])
plot(fp.rec)

## End(Not run)

normalize.svar Likelihood normalization of SVAR models

Description

Computes various sign normalizations of Bayesian structural VAR (B-SVAR) models.

Usage

normalize.svar(A0unnormalized, A0mode,
method = c("DistanceMLA", "DistanceMLAhat",

"Euclidean", "PositiveDiagA",
"PositiveDiagAinv", "Unnormalized"),

switch.count = 0)
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Arguments

A0unnormalized m×m unnormalized matrix value of A0 in an B-SVAR

A0mode m×m matrix of the A0 to normalize around

method string that selects the normalization method

switch.count counter that counts the number of sign switches. Can be non-zero if you want to
track the sign switches iteratively.

Details

The likelihood of VAR models are invariant to sign changes of the structural equation coefficients
across equations. Thus a VAR with m equations has a likelihood with 2m identical peaks, each a
different set of signs (but with the same posterior peak). Normalization is used to choose among
these peaks. The most common choice is to select the peak where the diagonal elements of A0 are
all positive, but will not be possible in all cases since no such normalization may exist. Thus, one
should select a single peak and map all of the draws back to that peak.

The available normalization methods are 1) "DistanceMLA" : normalize around the ML peak of
A0mode, 2) "DistanceMLAhat" : normalize around the ML peak of inv(A0mode) 3) "Euclidean"
: normalize by minimizing the distance between the two matrices. 4) "PositiveDiagA" : normalize
by making the diagonal positive 5) "PositiveDiagAinv" : normalize by making the diagonal of
inv(A0) positive. 6) "Unnormalized" : no normalization is performed and the function returns A0
unnormalized.

Value

A list with two elements

A0normalized m×m matrix, the normalized value of A0 according to the selected normaliza-
tion rule.

switch.count Number of signs changed in the normalization

Note

This function is called in gibbs.A0.BSVAR, the Gibbs sampling of szbsvar models. In those func-
tions, theA0 produced by szbsvar is unnormalized. The Gibbs sampled draws are then normalized
using the "DistanceMLA" method, which is consistent with the positive system shocks typically
seen in the literature, if such a normalization exists. Note that Waggoner and Zha prefer the "Dis-
tanceMLA" method.

Author(s)

Patrick T. Brandt

References

Waggoner, Daniel F. and Tao A. Zha. 2003a. "A Gibbs sampler for structural vector autoregres-
sions" Journal of Economic Dynamics \& Control. 28:349–366.

Waggoner, Daniel F. and Tao A. Zha. 2003b. "Likelihood preserving normalization in multiple
equation models". Journal of Econometrics. 114: 329–347.
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See Also

szbsvar, gibbs.A0

null.space Find the null space of a matrix

Description

Computes the null space of A for an arbitrary linear system of the form Ax = b.

Usage

null.space(x)

Arguments

x m× n A matrix of a linear system Ax = b

Details

Computes the null space via singular value decomposition (SVD) of A by finding the columns of
the SVD of A that correspond to the non-singular column vectors that span A.

Value

Returns an m× q matrix that is the null space, where q is the rank of A.

Author(s)

Patrick T. Brandt

See Also

svd
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plot.forc.ecdf Plots VAR forecasts and their empirical error bands

Description

Plots mean VAR forecasts and pointwise error bands

Usage

## S3 method for class 'forc.ecdf'
plot(x, probs = c(0.05, 0.95),

xlab = "", ylab = "", ylim = NA, ...)

Arguments

x N x nstep matrix of forecasts

probs width of error band probabilities, default is 90% quantiles or c(0.05,0.95)

xlab x-axis labels

ylab y-axis labels

ylim Bounds for y-axis in standard format c(lower,upper)

... other plot parameters

Details

Plots the mean forecast and the pointwise empirical confidence region for a posterior sample of
VAR forecasts.

Value

None.

Author(s)

Patrick T. Brandt

See Also

plot.forecast

Examples

## Not run:
data(IsraelPalestineConflict)

# Fit a BVAR model
fit.BVAR <- szbvar(IsraelPalestineConflict, p=6, z=NULL, lambda0=0.6,

lambda1=0.1, lambda3=2, lambda4=0.5, lambda5=0,
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mu5=0, mu6=0, nu=3, qm=4, prior=0,
posterior.fit=FALSE)

# Generate unconditional forecasts for both models
forecast.BVAR <- uc.forecast(fit.BVAR, nsteps=12,

burnin=100, gibbs=1000)

# Plot the forecasts
par(mfrow=c(2,1))

plot(forecast.BVAR$forecast[,,1], probs=c(0.16,0.84),
main="I2P Forecast")

abline(h=0)

plot(forecast.BVAR$forecast[,,2], probs=c(0.16,0.84),
main="P2I Forecast")

abline(h=0)

## End(Not run)

plot.forecast Plot function for forecasts

Description

Generates simple plots of forecasts obtained from forecast.VAR / forecast.BVAR / forecast.B-SVAR

Usage

## S3 method for class 'forecast'
plot(x, ...)

Arguments

x Plots generated from forecast genrated through fitted VAR, BVAR, or B-SVAR
model from forecast.

... Other graphics parameters

Details

Generates a plot in the current graphics device for the m time series in the respective (B)VAR model.

Value

None. Generates a plot in the current graphics device.

Author(s)

Patrick T. Brandt
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See Also

summary

Examples

## Not run:
plot(x)

## End(Not run)

plot.gibbs.A0 Plot a parameter density summary for B-SVAR A(0) objects

Description

Generates an m × m matrix of density plots for each free parameter in an szbsvar A0 object
produced by gibbs.A0, with associated highest posterior density (HPD) regions.

Usage

## S3 method for class 'gibbs.A0'
plot(x, hpd = 0.68, varnames=attr(x, "eqnames"), ...)

Arguments

x An A0 posterior object created by szbsvar.

hpd Probability width of the highest posterior density region, default is 0.68 or ap-
proximately one standard deviation around the mode of the parameter

varnames List of variable names for labeling the equations and variables. Default are the
names of the variables for the input data to szbsvar as fed through gibbs.A0.
For an SVAR, users often want to relabel these as economic sectors or groups of
actors for the time series and this is the place this can be done.

... optional graphics arguments

Details

This function plots anm×mmatrix of densities for the posterior of theA0 free parameters for a B-
SVAR model. The plot is arranged such that the unrestricted parameters for each contemporaneous
effect of each variable on an equation are in the row for that equation. So the first row shows
densities for the contemporaneous effects of the column variables (as in an impulse response plot
like plot.irf or plot.mc.irf). Elements of A0 that were restricted to zero are left empty in the
matrix of densities. The pattern of the densities will match the *tranpose* of the ident matrix
passed to szbsvar.

Highest posterior density regions are plotted using Hyndman’s 91996) density quantile algorithm.
These HPDs are defined by a set of vertical bars over the HPD interval. The vertical line in each plot
measures the value of the density at the boundaries of the HPD region. The HDR is superimposed
at the bottom of each density.
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Value

None. Main purposed is to plot density summaries and HPDs for each of the free parameters in an
A0 matrix.

Note

The plot will tend to be large, so be sure to adjust the size of your plotting device accordingly so
things are visible.

Author(s)

Patrick T. Brandt

References

Hyndman, Rob J. 1996. "Computing and Graphic Highest Density Regions", The American Statis-
tician, 50(2):120–126

HPD code is borrowed from Hyndman’s hdrcde package, version 2.07.

See Also

plot.mcmc, summary.mcmc, and A02mcmc.

Examples

# SZ, B-SVAR model for the Levant data
data(BCFdata)
m <- ncol(Y)
ident <- diag(m)
ident[1,] <- 1
ident[2,1] <- 1

# estimate the model's posterior moments
set.seed(123)
model <- szbsvar(Y, p=2, z=z2, lambda0=0.8, lambda1=0.1, lambda3=1, lambda4=0.1,

lambda5=0.05, mu5=0, mu6=5, ident, qm=12)

# Set length of burn-in and size of posterior. These are only an
# example. Production runs should set these much higher.
N1 <- 1000
N2 <- 10000

A0.posterior.obj <- gibbs.A0(model, N1, N2, thin=1)

# Plot the matrix of the densities
dev.new()
plot.gibbs.A0(A0.posterior.obj, hpd=0.68, varnames=colnames(Y))
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plot.irf Plots impulse responses

Description

Plots the m x m matrix of impulse responses produced by irf.

Usage

## S3 method for class 'irf'
plot(x, varnames = attr(x, "eqnames"), ...)

Arguments

x Impulse response object produced by irf

varnames Names of equations and shocks in the format c("name1","name2",...). De-
fault is to use the names of the input variables from the estimation method.

