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bssr.1subgroup Blinded Sample Size Recalculation for a One Subgroup Design

Description

Given data from an Internal Pilot Study (IPS), bssr.1subgroup reestimates the nuisance parame-
ters, i.e. variances and prevalence, and recalculates the required sample size for proving a desired
alternative when testing for an effect in the full or subpopulation. See ’Details’ for more informa-
tion.

Usage

bssr.1subgroup(data, alpha, beta, delta, eps = 0.001,
approx = c("conservative.t", "liberal.t", "normal"), df = c("n", "n1"),
adjust = c("YES", "NO"), k = 1, nmax = 1000)

Arguments

data data matrix with data from ongoing trial: see ’Details’.

alpha level (type I error) to which the hypothesis is tested.

beta type II error (power=1-beta) to which an alternative should be proven.

delta vector of treatment effects to be proven, c(outside subgroup, inside subgroup).

eps precision parameter concerning the power calculation in the iterative sample size
search algorithm.

approx approximation method: Use a conservative multivariate t distribution ("conser-
vative.t"), a liberal multivariate t distribution ("liberal.t") or a multivariate nor-
mal distribution ("normal") to approximate the joint distribution of the standard-
ized test statistics.

df in case of a multivariate t distribution approximation, recalculate sample size
with degrees of freedom depending on the size of the IPS (df=n1) or depending
on the final sample size (df=n).

adjust adjust blinded estimators for assumed treatment effect ("YES","No").

k sample size allocation factor between groups: see ’Details’.

nmax maximum total sample size.



bssr.1subgroup 3

Details

This function performs blinded nuisance parameter reestimation in a design with a subgroup within
a full population where we want to test for treatment effects between a control and a treatment group.
Then the required sample size for the control and treatment group to prove an existing alternative
delta with a specified power 1-beta when testing the global null hypothesis H0 : ∆F = ∆S = 0
to level alpha is calculated.

The data matrix data should have three columns: The first column has to be a binary variable
(0=treatment group, 1=control group). The second column should also contain a binary variable
giving the full population/subgroup differentiation (0=full population, 1=subpopulation). The last
column contains the observations.

For sample sizes nC and nT of the control and treatment group, respectively, the argument k is the
sample size allocation factor, i.e. k = nT /nC .

The parameter df provides a difference to the standard sample size calculation procedure imple-
mented in n.1subgroup. When applying a multivariate t distribution approximation to approximate
the joint distribution of the standardized test statistics it gives the opportunity to use degrees of free-
dom depending on the number of subjects in the IPS instead of degrees of freedom depending on the
projected final sample size. Note that this leads to better performance when dealing with extremely
small subgroup sample sizes but significantly increases the calculated final sample size.

Value

bssr.1subgroup returns a list containing the recalculated required sample size within the control
group and treatment group along with all relevant parameters. Use summary.bssrest for a struc-
tured overview.

Source

bssr.1subgroup uses code contributed by Marius Placzek.

See Also

n.1subgroup for sample size calculation prior to the trial.

Examples

#Given data from the Internal Pilot Study, reestimate the nuisance parameters and
#recalculate the required sample size to correctly reject with
#80% probability when testing the global Nullhypothesis H_0: Delta_F=Delta_S = 0
#assuming the true effect Delta_S=1 is in the subgroup (no effect outside of the subgroup).

random<-r.1subgroup(n=50, delta=c(0,1), sigma=c(1,1.2), tau=0.4, fix.tau="YES", k=2)
reestimate<-bssr.1subgroup(data=random,alpha=0.05,beta=0.1,delta=c(0,1),eps=0.001,
approx="conservative.t",df="n1",k=2,adjust="NO")
summary(reestimate)
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bssr.gee.1subgroup Blinded Sample Size Recalculation for longitudinal data in a One Sub-
group Design

Description

Given data from an Internal Pilot Study (IPS), bssr.GEE.1subgroup given the reestimated nuisance
parameteres are calculated. bssr.gee.1subgroup is a wraper for n.gee.1subgroup because the
reestimation of the variances can be highly dependable on the user and should be done seperatly.
see "detail" for more information on that.

Usage

bssr.gee.1subgroup(alpha, tail = "both", beta = NULL, delta, estsigma,
tau = 0.5, k = 1)

Arguments

alpha level (type I error) to which the hypothesis is tested.

tail which type of test is used, e.g. which quartile und H0 is calculated

beta type II error (power=1-beta) to which an alternative should be proven.

delta vector of regression coefficients values which shall be proven, c(allcomers, only
subpopulation).

estsigma reestimated vector of assymptotic standard deviations.

tau ration between F/S and S

k sample size allocation factor between groups: see ’Details’.