... other plot arguments

Details

Generates a plot in ther current plotting device of the impulse responses in irf. See below for func-
tions that allow one to add error bands and confidence regions to the impulse responses. Impulses
or shocks are in the columns and the rows are the responses.

Value

None. Draws a graph in the current device.

Note

This function should NOT be used for Monte Carlo samples of IRFs. Use plot.mc.irf for this
purpose.

Author(s)

Patrick T. Brandt

References

Hamilton, James. 1994. Time Series Analysis, Chapter 11.

Sims, C.A. 1980. "Macroeconomics and Reality" Econometrica.

See Also

irf to produce impulse responses from a VAR object, mc.irf, and plot.mc.irf for methods that
allow frequentist and Bayesian error bands in the impulse responses
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Examples

data(IsraelPalestineConflict)
rf.var <- reduced.form.var(IsraelPalestineConflict, p=6)
plot(irf(rf.var, nsteps = 12))

plot.mc.irf Plotting posteriors of Monte Carlo simulated impulse responses

Description

Provides a plotting method for the mc.irf Monte Carlo sample of impulse responses. Responses
can be plotted with classical or Bayesian error bands, as suggested by Sims and Zha (1999).

Usage

## S3 method for class 'mc.irf'
plot(x, method=c("Sims-Zha2"), component=1,

probs=c(0.16,0.84), varnames = attr(x, "eqnames"),
regimelabels=NULL, ask=TRUE, ...)

Arguments

x Output of the mc.irf function

method Method to be used for the error band construction. Default method is to use
the eigendecomposition method proposed by Sims and Zha. Defined meth-
ods are "Percentile" (error bands are based on percentiles specified in probs),
"Normal Approximation" (Gaussian approximation for interval of width probs),
"Sims-Zha1" (Gaussian approximation with linear eigendecomposition), "Sims-
Zha2" (Percentiles with eigendecomposition for each impulse response func-
tion), "Sims-Zha3" (Percentiles with eigendecomposition of the full stacked im-
pulse responses)

component If using one of the eigendecomposition methods, the eigenvector component to
be used for the error band construction. Default is the first or largest eigenvector
component.

probs is the width of the error bands. Default is c(0.16, 0.84) which is a 68% band
that is approximately one standard deviation, as suggested by Sims and Zha.

varnames List of variable names of length m for labeling the impulse responses. Default
are the input variable names from the relevent estimation method.

regimelabels For MSBVAR models from mc.irf, a character vector of length h for the regime-
specific IRFs. Default of NULL leads to automatic generation of "Regime 1",
"Regime 2", etc.

ask Default = TRUE, ask before showing the next regime’s IRFs for MSBVAR mod-
els?

... Other graphics parameters.
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Details

This function plots the output of a Monte Carlo simulation of (MS)(B)(BS)VAR impulse response
functions produced by mc.irf. The function allows the user to choose among a variety of fre-
quentist (normal appproximation and percentile) and Bayesian (eigendecomposition) methods for
constructing error bands around a set of impulse responses. Impulses or shocks are in the columns
and the rows are the responses.

Value

The primary reason for this function is to plot impulse responses and their error bands. Secondarily,
it returns an invisible list of the impulses responses, their error bands, and summary measures of the
fractions of the variance in the eigenvector methods that explain the total variation of each response.

responses Responses and their error bands
eigenvector.fractions

Fraction of the variation in each response that is explained by the chosen eigen-
vectors. NULL for non-eigenvector methods.

Author(s)

Patrick T. Brandt

References

Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and
the Study of Politics: Theory Testing, Forecasting, and Policy Analysis" Political Analysis 14(1):1-
36.

Sims, C.A. and Tao Zha. 1999. "Error Bands for Impulse Responses." Econometrica. 67(5): 1113-
1156.

See Also

See Also mc.irf for the computation of Monte Carlo samples of impulse responses, szbsvar for
estimation of the posterior moments of the B-SVAR model, gibbs.A0 for Gibbs sampling the pos-
terior of the A0 for the model, and

Examples

## Not run:
data(IsraelPalestineConflict)
fit.BVAR <- szbvar(IsraelPalestineConflict, p=6, z=NULL, lambda0=0.6,

lambda1=0.1, lambda3=2, lambda4=0.5, lambda5=0,
mu5=0, mu6=0, nu=3, qm=4, prior=0,
posterior.fit=FALSE)

posterior.impulses <- mc.irf(fit.BVAR, nsteps=12, draws=1000)
plot(posterior.impulses, method = c("Percentile"))

## End(Not run)
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plot.ms.irf Color plot of MSBVAR impulse response functions

Description

Provides an overplotted, color-coded version of the MSBVAR IRFs plot. This is an experimental
function using color rather than the separate plots produced in plot.mc.irf

Usage

## S3 method for class 'ms.irf'
plot(x, method = "Sims-Zha2", component = 1,

probs = c(0.16, 0.84), varnames = attr(x, "eqnames"), ...)

Arguments

x Output of the mc.irf function for an MSBVAR model via gibbs.msbvar

method Method to be used for the error band construction. Default method is to use
the eigendecomposition method proposed by Sims and Zha. Defined meth-
ods are "Percentile" (error bands are based on percentiles specified in probs),
"Normal Approximation" (Gaussian approximation for interval of width probs),
"Sims-Zha1" (Gaussian approximation with linear eigendecomposition), "Sims-
Zha2" (Percentiles with eigendecomposition for each impulse response func-
tion), "Sims-Zha3" (Percentiles with eigendecomposition of the full stacked im-
pulse responses)

component If using one of the eigendecomposition methods, the eigenvector component to
be used for the error band construction. Default is the first or largest eigenvector
component.

probs is the width of the error bands. Default is c(0.16, 0.84) which is a 68% band
that is approximately one standard deviation, as suggested by Sims and Zha.

varnames List of variable names of length m for labeling the impulse responses. Default
are the input variable names from the relevent estimation method.

... Other graphics parameters.

Details

This function plots the output of a Monte Carlo simulation of MSBVAR impulse response functions
produced by mc.irf. The function allows the user to choose among a variety of frequentist (normal
appproximation and percentile) and Bayesian (eigendecomposition) methods for constructing error
bands around a set of impulse responses. Impulses or shocks are in the columns and the rows are
the responses. Here the plot colors the responses for each reqime, per the R default color pallette
for colors 1:h.
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Value

The primary reason for this function is to plot impulse responses and their error bands. Secondarily,
it returns an invisible list of the impulses responses, their error bands, and summary measures of the
fractions of the variance in the eigenvector methods that explain the total variation of each response.

responses Responses and their error bands

eigenvector.fractions

Fraction of the variation in each response that is explained by the chosen eigen-
vectors. NULL for non-eigenvector methods.

Author(s)

Patrick T. Brandt

References

Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and
the Study of Politics: Theory Testing, Forecasting, and Policy Analysis" Political Analysis 14(1):1-
36.

Sims, C.A. and Tao Zha. 1999. "Error Bands for Impulse Responses." Econometrica. 67(5): 1113-
1156.

See Also

plot.mc.irf

Examples

## Not run:
data(IsraelPalestineConflict)
m1 <- msbvar(IsraelPalestineConflict, p=1, h=2, lambda0=0.6,

lambda1=0.1, lambda3=1, lambda4=0.5, lambda5=0,
mu5=0, mu6=0, qm=12, alpha.prior=matrix(10, 2, 2),
prior=0, max.iter=20)

m2p <- gibbs.msbvar(m1, N1=1000, N2=10000, permute=FALSE, Sigma.idx=1)

irf2 <- mc.irf(m2p, nsteps=12)
plot.ms.irf(irf2)

## End(Not run)
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plotregimeid Clustering and plotting function for msbvar permuted sample output

Description

Identifies and plots regime-specific coefficients from the random permutation sampler for regime
identification

Usage

plotregimeid(x,
type = c("all", "intercepts", "AR1", "Sigma", "Q"),
ask = TRUE, ...)

Arguments

x Gibbs sampler output of class MSBVAR from the posterior of an MSBVAR model,
a call to the gibbs.msbvar function.

type Items to be clustered and plots to be produced to identify the posterior regimes /
modes of the Gibbs sampler based on the randomly permuted draws. The type
can be "intercepts" where the clustering of the posterior draws and the plots are
based on the intercepts in each equation (so a change in equilibrium model),
"AR1" where the clustering of the posterior draws are based on the coefficients
in the VAR(1) matrices across the regimes, "Sigma" or the variances of the equa-
tions across the regimes, or "Q" based on the elements of the transition matrix,
Q. The option "all" generates the plots and clustering for all of the above options
and is the default.

ask logical, default=TRUE. Ask about which plots to show, ala the syntax in coda.
If TRUE then all relevant responses are displayed on the current graphical device
with user input. Otherwise, all plots run by in the current device as generated.