Details

This function provides a simple warper for n.gee.1subgroup where instead of initial assumptions
blind estimated nuisance parameter inserted. For information see n.gee.1subgroup. alternative
delta with a specified power 1-beta when testing the global null hypothesis H0 : βF3 = βS3 = 0
to level alpha is calculated.

The data matrix data should have as many columns as observed timepoints: first column first
observed timepoint. As of now the timepoints must be equispaced to calculate the correct intra-
subject covariance-matrix. Entries can be NA. See r.gee.1subgroup.r for more information.

For sample sizes nC and nT of the control and treatment group, respectively, the argument k is the
sample size allocation factor, i.e. k = nT /nC .

Value

bssr.gee.1subgroup returns a list containing the recalculated required sample size within the
control group and treatment group along with all relevant parameters. Use summary.bssrest for a
structured overview.
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Source

bssr.gee.1subgroup uses code contributed by Roland Gerard Gera.

See Also

n.gee.1subgroup for sample size calculation prior to the trial, r.gee.1subgroup how list data
should look like and estimcov how the reestimation of nuisance parameters works. See sim.gee
for an enxample for an initial sample size estimation and reestimation to see the functions working
in junction.

Examples

estimate<-bssr.gee.1subgroup(alpha=0.05,beta=0.2,delta=c(0.1,0.1),estsigma=c(0.8,0.4),tau=0.4, k=1)
summary(estimate)

bssr.nb.inar1 Blinded Sample Size Reestimation for Longitudinal Count Data using
the NB-INAR(1) Model

Description

bssr.nb.inar1 fits blinded observations and recalculates the sample size required for proving a
desired alternative when testing for a rate ratio between two groups unequal to one. See ’Details’
for more information.

Usage

bssr.nb.inar1(alpha, power, delta, x, n, k)

Arguments

alpha level (type I error) to which the hypothesis is tested.

power power (1 - type II error) to which an alternative should be proven.

delta the rate ratio which is to be proven.

x a matrix or data frame containing count data which is to be fitted. Columns
correspond to time points, rows to observations.

n a vector giving the sample size within the control group and the treatment group,
respecitvely.

k planned sample size allocation factor between groups: see ’Details’.
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Details

When testing for differences between rates µC and µT of two groups, a control and a treatment
group respectively, we usually test for the ratio between the two rates, i.e. µT /µC = 1. The ratio
of the two rates is refered to as δ, i.e. δ = µT /µC .

bssr.nb.inar1 gives back the required sample size for the control and treatment group required
to prove an existing alternative theta with a specified power power when testing the null hypoth-
esis H0 : µT /µC ≥ 1 to level alpha. Nuisance parameters are estimated through the blinded
observations x, thus not further required.

for sample sizes nC and nT of the control and treatment group, respectively, the argument k is the
desired sample size allocation factor at the end of the study, i.e. k = nT /nC .

Value

rnbinom.inar1 returns the required sample size within the control group and treatment group.

Source

rnbinom.inar1 uses code contributed by Thomas Asendorf.

See Also

rnbinom.inar1 for information on the NB-INAR(1) model, n.nb.inar1 for calculating initial
sample size required when performing inference, fit.nb.inar1 for calculating initial parameters
required when performing sample size estimation

Examples

#Calculate required sample size to find significant difference with
#80% probability when testing the Nullhypothesis H_0: mu_T/mu_C >= 1
#assuming the true effect delta is 0.8 and rate, size and correlation
#parameter in the control group are 2, 1 and 0.5, respectively.

estimate<-n.nb.inar1(alpha=0.025, power=0.8, delta=0.8, muC=2, size=1, rho=0.5, tp=7, k=1)

#Simulate data
placebo<-rnbinom.inar1(n=50, size=1, mu=2, rho=0.5, tp=7)
treatment<-rnbinom.inar1(n=50, size=1, mu=1.6, rho=0.5, tp=7)

#Blinded sample size reestimation
blinded.data<-rbind(placebo, treatment)[sample(1:100),]
estimate<-bssr.nb.inar1(alpha=0.025, power=0.8, delta=0.8, x=blinded.data, n=c(50,50), k=1)
summary(estimate)
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estimcov Estimation of variance, intra-subject-correlation and dropout

Description

estimcov estimates variance, intra-subject-correlation and dropout given empirical data.

Usage

estimcov(data, Time, Startvalues = c(3, 0.5, 1), stepwidth = c(0.001, 0.001,
0.001), maxiter = 10000, lower = c(1e-04, 1e-04, 1e-04), upper = c(Inf,
5, 3))

Arguments

data list of gathered data. The list must be consistent with the gernerated data of
r.gee.1subgroup

Time list with observed time points: see ’Details’

Startvalues startvalues for the paramteres var,rho and theta

stepwidth vector of stepwidths which the optimisation-function should use

maxiter value setting maximal amount of iterations for the optimisation algorithm

lower lower bound for var,rho and theta

upper upper bound for var,rho and theta

Details

Function estimcov fits a covariance-matrix with parameters var,rho and theta (see gen_cov_cor
for matrix generation) to an empirical covarince-matrix provided by data.

Value

estimcov returns a list with two vectors. The first entry consists of a vector with estimations for
c(var,rho,theta) while the second entry contains a vector, describing the empirical dropout-chance
per timepoint.

Source

estimcov uses code contributed Roland Gerard Gera.

See Also

r.gee.1subgroup for information on the generated longitudinal data and n.gee.1subgroup for
the calculation of initial sample sizes for longitudinal GEE-models and bssr.gee.1subgroup for
blinded sample size reestimation within a trial. See gen_cov_cor for more information on the
generation of covariance matrices.
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Examples

#Generate data from longitudinal-model
set.seed(2015)
dataset<-r.gee.1subgroup(n=300, reg=list(c(0,0,0,0.1),c(0,0,0,0.1)), sigma=c(3,2.5), tau=0.5,
rho=0.25, theta=1, k=1.5, Time=c(0:5), OD=0.2)

estimate<-estimcov(data=dataset,Time=c(0:5))
estimate

fit.nb.inar1 Fitting Longitudinal Data with Negative Binomial Marginal Distri-
bution and Autoregressive Correlation Structure of Order One: NB-
INAR(1)

Description

fit.nb.inar1 fits data using the maximum likelihood of a reparametrized NB-INAR(1) model.

Usage

fit.nb.inar1(x, lower = rep(10, 3)^-5, upper = c(10^5, 10^5, 1 - 10^-5),
method = "L-BFGS-B", start)

Arguments

x a matrix or data frame containing count data which is to be fitted. Columns
correspond to time points, rows to observations.

lower vector of lower bounds for estimated parameters mu, size and rho, respectively.

upper vector of upper bounds for estimated parameters mu, size and rho, respectively.

method algorithm used for minimization of the likelihood, see optim for details.

start vector of starting values for estimated parameters mu, size and rho, respectively,
used for optimization.

Details

the function fit.nb.inar1 fits a reparametrization of the NB-INAR(1) model as found in McKen-
zie (1986). The reparametrized model assumes equal means and dispersion parameter between time
points with an autoregressive correlation structure. The function is especially useful for estimating
parameters for an initial sample size calculation using n.nb.inar1. The fitting function allows for
incomplete follow up, but not for intermittent missingness.

Value

fit.nb.inar1 return estimates of the mean mu, dispersion parameter size and correlation coeffi-
cient rho.
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Source

fit.nb.inar1 uses code contributed by Thomas Asendorf.

References

McKenzie Ed (1986), Autoregressive Moving-Average Processes with Negative-Binomial and Ge-
ometric Marginal Distributions. Advances in Applied Probability Vol. 18, No. 3, pp. 679-705.

See Also

rnbinom.inar1 for information on the NB-INAR(1) model, n.nb.inar1 for calculating initial
sample size required when performing inference, bssr.nb.inar1 for blinded sample size reesti-
mation within a running trial, optim for more information on the used minimization algorithms.

Examples

#Generate data from the NB-INAR(1) model
set.seed(8)
random<-rnbinom.inar1(n=1000, size=1.5, mu=2, rho=0.6, tp=7)

estimate<-fit.nb.inar1(random)
estimate

gen_cov_cor Generation of covariance- or correlation-matrices

Description

Generate covariance- or correlation-matrices given the parameters var, rho, theta for the covari-
ance structure, Time for the observed timepoints and cov=TRUE if a covariance or cov=FALSE if a
correlation-matrix is to be generated.