... Optional graphical and lattice parameters to be fed to the plots. There is no
assurance that these will work. E-mail if you have inputs on this that do not
work, but that you think should.

Details

The posterior of a Markov-switching (MS) model estimated by an unrestricted Gibbs sampler has
h! identical posterior modes. The modes are identical in the sense that they are merely relabelings
of the regime labels. Since the analyst may not apriori know what defines or separates the regimes
in the parameter space, this function allows one to explore the randomly permuted labelings that are
generated by the gibbs.msbvar function.

This function takes the permuted output of gibbs.msbvar and shows colored pairs, scatter, densi-
typlots, and traceplots for the posterior parameters. The coloring follow standard R color pallates.
The determination of how the regimes are identified is based on a kmeans clustering of either the
the parameters "intercepts", "AR1", "Sigma" (variances), or "Q" transition probabilities. This is
the method suggested by Fruhwirth-Schanatter (2001, 2006). The utility here is that this function
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handles subsetting the data, setting up the clustering and plotting and labeling the results for the
user.

Regime identification and labeling is necessary so that one can sample from a single mode of the
posterior to get sensible regime classification plots from say plot.SS or regime probabilities from
say mean.SS.

Value

None. A series of plots are produced in the current graphics device.

Note

This is the first version of this function. Future versions may use a slightly different syntax and only
use one input argument.

Author(s)

Patrick T. Brandt

References

Fruhwirth-Schnatter, Sylvia. 2001. "Markov Chain Monte Carlo Estimation of Classical and Dy-
namic Switching and Mixture Models". Journal of the American Statistical Association. 96(153):194–
209.

Fruhwirth-Schnatter, Sylvia. 2006. Finite Mixture and Markov Switching Models. Springer Series
in Statistics New York: Springer.

See Also

msbvar, plot.SS, mean.SS, gibbs.msbvar

Examples

## Not run:
# This example can be pasted into a script or copied into R to run. It
# takes a few minutes, but illustrates how the code can be used

data(IsraelPalestineConflict)

# Find the mode of an msbvar model
# Initial guess is based on random draw, so set seed.
set.seed(123)

xm <- msbvar(IsraelPalestineConflict, p=1, h=2,
lambda0=0.8, lambda1=0.15,
lambda3=2, lambda4=1, lambda5=0, mu5=0,
mu6=0, qm=12,
alpha.prior=matrix(c(100,40,30,50), 2, 2))

# Plot out the initial mode
plot(ts(xm$fp))
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print(xm$Q)

# Now sample the posterior
N1 <- 100
N2 <- 500

# First, so this with random permutation sampling
x1 <- gibbs.msbvar(xm, N1=N1, N2=N2, permute=TRUE)

# Identify the regimes using clustering in plotregimeid()
plotregimeid(x1, type="all")

# Now re-estimate based on desired regime identification seen in the
# plots. Here we are using the variance of the first equation, so
# Sigma.idx=1.

x2 <- gibbs.msbvar(xm, N1=N1, N2=N2, permute=FALSE, Sigma.idx=1)

# Plot the variances. Note the strict hyperplane between the variances
# for the first equation versus the others.
plotregimeid(xm, x2, type="Sigma")

## End(Not run)

posterior.fit Estimates the marginal likelihood or log posterior probability for
BVAR, BSVAR, and MSBVAR models

Description

Computes the marginal log likelihood other posterior fit measures for BVAR, BSVAR, and MSB-
VAR models fit with szbvar, szbsvar and, msbvar (and their posterior samplers).

Usage

posterior.fit(varobj, A0.posterior.obj=NULL, maxiterbs=500)

Arguments

varobj Varies for BVAR, BSVAR, or MSBVAR models. For a BVAR model, varobj
= output from a call to szbvar. For a BSVAR model, varobj = output from
a call to szbsvar. For MSBVAR models, varobj = output from a call to
gibbs.msbvar.

A0.posterior.obj

MCMC Gibbs object for the B-SVAR model A0 from gibbs.A0

maxiterbs Number of iterations for the bridge sampler for computing the marginal likeli-
hood for MSBVAR models
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Details

Estimates the marginal log likelihood, also known as a log marginal data density for the various
models. For the BVAR models, this can be computed in closed form. For the BSVAR models
the MCMC data augmentation method of Chib (1995) is employed. For the MSBVAR models,
the importance sampler, reciprocal importance sampler, and bridge sampler methods of Fruwirth-
Schnatter (2006) are used. Consult these references for details (or look at the source code).

The computations are done using compiled C++ and Fortran code as of version 0.3.0. See the
package source code for details about the implementation.

Value

BVAR:

A list of the class "posterior.fit.VAR" that includes the following elements:

data.marg.llf Log marginal density, the probability of the data after integrating out the param-
eters in the model.

data.marg.post Predictive marginal posterior density
coefficient.post

Contribution to the posterior fit from the pdf of the coefficients.

BSVAR:

A list of the class "posterior.fit.BSVAR" that includes the following elements:

log.prior Log prior probability

log.llf T ×1 list of the log probabilities for each observation conditional on the param-
eters.

log.posterior.Aplus

Log marginal probability of A1, . . . , Ap conditional on the data and A0

log.marginal.data.density

Log data density or marginal log likelihood, the probability of the data after
integrating out the parameters in the model.

log.marginal.A0k

m × 1 list of the log probabilities of each column (corresponding to the equa-
tions) of A0 conditional on the other columns.

MSBVAR:

A list of the class "posterior.fit.MSBVAR" that includes the following elements:

Note

The log Bayes factor for two model can be computed using the log.marginal.data.density:

log BF = log.marginal.data.density.1 - log.marginal.data.density.2

Note that at present, the scale factors for the BVAR and B-SVAR models are different (one used the
concentrated likelihood, the other does NOT). Thus, one cannot compare fit measures across the two
functions. To compare a recursive B-SVAR to a non-recursive B-SVAR model, one should estimate
the recursive model with szbsvar using the appropriate ident matrix and then call posterior.fit
on the two B-SVAR models!
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Author(s)

Patrick T. Brandt and W. Ryan Davis

References

Chib, Siddartha. 1995. "Marginal Likelihood from the Gibbs Output." Journal of the American
Statistical Association. 90(432): 1313–1321.

Waggoner, Daniel F. and Tao A. Zha. 2003. "A Gibbs sampler for structural vector autoregressions"
Journal of Economic Dynamics \& Control. 28:349–366.

Fruhwirth-Schnatter, Sylvia. 2006. Finite Mixture and Markov Switching Models. Springer Series
in Statistics New York: Springer., esp. Sections 5.4 and 5.5.

See Also

szbvar, szbsvar, gibbs.A0, gibbs.msbvar, and print.posterior.fit for a print method.

Examples

## Not run:
varobj <- szbsvar(Y, p, z = NULL, lambda0, lambda1, lambda3, lambda4,

lambda5, mu5, mu6, ident, qm = 4)
A0.posterior <- gibbs.A0(varobj, N1, N2)
fit <- posterior.fit(varobj, A0.posterior)
print(fit)

## End(Not run)

print.dfev Printing DFEV tables

Description

Prints decomposition of forecast error variance tables

Usage

## S3 method for class 'dfev'
print(x, latex = F, file = NULL, ...)

## S3 method for class 'dfev'
summary(object, latex = F, file = NULL, ...)
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Arguments

x DFEV object created by dfev

object DFEV object created by dfev

latex Logical. T = format results in LaTeX tables, default is F, text output

file File for the results. If NULL, prints to standard output device.

... Other print and summary arguments

Details

Prints DFEV results in a table using xtable functions.

Value

None.

Author(s)

Patrick T. Brandt

See Also

See dfev for an example.

print.posterior.fit Print method for posterior fit measures

Description

Prints objects of the classes "posterior.fit.VAR", "posterior.fit.BVAR", and "posterior.fit.BSVAR".

Usage

## S3 method for class 'posterior.fit'
print(x, ...)

Arguments

x object produced by posterior.fit,

... other print options

Details

Called for its side effect — printing the output of posterior.fit
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Value

None

Author(s)

Patrick T. Brandt

See Also

szbvar, szbsvar, gibbs.A0, gibbs.msbvar, mc.irf, posterior.fit

Examples

## Not run:
varobj <- szbsvar(Y, p, z = NULL, lambda0, lambda1, lambda3, lambda4,

lambda5, mu5, mu6, ident, qm = 4)
A0.posterior <- gibbs.A0(varobj, N1, N2)
fit <- posterior.fit(varobj, A0.posterior)
print(fit)

## End(Not run)

rdirichlet Random draws from and density for Dirichlet distribution

Description

Generate draws from a random Dirichlet distribution or compute its density.