Usage

gen_cov_cor(var = 1, rho, theta, Time, cov = TRUE)

Arguments

var variance at each timepoint

rho correlation between two adjacent timepoints 1 timeunit appart

theta variable specifying the type of the correlation structure: see ’Details’

Time list with time measures which are used to generate the covariance- or correlation-
structure: see ’Details’

cov TRUE/FALSE statement which determines if a covariance- or a correlation-
matrix is generated.
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Details

The function gen_cov_cor is used to generate either a covariance- or a correlation-matrix. Given
vector Time and parameters var, rho and theta the covariance or correlation between two time-
points is described: The way the correlation between two timepoints is described by

cov(Time[i], T ime[j]) = var ∗ (rho(abs(Time[i]− Time[j])theta))

for covariance and

corr(Time[i], T ime[j]) = rho(abs(Time[i]− Time[j])theta)

for correlation. [The above sentence would be better is we write the following sentence:] [[The
following two equations are used to calculate the covariance and the correlation between two time-
points, respectively: cov(Time[i],Time[j])=var*(rho^(abs(Time[i]-Time[j])^theta)) corr(Time[i],Time[j])=rho^(abs(Time[i]-
Time[j])^theta) ]]

Which of the two formulas is used depends on cov

Value

gen_cov_cor returns the covariance- or correlation-matrix, depending if cov was TRUE or FALSE.

Source

gen_cov_cor uses code contributed by Roland Gerard Gera

@seealso r.gee.1subgroup for information on the generated longitudinal data and n.gee.1subgroup
for the calculation of initial sample sizes for longitudinal GEE-models and bssr.gee.1subgroup
for blinded sample size reestimation within a trial See estimcov for more information on the used
minimization algorithms.

Examples

#Generate a covariance-matrix with measurements at Baseline and at timeunit 1,1.5,2
#and 5 (hours,day,months,years, etc.)

covar<-gen_cov_cor(var=3,rho=0.25,theta=1,Time=c(0,1,1.5,2,5),cov=TRUE)
covar

#Generate a correlation-matrix

corr<-gen_cov_cor(rho=0.25,theta=1,Time=c(0,1,1.5,2,5),cov=FALSE)
corr

n.1subgroup Sample Size Calculation for a One Subgroup Design

Description

n.1subgroup calculates the required sample size for proving a desired alternative when testing for
an effect in the full or subpopulation. See ’Details’ for more information.



n.1subgroup 11

Usage

n.1subgroup(alpha, beta, delta, sigma, tau, eps = 0.001,
approx = c("conservative.t", "liberal.t", "normal"), k = 1, nmax = 1000,
nmin = 0)

Arguments

alpha level (type I error) to which the hypothesis is tested.

beta type II error (power=1-beta) to which an alternative should be proven.

delta vector of treatment effects to be proven, c(outside subgroup, inside subgroup).

sigma vector of standard deviations, c(outside subgroup, inside subgroup).

tau subgroup prevalence.

eps precision parameter concerning the power calculation in the iterative sample size
search algorithm.

approx approximation method: Use a conservative multivariate t distribution ("conser-
vative.t"), a liberal multivariate t distribution ("liberal.t") or a multivariate nor-
mal distribution ("normal") to approximate the joint distribution of the standard-
ized teststatistics.

k sample size allocation factor between groups: see ’Details’.

nmax maximum total sample size.

nmin minimum total sample size.

Details

This function performs sample size estimation in a design with a subgroup within a full population
where we want to test for treatment effects between a control and a treatment group. Since patients
from the subgroup might potentially benefit from the treatment more than patients not included in
that subgroup, one might prefer testing hypothesis cercerning the full population and the subpop-
ulation at the same time. Here standardized test statistics are their joined distributions are used to
calculate the required sample size for the control and treatment group to prove an existing alternative
delta with a specified power 1-beta when testing the global null hypothesis H0 : ∆F = ∆S = 0
to level alpha.

For sample sizes nC and nT of the control and treatment group, respectively, the argument k is the
sample size allocation factor, i.e. k = nT /nC .

Value

n.1subgroup returns the required sample size within the control group and treatment group.

Source

n.1subgroup uses code contributed by Marius Placzek.

See Also

#’ bssr.1subgroup for blinded sample size reestimation within a running trial.
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Examples

#Calculate required sample size to correctly reject with
#80% probability when testing the global Nullhypothesis H_0: Delta_F=Delta_S = 0
#assuming the true effect Delta_S=1 is in the subgroup (no effect outside of the subgroup)
#with subgroup prevalence tau=0.4.
#The variances in and outside of the subgroup are unequal, sigma=c(1,1.2).

estimate<-n.1subgroup(alpha=0.025,beta=0.1,delta=c(0,1),sigma=c(1,1.2),tau=0.4,eps=0.0001,
approx="conservative.t",k=2)
summary(estimate)

n.gee.1subgroup Sample Size estimation for longitudinal GEE Models when testing 1
coefficient

Description

n.gee.1subgroup calculates the required sample size for proving a desired alternative when testing
regression coefficients in the full or subpopulation. See ’Details’ for more information.