Usage

rdirichlet(n, alpha)
ddirichlet(x, alpha)

Arguments

n Number of draws

alpha Scale matrix, h× h
x value to compute density

Details

Draws n values for an h× h Dirichlet random variable or computes the density.

Value

x An n× h matrix of the draws
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Note

Based on code from Kevin Quinn in the MCMCpack package and the gregmisc package.

References

MCMCpack and gregmisc

Examples

rdirichlet(2, matrix(rep(1, 4), 2, 2))

reduced.form.var Estimation of a reduced form VAR model

Description

Estimates a reduced form VAR using equation-by-equation seemingly unrelated regression (SUR).

Usage

reduced.form.var(Y, p, z=NULL)

Arguments

Y T ×m multiple time series object created with ts().

p Lag length

z T ×k exogenous variables in a matrix of T rows. Can be NULL if there are none.

Details

This is a frequentist VAR estimator. This is a workhorse function — you will want to use other
functions such as irf, mc.irf or dfev to report and interpret the results of this object.

Value

List of class "VAR" with elements,

intercept Row vector of the m intercepts.

ar.coefs m×m× p array of the AR coefficients. The first m×m array is for lag 1, the
p’th array for lag p.

Bhat (mp+ k + 1)×m matrix of the coefficients, where the columns correspond to
the variables in the VAR. Intercepts follow the AR coefficients, etc.

exog.coefs k ×m matrix of exogenous coefficients, or NA if z=NULL

vcv m×m matrix of the maximum likelihood estimate of the residual covariance

mean.S m×mmatrix of the posterior residual covariance.
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hstar mp×mp right hand side variables crossproduct.

X Right hand side variables for the estimation of BVAR

Y Left hand side variables for the estimation of BVAR

y Input data (Y)

Author(s)

Patrick T. Brandt

References

Sims, C.A. 1980. "Macroeconomics and Reality" Econometrica 48(1): 1-48.

See Also

See also szbvar for BVAR models with the Sims-Zha prior and szbsvar for Bayesian SVAR mod-
els with the Sims-Zha prior.

Examples

data(IsraelPalestineConflict)
rf.var <- reduced.form.var(IsraelPalestineConflict, p=6)
plot(irf(rf.var, nsteps=12))

regimeSummary Regime probability summaries and regime duration estimates based
on MCMC output for MSBVAR models

Description

Provides summary and quantile computations for regime probabilities and regime durations based
on MSBVAR MCMC output

Usage

regimeSummary(x, quantiles = c(0.025, 0.25, 0.5, 0.75, 0.975))

Arguments

x output from gibbs.msbvar, the MCMC sampler for the MSBVAR models

quantiles quantiles one wants to compute, as is done in the coda package. Defaults are as
given above.
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Details

This function is mainly a wrapper for calls to the coda package to summarize the MCMC output
for the transition matrix of an MSBVAR model estimated from gibbs.msbvar. It adds labels to the
output so one know which regime is which in the output. In the summary of the transition matrix
Q′s elements qij for the transition from regime i to regime j.

The ergodic regime probabilities are computed for draw k of the MSBVAR MCMC sampler as
described in Kim and Nelson (1999):

eta <- solve(rbind(cbind(diag(h-1) - t(Q)[1:(h-1),1:(h-1)], t(Q)[1:(h-1),h]), rep(1,h)))

This is the gives N2 draws of the ergodic probabilities of being in regime k. These are summarized
again using coda functions.

Finally, the ergodic regime probabilities can be used to estimate expected long run regime durations.
For ηk the expected regime duration is 1/(1 − ηk). This again is summarized over the N2 draws
using coda functions.

Value

Invisible list with 3 elements:

Q.summary Summary and quantiles of the x$Q.sample draws of the transition matrix

lrQ Summary and quantiles of the long run or ergodic regime probabilities

durations Summary and quantiles of the estimated regime durations

Author(s)

Patrick T. Brandt

References

Kim, Chang-Jin and Charles R. Nelson. 1999. State-Space Models with Regime Switching: Clas-
sical and Gibbs-Sampling Approaches with Applications. Cambridge: MIT Press.

See Also

gibbs.msbvar, plotregimeid, msbvar

Examples

## Not run:
regimeSummary(x)

## End(Not run)
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restmtx Utility function for generating the restriction matrix for hard condi-
tion forecasting

Description

Generates the restriction matrix for a set of hard condition forecasts. See hc.forecast for details.

Usage

restmtx(nsteps, m)

Arguments

nsteps Number of periods in the forecast horizon

m Number of endogenous variables in the VAR.

Details

Builds the appropriately dimensioned and filled restriction matrix of zeros and ones for hard condi-
tion forecasting.

Value

A matrix of dimensions (nsteps x m*nsteps) that can be used to represent the restrictions in hard
condition forecasting using hc.forecast

Author(s)

Patrick T. Brandt

References

Waggoner, Daniel F. and Tao Zha. 1999. "Conditional Forecasts in Dynamic Multivariate Models"
Review of Economics and Statistics, 81(4):639-651.

See Also

hc.forecast
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rmse Root mean squared error of a Monte Carlo / MCMC sample of fore-
casts

Description

Computes the root mean squared error (RMSE) of a Monte Carlo sample of forecasts.

Usage

rmse(m1, m2)

Arguments

m1 Forecast sample for model 1
m2 Forecast sample for model 2

Details

User needs to subset the forecasts if necessary.

Value

Forecast RMSE.

Author(s)

Patrick T. Brandt

See Also

mae, forecast

Examples

data(IsraelPalestineConflict)
Y.sample1 <- window(IsraelPalestineConflict, end=c(2002, 52))
Y.sample2 <- window(IsraelPalestineConflict, start=c(2003,1))

# Fit a BVAR model
fit.bvar <- szbvar(Y.sample1, p=6, lambda0=0.6, lambda1=0.1, lambda3=2,

lambda4=0.25, lambda5=0, mu5=0, mu6=0, prior=0)

# Forecast -- this gives back the sample PLUS the forecasts!

forecasts <- forecast(fit.bvar, nsteps=nrow(Y.sample2))

# Compare forecasts to real data
rmse(forecasts[(nrow(Y.sample1)+1):nrow(forecasts),], Y.sample2)
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rmultnorm Multivariate Normal Random Number Generator

Description

Generates multivariate normal random variates for give mean and covariance vectors. Can also
handle generation of multivariate normal deviates with singular covariance distributions via singular
value decomposition (SVD).

Usage

rmultnorm(n, mu, vmat, tol = 1e-10)

Arguments

n Number of variates to draw.

mu m column matrix of multivariate means

vmat m×m covariance matrix

tol Tolerance level used for SVD of the covariance. Default is 1e-10

Details

Generates n draws from a multivariate normal distribution with mean matrix mu and covariance
matrix vmat.

Value

Matrix of the random draw that is conformable with the input mu.

Note

Based on code by Jeff Gill. This function is called in the hard condition forecasting in hc.forecast
for simulating the structural innovations.

Author(s)

Patrick T. Brandt

See Also

rnorm

Examples

rmultnorm(1, matrix(c(1,2),2,1), vmat=matrix(c(1,1,0,1),2,2))
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rwishart Random deviates from a Wishart distribution

Description

Draws random deviates from a Wishart pdf.

Usage

rwishart(N, df, Sigma)

Arguments

N Number of random deviates to draw.

df Degrees of freedom for Wishart distribution

Sigma Mean of the Wishart from which to draw the deviates

Details

Draws N matrices of draws from a Wishart with mean Sigma. This is used to draw error covariances
for the VAR and BVAR models which are distributed inverse Wisharts deviates.

Value

Returns an N dimensional array of dim(Sigma) square matrices for the Wishart random deviates. If
N=1, it returns a single matrix.

Author(s)

Patrick T. Brandt

See Also

See also as rmultnorm for multivariate normal deviates, rgamma for the univariate analog to drawing
Wishart deviates, and ldwishart for computing the log density for a Wishart variate.

Examples

x <- matrix(rnorm(100), 50, 2)
XX <- crossprod(x)
tmp <- rwishart(1, 50, XX)



68 simulateMSAR

simulateMSAR Simulate (univariate) Markov-switching autoregressive (MSAR) data

Description

Simulate (univariate) Markov-switching autoregressive (MSAR) data

Usage

simulateMSAR(bigt, Q, theta, st1, y1)

Arguments

bigt Integer, number of observations to generate.

Q h dimensional transition matrix for the MS process. h × h Markov transition
matrix whose rows sum to 1 with the main weights on the diagonal elements.

theta Matrix of the MSAR coeffients with h rows and m × p + 2 columns. The first
column is the constants, the next m × p + 1 columns are the autoregressive
coefficients (by lag – so the first m× 1 are the AR(1) coefficients, etc.) and the
last m× 1 elements are the error variances (remember, this is univariate!)

st1 Starting regime, an integer less than or equal to h

y1 Starting value for simulated data in regime st1

Details

This function simulates a univariate MSAR model. The user needs to input the transition matrix Q
and the autoregression coefficients via theta. The assumption in this model is that the error process
is Gaussian.

Value

A list with two elements:

Y The simulated univariate MSAR time series

st A vector of integers identifying the regime of each observation in Y

Author(s)

Patrick T. Brandt and Ryan Davis

References

Kim, Chang-Jin and Charles R. Nelson. 1999. State-Space Models with Regime Switching: Clas-
sical and Gibbs-Sampling Approaches with Applications. Cambridge: MIT Press.
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See Also

simulateMSVAR for the multivariate version

Examples

## Example of call here

simulateMSVAR Simulate a Markov-switching VAR (MSVAR) process

Description

Simulate Markov-switching vector autoregression data

Usage

simulateMSVAR(bigt, m, p, var.beta0, var.betas, e.vcv, Q, seed = 214)

Arguments

bigt Integer, number of observations to generate.

m Integer, number of equations in the VAR process

p Integer, lag length of the VAR(p) process.

var.beta0 Array of dimension m× 1× h of the VAR intercepts for each regime (h)

var.betas Array of dimension m × mp × h of the autoregressive coefficients. In each
element of the array, rows correspond to equations, columns to lags. The first
m×m columns are the AR(1) coefficients, etc.

e.vcv Array of dimentsion m×m× h of the error covariances. The m×m matrices
are the error covariances for each regime.

Q h dimensional transition matrix for the MS process. h × h Markov transition
matrix whose rows sum to 1 with the main weights on the diagonal elements.

seed Integer. Random number seed.

Details

This function simulates a multivariate Markov-switching model, MSVAR with m equations, p lags
and h regimes. The assumption is that the error process is Gaussian.

Value

A list with two elements:

Y The simulated MSVAR time series in a ts object of dimension bigt×m.

st A vector of integers identifying the regime of each observation in Y
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Author(s)

Patrick T. Brandt and Ryan Davis

References

Kim, Chang-Jin and Charles R. Nelson. 1999. State-Space Models with Regime Switching: Clas-
sical and Gibbs-Sampling Approaches with Applications. Cambridge: MIT Press.

See Also

simulateMSAR for the univariate version; msbvar

Examples

## Not run:
# Example: simulate an MS(h)-VAR(p) model with two equations.
# Have h = 2, m=2, and p=1, simplest case

# VAR simulation parameters
bigt <- 500 # number of observations
m <- 2 # number of endogenous variables
p <- 1 # lag length
h <- 2 # number of regimes

# setup transition matrix with two states

Q <- matrix(c(.98, .02,
.05, .95), nrow=h, byrow=TRUE)

# theta stores paramater values
# 1st column is intercept
# 2:m*p are the AR coefficients
# (mp+2)'th columns are variance

# regime 1
var.beta0.st1 <- c(1,2) # intercepts
var.betas.st1 <- matrix(c(.7, .1,

.1, .7), m, byrow=TRUE)
# regime 2
var.beta0.st2 <- c(0,0) # intercepts
var.betas.st2 <- matrix(c(.2, .1,

.2, .1), m, byrow=TRUE)

# Build the array
var.beta0 <- array(NA, c(m,1,h))
var.betas <- array(NA, c(m,p*m,h))
var.beta0[,,1] <- var.beta0.st1
var.beta0[,,2] <- var.beta0.st2
var.betas[,,1] <- var.betas.st1
var.betas[,,2] <- var.betas.st2

# Variance-Covariance Matrix for
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# MVN distributed disturbances
# regime 1
e.vcv.st1 <- matrix(c(.3, .1,

.1, .3), 2)
# regime 2
e.vcv.st2 <- matrix(c(.1, .05,

.05, .1), 2)
# combine
e.vcv <- array(NA, c(m, m, h))
e.vcv[,,1] <- e.vcv.st1
e.vcv[,,2] <- e.vcv.st2

# hold true values of parameters for easy comparison to estimates
theta.true.var <- array(NA, c(m, 1+m*p+m, h))
theta.true.var[,1,] <- var.beta0
theta.true.var[,2:(1+p*m),] <- var.betas
theta.true.var[,(1+m*p+1):ncol(theta.true.var),] <- e.vcv

simdata <- simulateMSVAR(bigt, m, p, var.beta0, var.betas, e.vcv, Q)

# Plot
plot(as.ts(simdata[[1]]))

# Fit a simple model

model <- msvar(Y=simdata[[1]], p=1, h=2, niterblkopt=50)

# Plot regime estimates and compare to true simulated values
par(mfrow=c(2,1))
plot(ts(model$fp))
plot(ts(simdata$st))

## End(Not run)

SS.ffbs State-space forward-filter and backwards-sampler for a Markov-
switching VAR model

Description

This function estimates the h state probabilities for all of the observations for a Gaussian likelihood

Usage

SS.ffbs(e, bigt, m, p, h, sig2, Q)

Arguments

e bigt×m× h array of the residuals for an MSBVAR process

bigt integer, number of observations in the model
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m integer, number of equations or variables in the MSBVAR model

p integer, number of lags in the model

h integer, number of regimes in the MSBVAR model

sig2 m ×m × h array of the covariances for each regime (can be the same for each
of the h regimes)

Q h× h first order Markov transition matrix; each row must sum to 1

Details

The estimation of an MSBVAR model requires and efficient classifier of the states for the observed
filtered probabilities. This function provides a way to accomplish this and is one of the workhorses
in the estimation in the msbvar and gibbs.msbvar function.

This function uses compiled Fortran code to draw the 0-1 matrix of the regimes. It uses the Baum-
Hamilton-Lee-Kim (BHLK) filter and smoother to estimate the regime probabilities. Draws are
based on the standard forward-filter-backward-sample algorithm.

Value

A T ×h matrix of the sampled regimes. Each row corresponds to an identity matrix element giving
the regime classification for the observation.

Note

This function assumes that the innovation in the MSBVAR model are multivariate normal. The
resulting filter and sample follows that in the references listed above. This function is provided so
users can build their own customized MSBVAR models. Users can write functions to generate the
(B)VAR residuals for their own customized MSBVAR models than then provide the residuals and
their covariances and transition matrix Q. This function can then be used to estimate / sample the
regime probabilities. So if you need an MSBVAR model where only certain parameters change —
rather than all of them as in the existing msbvar and gibbs.msbvar functions — you can build your
own estimator using this function. This function takes care of the hard part of building an MSBVAR
model.

Author(s)

Patrick T. Brandt

References

Kim, C.J. and C.R. Nelson. 1999. State-space models with regime switching. Cambridge, Mass:
MIT Press.

Krolzig, Hans-Martin. 1997. Markov-Switching Vector Autoregressions: Modeling, Statistical
Inference, and Application to Business Cycle Analysis.

Sims, Christopher A. and Daniel F. Waggoner and Tao Zha. 2008. "Methods for inference in large
multiple-equation Markov-switching models" Journal of Econometrics 146(2):255–274.
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See Also

msbvar, gibbs.msbvar

Examples

# Simple example to show how data are input to the filter-sampler.
# Assumes a simple bivariate regression model with switching means and
# variances.

TT <- 100
h <- 2
m <- 2
set.seed(123)
x1 <- rnorm(TT)
x2 <- rnorm(TT)
y1 <- 5 + 2*x1 + rnorm(TT)
y2 <- 1 + x2 + 5*rnorm(TT)

Y <- rbind(cbind(y1[1:(0.5*TT)],y2[1:(0.5*TT)]),
cbind(y2[((0.5*TT)+1):TT],y1[((0.5*TT)+1):TT]))

X <- rbind(cbind(x1[1:(0.5*TT)],x2[1:(0.5*TT)]),
cbind(x2[((0.5*TT)+1):TT],x1[((0.5*TT)+1):TT]))

u1 <- Y - tcrossprod(cbind(rep(1,TT), X), matrix(c(5,2,0,1,1,0), 2, 3))
u2 <- Y - tcrossprod(cbind(rep(1,TT), X), matrix(c(1,1,0,5,2,0), 2, 3))

u <- array(0, c(TT, m, h))
u[,,1] <- u1
u[,,2] <- u2

Sik <- array(0, c(m,m,h))
Sik[,,1] <- diag(c(1,25))
Sik[,,2] <- diag(c(25,1))

Q <- matrix(c(0.9,0.2,0.1,0.8), h, h)

# estimate the states 100 times
ss <- replicate(100, SS.ffbs(u, TT, m, p=1, h, Sik, Q), simplify=FALSE)

# Get the state estimates from the 100 simulations
ss.est <- matrix(unlist(ss), nrow=(h*TT + h^2))

ss.prob <- matrix(rowMeans(ss.est[1:(h*TT),]), ncol=h)
ss.transition <- matrix(rowMeans(ss.est[((h*TT)+1):((h*TT) + h^2),]),

h, h)

summary Summary functions for VAR / BVAR / B-SVAR model objects
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Description

Prints a summary of the coefficient matrices for various VAR / BVAR / B-SVAR model objects to
standard output.