Usage

n.gee.1subgroup(alpha, tail = "both", beta = NULL, delta, sigma,
tau = 0.5, k = 1, npow = NULL, nmax = Inf)

Arguments

alpha level (type I error) to which the hypothesis is tested.

tail which type of test is used, e.g. which quartile und H0 is calculated

beta type II error (power=1-beta) to which an alternative should be proven.

delta vector of regression coefficients values which shall be proven, c(allcomers, sub-
population).

sigma vector of assymptotic standard diviation of regressors, c(full population, sub-
population).see ’Details’

tau subgroup prevalence.

k sample size allocation factor between control and treatment: see ’Details’.

npow calculates power of a test if npow is a sample size

nmax maximum total sample size.
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Details

This function performs sample size estimation in a design with a subgroup nested within a full
population. To calculate the required sample size when testing only one regressor (e.g. effect of
treatment*time) one needs to input the expected value of the regressor under alternative, delta, and
the expected asymptotic variance of that regressor, sigma. The power for the global null hypothesis
is given by 1-beta and alpha specifies the false positve level for rejecting H0 : ∆F = ∆S = 0 to
level alpha, where in our context ∆Fand∆S normaly represent regressioncoefficents and σ2 their
variance.

For sample sizes nC and nT of the control and treatment group, respectively, the argument k is the
sample size allocation factor, i.e. k = nT /nC .

Value

n.gee.1subgroup returns the required sample size within the control group and treatment group.

Source

n.gee.1subgroup uses code contributed by Roland Gerard Gera.

See Also

bssr.1subgroup for blinded sample size reestimation within a running trial and sandwich for
estimating asymptotic covarianc mtrices in GEE models.

Examples

#Calculate required sample size to correctly reject with
#80% probability when testing the global Nullhypothesis H_0: Delta_F=Delta_S = 0
#assuming the coefficient in and outside of the subgroup is Delta=c(0.1,0,1) with a
#subgroup-prevalence of tau=0.4.
#The assymptotic variances in and outside of the subgroup are unequal, sigma=c(0.8,0.4).

estimate<-n.gee.1subgroup(alpha=0.05,beta=0.2,delta=c(0.1,0.1),sigma=c(0.8,0.4),tau=0.4, k=1)
summary(estimate)

#Now we want to estimate the power our study would have,
#if we know the effect in and outside the subgroup, as
#well as asymptotic variance of the regressors. Here we
#estimate that only 300 Patiens total can be recruited.
#All other parameters are the same as those above.

n.gee.1subgroup(alpha=0.05,delta=c(0.1,0.1),sigma=c(0.8,0.4),tau=0.4, k=1, npow=300)
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n.nb.inar1 Sample Size Calculation for Comparing Two Groups when observ-
ing Longitudinal Count Data with marginal Negative Binomial Dis-
tribution and Autoregressive Correlation Structure of Order One: NB-
INAR(1)

Description

n.nb.inar1 calculates the required sample size for proving a desired alternative when testing for a
rate ratio between two groups unequal to one. Also gives back power for a specified sample size.
See ’Details’ for more information.

Usage

n.nb.inar1(alpha, power = NULL, delta, muC, size, rho, tp, k, npow = NULL,
nmax = Inf)

Arguments

alpha level (type I error) to which the hypothesis is tested.
power power (1 - type II error) to which an alternative should be proven.
delta the rate ratio which is to be proven.
muC the rate observed within the control group.
size dispersion parameter (the shape parameter of the gamma mixing distribution).

Must be strictly positive, need not be integer (see rnbinom.inar1).
rho correlation coefficient of the underlying autoregressive correlation structure. Must

be between 0 and 1 (see rnbinom.inar1).
tp number of observed time points. (see rnbinom.inar1)
k sample size allocation factor between groups: see ’Details’.
npow sample size for which a power is to be calculated. Can not be specified if power

is also specified.
nmax maximum total sample size of both groups. If maximum is reached a warning

message is broadcasted.

Details

When testing for differences between rates µC and µT of two groups, a control and a treatment
group respectively, we usually test for the ratio between the two rates, i.e. µT /µC = 1. The ratio
of the two rates is refered to as δ, i.e. δ = µT /µC .

n.nb.inar1 gives back the required sample size for the control and treatment group required to
prove an existing alternative theta with a specified power power when testing the null hypothesis
H0 : µT /µC ≥ 1 to level alpha. If power is not specified but instead npow, the power achieved
with a total sample size of npow is calculated.