Usage

summary(object, ...)

Arguments

object Fitted VAR, BVAR, or B-SVAR model from either reduced.form.var, szbvar,
or szbsvar

... other arguments

Details

Prints (posterior) coefficient matrices for each lag and error covariance summaries as appropriate.

Value

None.

Author(s)

Patrick T. Brandt

See Also

summary

Examples

## Not run:
summary(x)

## End(Not run)
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summary.forecast Summary functions for forecasts obtained through VAR / BVAR / B-
SVAR model objects

Description

Prints a summary of the mean and quantile values for the forecasts generated through VAR / BVAR
/ B-SVAR model objects to standard output.

Usage

## S3 method for class 'forecast'
summary(object, probs = c(0.16,0.84), ...)

Arguments

object Forecast object genrated through fitting a VAR, BVAR, or B-SVAR model from
either forecast.VAR, forecast.BVAR, or forecast.BSVAR

probs vector list of probability range for quantiles. default: c(0.16,0.84) or a 68%
region (approximately one standard deviation on each side of the mean)

... optional arguments (ignored, but included for S3 consistency)

Details

Prints a summary of the mean and quantile values for the forecasts.

Value

Returns the mean forecast and the specified posterior probability interval for the forecasts.

Author(s)

Patrick T. Brandt

See Also

summary

Examples

## Not run:
summary(x)

## End(Not run)
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SZ.prior.evaluation Sims-Zha Bayesian VAR Prior Specification Search

Description

Estimates posterior and in-sample fit measures for a reduced form vector autoregression model with
different specifications of the Sims-Zha hyperparameters values.

Usage

SZ.prior.evaluation(Y, p,
lambda0, lambda1, lambda3, lambda4, lambda5,
mu5, mu6, z = NULL, nu = ncol(Y) + 1, qm,
prior = 0, nsteps, y.future)

Arguments

Y T x m matrix of endogenous variables for the VAR

p Lag length

lambda0 List of values, e,g, c(0.7, 0.8, 0.9) in [0,1], Overall tightness of the prior
(discounting of prior scale).

lambda1 List of values, e,g, c(0.05, 0.1, 0.2) in [0,1], Standard deviation or tightness
of the prior around the AR(1) parameters.

lambda3 List of values, e,g, c(0, 1, 2) for Lag decay (>0, with 1=harmonic)

lambda4 List of values, e,g, c(0.15, 0.2, 0.5) for Standard deviation or tightness
around the intercept [>0]

lambda5 Single value for the standard deviation or tightness around the exogneous vari-
able coefficients [>0]

mu5 Single value for sum of coefficients prior weight [>=0]

mu6 Single value for dummy Initial observations or cointegration prior [>=0]

z Exogenous variables

nu Prior degrees of freedom = m+1

qm Frequency of the data for lag decay equivalence. Default is 4, and a value of
12 will match the lag decay of monthly to quarterly data. Other values have the
same effect as "4"

prior One of three values: 0 = Normal-Wishart prior, 1 = Normal-flat prior, 2 = flat-flat
prior (i.e., akin to MLE)

nsteps Number of periods in the forecast horizon

y.future Future values of the series, nsteps x m for computing the root mean squared
error and mean absolute error for the fit
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Details

This function fits a series of BVAR models for the combinations of lambda0, lambda1, lambda3,
and lambda4 provided. For each possible value of these parameters specified, a Sims-Zha prior
BVAR model is fit, posterior fit measures are computed, and forecasts are generated over nsteps.
These nstep forecasts are then compared to a new set of data in y.future and root mean sqaured
error and mean absolute error measures are computed.

Value

A matrix of the results with columns corresponding to the values of "lambda0", "lambda1", "lambda3",
"lambda4", "lambda5", "mu5", "mu6", "RMSE", "MAE", "MargLLF","MargPosterior".

Note

The matrix of the results can be usefully plotted using the lattice package. See the example
below.

Author(s)

Patrick T. Brandt

References

Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and
the Study of Politics: Theory Testing, Forecasting, and Policy Analysis" Political Analysis 14(1):1-
36.

See Also

szbvar

Examples

Y <- EuStockMarkets
results <- SZ.prior.evaluation(window(Y, start=c(1998, 1),

end=c(1998,149)),
p=3,
lambda0=c(1,0.9),
lambda1=c(0.1,0.2),
lambda3=c(0,1),
lambda4=c(0.1,0.25),
lambda5=0,
mu5=4,
mu6=4, z=NULL,
nu=ncol(Y)+1, qm=4,
prior=0,
nstep=20,
y.future=window(Y, start=c(1998,150)))

# Now plot the RMSE and marginal posterior of the data for each of the
# 6 period forecasts as a function of the prior parameters. This can
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# easily be done using a lattice graphic.

library(lattice)

attach(as.data.frame(results))
dev.new()
xyplot(RMSE ~ lambda0 | lambda1 + lambda3)
dev.new()
xyplot(logMDD ~ lambda0 | lambda1 + lambda3)
dev.new()
xyplot(LLF ~ lambda0 | lambda1 + lambda3)

szbsvar Structural Sims-Zha Bayesian VAR model estimation

Description

Estimates the posterior mode for a Bayesian Structural Vector Autoregression (B-SVAR) model
using the prior specified by Sims and Zha (1998)

Usage

szbsvar(Y, p, z = NULL,
lambda0, lambda1, lambda3, lambda4, lambda5,
mu5, mu6, ident, qm = 4)

Arguments

Y T ×m multiple time series object created with ts() with no NAs.

p integer lag length for the model

z T × k matrix of exogenous variables (not including an intercept)

lambda0 [0, 1], Overall tightness of the prior (discounting of prior scale).

lambda1 [0, 1], Standard deviation or tightness of the prior around the AR(1) parameters.

lambda3 Lag decay (> 0, with 1=harmonic)

lambda4 Standard deviation or tightness around the intercept > 0

lambda5 Standard deviation or tightness around the exogneous variable coefficients > 0

mu5 Sum of coefficients prior weight ≥ 0. Larger values imply difference stationar-
ity.

mu6 Dummy Initial observations or drift prior ≥ 0. Larger values allow for common
trends.

ident m×mmatrix of binary indicators for the identification of the free and restricted
contemporaneous parameters in A0.

qm Frequency of the data for lag decay equivalence. Default is 4, and a value of
12 will match the lag decay of monthly to quarterly data. Other values have the
same effect as "4"
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Details

This function estimates the posterior mode for the Bayesian structural VAR (B-SVAR) model de-
scribed by Sims and Zha (1998) and Waggoner and Zha (2003). This B-SVAR model is based
a specification of the dynamic simultaneous equation representation of the model. The prior is
constructed for the structural parameters.

The basic SVAR model has the form of Waggoner and Zha (2003):

y′tA0 =

p∑
`=1

Y ′t−`A` + z′tD + ε′t, t = 1, . . . , T,

where Ai are m × m parameter matrices for the contemporaneous and lagged effects of the en-
dogenous variables, D is an h × m parameter matrix for the exogenous variables (including an
intercept), yt is the m × 1 matrix of the endogenous variables, zt is a h × 1 vector of exogenous
variables (including an intercept) and εt is the m× 1 matrix of structural shocks. NOTE that in this
representation of the model, the columns of the A` matrices refer to the equations!

The structural shocks are normal with mean and variance equal to the following:

E[εt|y1, . . . , yt−1, z1, . . . zt−1] = 0

E[εtε
′
t|y1, . . . , yt−1, z1, . . . zt−1] = I

The reduced form representation of the SVAR model can be found by post-multiplying through by
A−10 :

y′tA0A
−1
0 =

p∑
`=1

Y ′t−`A`A
−1
0 + z′tDA

−1
0 + ε′tA

−1
0

y′t =

p∑
`=1

Y ′t−`B` + z′tΓ + ε′tA
−1
0 .

The reduced form error covariance matrix is found from the crossproduct of the reduced form
innovations:

Σ = E[(ε′tA
−1
0 )(ε′tA

−1
0 )′] = [A0A

′
0]−1.

.

Restrictions on the contemporaneous parameters in A0 are expressed by the specification of the
ident matrix that defines the shocks that "hit" each equation in the contemporaneous specification.
If ident is defined as in the following table,

Equations
Variables Eqn 1 Eqn 2 Eqn 3
Var. 1 1 0 0
Var. 2 1 1 0
Var. 3 0 1 1
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then the corresponding A0 is restricted to

Equations
Variables Eqn 1 Eqn 2 Eqn 3
Var. 1 a11 0 0
Var. 2 a12 a22 0
Var. 3 0 a23 a33

which is interpreted as shocks in variables 1 and 2 hit equation 1 (the first column); shocks in
variables 2 and 3 hit the second equation (column 2); and, shocks in variable 3 hit the third equation
(column 3).

As in Sims and Zha (1998) and Waggoner and Zha (2003), the prior for the model is formed for
each of the equations. To illustrate the prior, the model is written in the more compact notation

y′tA0 = x′tF + ε′t

where
x′t = [y′t−1 · · · y′t−p, z′t], F ′ = [A′1 · · ·A′pD′]

are the matrices of the right hand side variables and the right hand side coefficients for the SVAR
model.

The general form of this prior is then

ai ∼ N(0, S̄i) and fi|ai ∼ N(P̄iai, H̄i)

where S̄i is an m ×m prior covariance of the contemporaneous parameters, and H̄i is the k × k
prior covariance of the parameters in fi|ai. The prior means of ai are zero in the structural model,
while the "random walk" component is in P̄iai.

The prior covariance matrix of the errors, S̄i, is initially estimated using a VAR(p) model via OLS,
with an intercept and no demeaning of the data.

The Bayesian prior is constructed for the unrestricted VAR model and then mapped into the re-
stricted prior parameter space, as discussed in Waggoner and Zha (2003a).

Value

A list of the class "BSVAR" that summarizes the posterior mode of the B-SVAR model

XX X ′X + H0 crossproduct moment matrix for the predetermined variables in the
model plus the prior

XY X ′Y for the model, including the dummy observations for mu5 and mu6

YY m×m Crossproduct for the Y’s in the model

y T ×m input data in dat plus the m dummy observations for dat
structural.innovations

T ×m structural innovations for the SVAR model

Ui m × qi Null space matrices that map the columns of A0 to the free parameters
of the columns
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Hpinv.tilde Prior covariance for the predetermined and exogenous regression in the B-SVAR

H0inv.tilde m dimensional list of the prior covariances for the free parameters of the i’th
equation in the model’s A0 matrix

Pi.tilde list of (m2p + 1 + h) × qi matrices of the prior for the parameters for the
predetermined variables in the model

Hpinv.posterior

(m2p + 1 + h) ×m matrix of the posterior of the structural parameters for the
predetermined variables

P.posterior list of (m2p + 1 + h) × m matrices of the posterior of the paramters for the
predetermined variables in the model

H0inv.posterior

m dimensional list of the posterior covariances for the free parameters of the i’th
equation in the model’s A0 matrix

A0.mode posterior mode of the A0 matrix

F.posterior (m2p + 1 + h) ×m matrix of the posterior of the structural parameters for the
predetermined variables

B.posterior (m2p+ 1 + h)×m matrix of the posterior of the reduced form parameters for
the predetermined variables

ar.coefs (m2p)×mmatrix of the posterior of the reduced form autoregressive parameters

intercept m dimensional vector of the reduced form intercepts

exog.coefs h×m matrix of the reduced form exogenous variable coefficients

prior List of the prior parameter: c(lambda0,lambda1,lambda3,lambda4,lambda5, mu5, mu6).

df Degrees of freedom for the model: T + number of dummy observations - lag
length.

n0 m dimensional list of the number of free parameters for the A0 matrix for equa-
tion i.

ident m×m identification matrix ident.

Warning

If you do not understand the model described here, you probably want the models described in
szbvar or reduced.form.var

Author(s)

Patrick T. Brandt

References

Sims, C.A. and Tao A. Zha. 1998. "Bayesian Methods for Dynamic Multivariate Models." Interna-
tional Economic Review. 39(4):949-968.

Waggoner, Daniel F. and Tao A. Zha. 2003a. "A Gibbs sampler for structural vector autoregres-
sions" Journal of Economic Dynamics \& Control. 28:349–366.
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Waggoner, Daniel F. and Tao A. Zha. 2003b. "Likelihood preserving normalization in multiple
equation models". Journal of Econometrics. 114: 329–347.

Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling
and the Study of Politics: Theory Testing, Forecasting, and Policy Analysis". Political Analysis
14(1):1-36.

See Also

szbvar for reduced form Bayesian VAR models, reduced.form.var for non-Bayesian reduced
form VAR models, gibbs.A0 for drawing from the posterior of this model using a Gibbs sampler,
posterior.fit for assessing the posterior fit of the model, and mc.irf for computing impulse
responses for this model.

Examples

# SZ, B-SVAR model for the Levant data
data(BCFdata)
m <- ncol(Y)
ident <- diag(m)
ident[1,] <- 1
ident[2,1] <- 1

# estimate the model's posterior moments
model <- szbsvar(Y, p=2, z=z2, lambda0=0.8, lambda1=0.1,

lambda3=1, lambda4=0.1, lambda5=0.05,
mu5=0, mu6=5, ident, qm=12)

szbvar Reduced form Sims-Zha Bayesian VAR model estimation

Description

Estimation of the Bayesian VAR model for just identified VARs described in Sims and Zha (1998)

Usage

szbvar(Y, p, z = NULL, lambda0, lambda1, lambda3, lambda4, lambda5,
mu5, mu6, nu = ncol(Y)+1, qm = 4, prior = 0,
posterior.fit = FALSE)

Arguments

Y T ×m multiple time series object created with ts().

p Lag length

z T × k matrix of exogenous variables. Can be z = NULL if there are none.

lambda0 [0, 1], Overall tightness of the prior (discounting of prior scale).
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lambda1 [0, 1], Standard deviation or tightness of the prior around the AR(1) parameters.

lambda3 Lag decay (> 0, with 1=harmonic)

lambda4 Standard deviation or tightness around the intercept > 0

lambda5 Standard deviation or tightness around the exogneous variable coefficients > 0

mu5 Sum of coefficients prior weight ≥ 0. Larger values imply difference stationar-
ity.

mu6 Dummy initial observations or drift prior ≥ 0. Larger values allow for common
trends.

nu Prior degrees of freedom, m+ 1

qm Frequency of the data for lag decay equivalence. Default is 4, and a value of
12 will match the lag decay of monthly to quarterly data. Other values have the
same effect as "4"

prior One of three values: 0 = Normal-Wishart prior, 1 = Normal-flat prior, 2 = flat-flat
prior (i.e., akin to MLE)

posterior.fit logical, F = do not estimate log-posterior fit measures, T = estimate log-posterior
fit measures.

Details

This function estimates the Bayesian VAR (BVAR) model described by Sims and Zha (1998). This
BVAR model is based a specification of the dynamic simultaneous equation representation of the
model. The prior is constructed for the structural parameters. The basic SVAR model used here is
documented in szbsvar.

The prior covariance matrix of the errors, S̄i, is initially estimated using a VAR(p) model via OLS,
with an intercept and no demeaning of the data.

Value

Returns a list of multiple elements. This is a workhorse function to get the estimates, so nothing
is displayed to the screen. The elements of the list are intended as inputs for the various post-
estimation functions (e.g., impulse response analyses, forecasting, decompositions of forecast error
variance, etc.)

Returns a list of the class "BVAR" with the following elements:

intercept m× 1 row vector of the m intercepts

ar.coefs m×m× p array of the AR coefficients. The first m×m array is for lag 1, the
p’th array for lag p.

exog.coefs k ×m matrix of the coefficients for any exogenous variables

Bhat (mp+ k + 1)×m matrix of the coefficients, where the columns correspond to
the variables in the VAR

vcv m×m matrix of the maximum likelihood estimate of the residual covariance

vcv.Bh Posterior estimate of the parameter covariance that is conformable with Bhat.

mean.S m×m matrix of the posterior residual covariance.