For sample sizes nC and nT of the control and treatment group, respectively, the argument k is the
sample size allocation factor, i.e. k = nT /nC .
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Value

rnbinom.inar1 returns the required sample size within the control group and treatment group.

Source

rnbinom.inar1 uses code contributed by Thomas Asendorf.

See Also

rnbinom.inar1 for information on the NB-INAR(1) model, fit.nb.inar1 for calculating initial
parameters required when performing sample size estimation, bssr.nb.inar1 for blinded sample
size reestimation within a running trial.

Examples

#Calculate required sample size to find significant difference with
#80% probability when testing the Nullhypothesis H_0: mu_T/mu_C >= 1
#assuming the true effect delta is 0.8 and rate, size and correlation
#parameter in the control group are 2, 1 and 0.5, respectively.

estimate<-n.nb.inar1(alpha=0.025, power=0.8, delta=0.8, muC=2, size=1, rho=0.5, tp=7, k=1)
summary(estimate)

estimate<-n.nb.inar1(alpha=0.025, npow=200, delta=0.8, muC=2, size=1, rho=0.5, tp=7, k=1)
summary(estimate)

r.1subgroup Generate dataset of normal distributed observations in a one subgroup
design

Description

r.1subgroup generates data for a design with one subgroup within a full population. Each obser-
vation is normal distributed with mean 0 in the placebo group and a potential effect in the treatment
group. Whether the effect is solely in the subgroup or additionally a certain amount outside of the
subgroup can be specified as well as potentially different variances within the subgroup and outside
of the subgroup.

Usage

r.1subgroup(n, delta, sigma, tau, fix.tau = c("YES", "NO"), k)

Arguments

n number of observations. If length(n) > 1, the length is taken to be the number
required.

delta vector of treatment effects in the treatment group, c(outside subgroup, within
subgroup).
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sigma vector of standard deviations, c(outside subgroup, inside subgroup).

tau subgroup prevalence.

fix.tau subgroup prevalence fix or simulated according to tau, see ’Details’.

k sample size allocation factor between groups: see ’Details’.

Details

For delta= (∆F §,∆S)′ and sigma= (σF §, σS)′ this function r.1subgroup generates data as
follows:

Placebo group outside of subgroup N(0, σ2
F §), Placebo group within subgroup N(0, σ2

S), Treat-
ment group outside of subgroup N(∆F §, σ2

F §), Treatment group within subgroup N(∆S , σ
2
S).

If fix.tau=YES the subgroup size is generated according to the prevalence tau, i.e. nS = τ ∗ n.
If fix.tau=YES, then each new generated observations probability to belong to the subgroup is
Ber(tau) distributed and therefore only E(ns) = τ ∗ n holds.

The argument k is the sample size allocation factor, i.e. let nC and nT denote the sample sizes of
of the control and treatment group, respectively, then k = nT /nC .

Value

r.1subgroup returns a data matrix of dimension n x 3. The first column TrPl defines whether the
observation belongs to the treatment group (TrPl=0) or to the placebo group (TrPl=1). Second
column contains the grouping variable FS. For FS=1 the observation stems from the subgroup, for
FS=0 from the full population without the subgroup. In the last column value the observation can
be found. between time points.

Source

r.1subgroup uses code contributed by Marius Placzek.

Examples

set.seed(142)
random<-r.1subgroup(n=50, delta=c(0,1), sigma=c(1,1), tau=0.4, fix.tau="YES", k=2)
random

r.gee.1subgroup Generate a dataset of normally distributed repeated measures in a one
subgroup setting
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Description

r.gee.1subgroup generates data of a population which is comprised of a subgroup and the com-
plementary subgroup. The generated longitudinal data needs the specification of the correlation
(ρ),the correlation structure (θ) and the number of repeated measurements. The intra-subject cor-
relation is defined via corr(yij , yio) = ρ(j−o)

θ

for the correlation between timepoints i and o.The
outcomes are generated as follows:

yij = β0 + β1 ∗ Itreat + β2 ∗ j + β3 ∗ Itreat ∗ j + εij

with i being the subject index and j being the time index. The regression coefficients and outcome-
variance for subpopulation and complementary population can be defined seperatly .

Usage

r.gee.1subgroup(n, reg, sigma, rho, theta, tau, k, Time, OD)

Arguments

n overall sample size that is generated

reg a list containing regression coefficients for complementary population, reg[[1]]
and subpopulation, reg[[2]]: see ’Details’

sigma vector of standard deviations for εij , c(complementary population, subpopula-
tion)

rho correlation between two adjacent timepoints 1 timeunit appart

theta variable specifying the type of the correlation structure: see ’Details’

tau prevalence of the subgroup in the full population.

k sample size allocation factor between control and treatment: see ’Details’.

Time list with the time-values which are taken by j: see ’Details’

OD overall dropout observed at the last timepoint in percent: see ’Details’

Details

Given the coefficients reg=list(c(βF0 §, βF1 §, βF2 §, βF3 §), c(βS0 , β
S
1 , β

S
2 , β

S
3 )) and the outcome-variance

sigma=(σF §, σS) function r.gee.1subgroup generates data with intra-subject correlation defined
by variables ρ and θ as follows:

Placebo group - complementary population yij = β0 + β2 ∗ j + N(0, σF §), Placebo group -
within subgroup yij = β0 + β2 ∗ j + N(0, σS), Treatment group - complementary population
yij = β0 + β1 + β2 ∗ j + β3 ∗ j +N(0, σF §), Treatment group - within subgroup yij = β0 + β1 +
β2 ∗ j + β3 ∗ j +N(0, σS).

The intra-subject correlation is included by correlating the error terms εij . The formula which
describes the correlation between two timepoints is corr(εij, εio) = ρ(j−o)

θ

. If for example θ = 0
the correlation is compound symmetric. With θ = 0 the data is AR(1) correlated.

Argument k is the sample size allocation factor, i.e. the ratio between control and treatment. Let
nC and nT denote the sample sizes of of the control and treatment group, respectively, then k =
nT /nC . Argument Time is a vector which are the measurment times, i. e. all the timepoint where
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a measurement was taken. For Time=0:5 measurments at baseline, and at timepoints 1,2,3,4 and 5
where taken.

Argument OD sets the overall dropout rate at the last timepoint. For OD=0.5 50 percent of all ob-
servation had an dropout event. If a subjact has a dropout the chance for that dropout is equally
distributet over all time points.

Value

r.gee.1subgroup returns a list with 7 diffrent matrices.In every Matrix the rows are the simulated
subjects and the columns are the observed time points.

The first matrix contains the id’s of the subject. The id’s range from 1 to N. The second are are the
outcomes of a subject, yij, and so the dependent variable in most analysis. The outcome for yij can
be found in row i at the corresponding collumn for j. Matrix 3 to 5 are the values for the independent
variables Baseline, Gr and Time. All entries of Baseline are 1 and as such the baseline of control
pations is defined by β0. The enries of Gr corresponds to coefficient β1, Time to coefficient β2 and
the result of Gr*Time to coefficient β3. The sixth matrix contains the error-terms to preserve the
abilety to look tat them later. The last matrix provides the invoramtion if an observation comes from
an subjoct of the subpopulation or the complementary population.

Source

r.gee.1subgroup uses code contributed by Roland Gerard Gera

Examples

set.seed(2015)
dataset<-r.gee.1subgroup(n=200, reg=list(c(0,0,0,0.1),c(0,0,0,0.1)), sigma=c(3,2.5),
tau=0.5, rho=0.25, theta=1, k=1.5, Time=c(0:5), OD=0)
dataset

rnbinom.inar1 Generate Time Series with Negative Binomial Distribution and Autore-
gressive Correlation Structure of Order One: NB-INAR(1)

Description

rnbinom.inar1 generates one or more independent time series following the NB-INAR(1) model.
The generated data has negative binomial marginal distribution and an autoregressive covariance
structure.

Usage

rnbinom.inar1(n, size, mu, rho, tp)
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Arguments

n number of observations. If length(n) > 1, the length is taken to be the number
required.

size dispersion parameter (the shape parameter of the gamma mixing distribution).
Must be strictly positive, need not be integer.

mu parametrization via mean: see ’Details’.
rho correlation coefficient of the underlying autoregressive correlation structure. Must

be between 0 and 1.
tp number of observed time points.

Details

The generated marginal negative binomial distribution with mean mu = µ and size = η has density

(µ/(µ+ η))xΓ(x+ η)/(Γ(x+ 1)Γ(η))(η/(µ+ η))η

for 0 < µ, 0 < η and x = 0, 1, 2, ....

Within the NB-INAR(1) model, the correlation between two time points t and s for rho = ρ is given
through

ρ|t− s|
for 0 ≤ ρ ≤ 1.