St m×mmatrix of the degrees of freedom times the posterior residual covariance.
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hstar (mp + k + 1) × (mp + k + 1) prior precision plus right hand side variables
crossproduct.

hstarinv (mp+ k + 1)× (mp+ k + 1) prior covariance crossproduct solve(hstar)

H0 (mp+ k + 1)× (mp+ k + 1) prior precision for the parameters

S0 m×m prior error covariance

residuals (T − p)×m matrix of the residuals

X T ×(mp+1+k) matrix of right hand side variables for the estimation of BVAR

Y T ×m matrix of the left hand side variables for the estimation of BVAR

y T ×m input data in dat

z T × k exogenous variables matrix

p Lag length

num.exog Number of exogenous variables

qm Value of parameter to match quarterly to monthly lag decay (4 or 12)

prior.type Numeric code for prior type: 0 = Normal-Wishart, 1 = Normal-Flat, 2 = Flat-Flat
(approximate MLE)

prior List of the prior parameter: c(lambda0,lambda1,lambda3,lambda4,lambda5, mu5,
mu6, nu)

marg.llf Value of the in-sample marginal log-likelihood for the data, if posterior.fit=T

marg.post Value of the in-sample marginal log posterior of the data, if posterior.fit=T

coef.post Value of the marginal log posterior estimate of the coefficients, if posterior.fit=T

Note

This is a work horse function. You will probably want to use other functions to summarize and
report the BVAR results.

Author(s)

Patrick T. Brandt, based on code from Robertson and Tallman and Sims and Zha.

References

Sims, C.A. and Tao Zha. 1998. "Bayesian Methods for Dynamic Multivariate Models." Interna-
tional Economic Review. 39(4):949-968.

Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and
the Study of Politics: Theory Testing, Forecasting, and Policy Analysis". Political Analysis.

See Also

reduced.form.var szbsvar
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Examples

## Not run:
data(IsraelPalestineConflict)
varnames <- colnames(IsraelPalestineConflict)

fit.BVAR <- szbvar(IsraelPalestineConflict, p=6, z=NULL,
lambda0=0.6, lambda1=0.1,
lambda3=2, lambda4=0.25, lambda5=0, mu5=0,
mu6=0, nu=3, qm=4,
prior=0, posterior.fit=FALSE)

# Draw from the posterior pdf of the impulse responses.
posterior.impulses <- mc.irf(fit.BVAR, nsteps=10, draws=5000)

# Plot the responses
plot(posterior.impulses, method=c("Sims-Zha2"), component=1,

probs=c(0.16,0.84), varnames=varnames)

## End(Not run)

uc.forecast Forecast density estimation unconditional forecasts for
VAR/BVAR/BSVAR models via MCMC

Description

Implements unconditional forecast density estimator for VAR/BVAR/BSVAR models described in
Waggoner and Zha (1999). The unconditional forecasts place no restriction on the paths of the
forecasts (cf. hc.forecast). The forecast densities are estimated as the posterior sample for the
VAR/BVAR/BSVAR model using Markov Chain Monte Carlo with data augmentation to account
for the uncertainty of the forecasts and the parameters. This function DOES account for parameter
uncertainty in the MCMC algorithm.

Usage

uc.forecast(varobj, nsteps, burnin, gibbs, exog = NULL)

Arguments

varobj VAR or BVAR object produced for a VAR or BVAR using szbvar or reduced.form.var

nsteps Number of periods in the forecast horizon

burnin Burnin cycles for the MCMC algorithm

gibbs Number of cycles of the Gibbs sampler after the burnin that are returned in the
output

exog num.exog x nsteps matrix of the exogenous variable values for the forecast hori-
zon. If left at the NULL default, they are set to zero.
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Details

Produces a posterior sample of unconstrained VAR/BVAR/BSVAR forecasts via MCMC. This func-
tion accounts for the uncertainty of the VAR/BVAR/BSVAR parameters by sampling from them in
the computation of the VAR/BVAR/BSVAR forecasts and then regenerating the forecasts. Data
augmentation is used to account for the impact of the forecast uncertainty on the parameters.

Value

A list with three components:

yforc Forecast sample

orig.y Original endogenous variables time series

hyperp values of the hyperparameters used in the BVAR estimation / MCMC

Author(s)

Patrick T. Brandt

References

Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and
the Study of Politics: Theory Testing, Forecasting, and Policy Analysis" Political Analysis 14(1):1-
36.

Waggoner, Daniel F. and Tao Zha. 1999. "Conditional Forecasts in Dynamic Multivariate Models"
Review of Economics and Statistics, 81(4):639-651.

See Also

hc.forecast

Examples

## Not run:
## Uses the example from Brandt and Freeman 2006. Will not run unless
## you have their data from the Politcal
## Analysis website!
library(MSBVAR) # Brandt's package for Bayesian VAR models

# Read the data and set up as a time series
data <- read.dta("levant.weekly.79-03.dta")
attach(data)

# Set up KEDS data
KEDS.data <- ts(cbind(a2i,a2p,i2a,p2a,i2p,p2i),

start=c(1979,15),
freq=52,
names=c("A2I","A2P","I2A","P2A","I2P","P2I"))

# Select the sample we want to use.
KEDS <- window(KEDS.data, end=c(1988,50))
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################################################################################
# Estimate the BVAR models
################################################################################

# Fit a flat prior model
KEDS.BVAR.flat <- szbvar(KEDS, p=6, z=NULL, lambda0=1,

lambda1=1, lambda3=1, lambda4=1, lambda5=0,
mu5=0, mu6=0, nu=0, qm=4, prior=2,
posterior.fit=F)

# Reference prior model -- Normal-IW prior pdf
KEDS.BVAR.informed <- szbvar(KEDS, p=6, z=NULL, lambda0=0.6,

lambda1=0.1, lambda3=2, lambda4=0.5, lambda5=0,
mu5=0, mu6=0, nu=ncol(KEDS)+1, qm=4, prior=0,
posterior.fit=F)

# Set up conditional forecast matrix conditions
nsteps <- 12
a2i.condition <- rep(mean(KEDS[,1]) + sqrt(var(KEDS[,1])) , nsteps)

yhat<-matrix(c(a2i.condition,rep(0, nsteps*5)), ncol=6)

# Set the random number seed so we can replicate the results.
set.seed(11023)

# Conditional forecasts
conditional.forcs.ref <- hc.forecast(KEDS.BVAR.informed, yhat, nsteps,

burnin=3000, gibbs=5000, exog=NULL)

conditional.forcs.flat <- hc.forecast(KEDS.BVAR.flat, yhat, nsteps,
burnin=3000, gibbs=5000, exog=NULL)

# Unconditional forecasts
unconditional.forcs.ref <-uc.forecast(KEDS.BVAR.informed, nsteps,

burnin=3000, gibbs=5000)

unconditional.forcs.flat <- uc.forecast(KEDS.BVAR.flat, nsteps,
burnin=3000, gibbs=5000)

# Set-up and plot the unconditional and conditional forecasts. This
# code pulls for the forecasts for I2P and P2I and puts them into the
# appropriate array for the figures we want to generate.
uc.flat <- NULL
hc.flat <- NULL
uc.ref <- NULL
hc.ref <- NULL

uc.flat$forecast <- unconditional.forcs.flat$forecast[,,5:6]
hc.flat$forecast <- conditional.forcs.flat$forecast[,,5:6]
uc.ref$forecast <- unconditional.forcs.ref$forecast[,,5:6]
hc.ref$forecast <- conditional.forcs.ref$forecast[,,5:6]
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par(mfrow=c(2,2), omi=c(0.25,0.5,0.25,0.25))
plot(uc.flat,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"),

compare.level=KEDS[nrow(KEDS),5:6], lwd=2)
plot(hc.ref,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"),

compare.level=KEDS[nrow(KEDS),5:6], lwd=2)

## End(Not run)

var.lag.specification Automated VAR lag specification testing

Description

Estimates a series of test statistics and measures for VAR lag length selection.

Usage

var.lag.specification(y, lagmax = 20)

Arguments

y T x m multiple time series

lagmax Maximum lag order to be evaluated. Function will return lag length tests for all
lag orders less than lagmax.

Details

Estimates a series of frequentist VAR models for 1 to lagmax and returns a sequence of χ2 tests,
AIC, BIC and Hannan-Quinn criterion values for each lag length.

Value

Results are printed to standard output (screen or file). In addition, a list of two matrices is returned:

ldets Lag length, log-determinants, χ2 tests, and p-values for each lag length, com-
pared to the null of the next shorter lag length

results Lag length, AIC, BIC, and HQ criteria for each lag length. Selection criteria
should be minimized.

Note

Sizes of p-values are uncorrected for multiple testing. Use cautiously.

Author(s)

Patrick T. Brandt
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References

Lutkepohl, Helmut 2004."Vector Autoregressive and Vector Error Correction Models", Chapter 3.
In Applied Time Series Econometrics. Lutkepohl„ Helmut and Markus Kratzig eds. Cambridge:
CUP.

See Also

See Also reduced.form.var for frequentist VAR estimation, szbvar for Bayesian VAR estimation,
and szbsvar for Bayesian Structural VAR estimation.

Examples

data(IsraelPalestineConflict)
var.lag.specification(IsraelPalestineConflict, lagmax=12)
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