Value

rnbinom.inar1 returns a matrix of dimension n x tp with marginal negative binomial distribution
with mean mu and dispersion parameter size, and an autoregressive correlation structure between
time points.

Source

rnbinom.inar1 computes a reparametrization of the NB-INAR(1) model by McKenzie 1986 using
code contributed by Thomas Asendorf.

References

McKenzie Ed (1986), Autoregressive Moving-Average Processes with Negative-Binomial and Ge-
ometric Marginal Distributions. Advances in Applied Probability Vol. 18, No. 3, pp. 679-705.

Examples

set.seed(8)
random<-rnbinom.inar1(n=1000, size=0.6, mu=2, rho=0.8, tp=6)
cor(random)

#Check the marginal distribution of time point 3
plot(table(random[,3])/1000, xlab="Probability", ylab="Observation")
lines(0:26, dnbinom(0:26, mu=2, size=0.6), col="red")
legend("topright",legend=c("Theoretical Marginal Distribution", "Observed Distribution"),
col=c("red", "black"), lty=1, lwd=c(1,2))
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sandwich Estimate the Robust covariance estimator for GEE (weigthed GEE if
missing occures) of Regressor parameters

Description

sandwich calculates the asymptotic regression covariance structure given matrices yCov, D,V, correctionmatrix
for further analyses and is a morte generalized, but also more complex version as sandwich2.

Usage

sandwich(yCov, D, V, correctionmatrix, missing = rep(0, dim(yCov)[[2]]),
missingtype = c("none", "monotone", "intermittened"))

Arguments

yCov yCov is the empirical or estimated Covariancematrix that we cen get from the
outcomes. see ’Details’.

D D es the mean Matrix of all entries of ∆µi/δβ, where is the average over all i
patiens. see ’Details’.

V V is the Working covariance matrix. see ’Details’.
correctionmatrix

a correctionamtrix that will correct misstakes. see ’Details’ to see what these
misstakes are und how to select correction matrices. see ’Details’.

missing a vector which describes the probabilety to experience a dropout at all observed
timepoints. if missing is "none" then it is treated as if all entries are 0

missingtype describes the type of missing that occured in tzhe data. Possebiletys range from
none if there is no missing, to "monotone" if missing is monotone, aka dropout,
and lastly "intermittened" if the missingness is independent across ale time-
points

Details

yCov is the either empirical or estimated intra-subject covariancematrix which is needed to calculate
the sandwich (robust) covariance estimator. This matrix can either be achieved by estimating the
empirical intra-subject covariance out of data or by using gen_cov_cor to calculate a estimation for
the covariance.

D is the estimation of n−1 ∗
∑N
i ∆µi/δβ, so D = E(Di). But this is also source of an error which

has to be corrected by correctionsmatrix. The error emerges when we calculate the "Bread" and
"Meat" of the sandwichestimators. Exemplary on the "Bread" we need to calculateE(Di×V ×Di)
wich is however enequal to E(Di)

t × V ×E(Di) which we ARE calculating. correctionmatrix
is now used to correct made misstakes so thatE(Di)

t×V ×E(Di)*correctionsmatrix=E(Di×
V ×Di), which is still a point which we will improve on further itterations of the algorithm.
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Value

sandwich returns the sandwich (robust) covariance estimator of regression coefficients which are
impicently defined by D.

Source

sandwich computes the asymptotic sandwich covariance estimator and uses code contributed by
Roland Gerard Gera.

References

Liang Kung-Yee, Zeger Scott L. (1986); Jung Sin-Ho, Ahn Chul (2003); Wachtlin Daniel Kieser
Meinhard (2013)

Examples

#Lets assume we wish to calculate the robust variance estimator for the equation
#\eqn{y_{ij}=\beta_0+\beta_1*I_{treat}+\beta_2*j+\beta_3*I _{treat}*j+\epsilon_{ij}}.
#Furthermore we use the identitiy matrix as working covariance matrix.
#We compare the results with the same estimation made by \code{sandwich2} to show the
#same results. The cance to get randomized to treatment is 60 percent and we observe
#the timerange 0:5.

ycov = gen_cov_cor(var = 3,rho = 0.25,theta = 1,Time = 0:5,cov = TRUE)
D = matrix(c(1,0.6,0,0,

1,0.6,1,0.6,
1,0.6,2,1.2,
1,0.6,3,1.8,
1,0.6,4,2.4,
1,0.6,5,3.0),nrow=4)

D=t(D)
V=diag(1,length(0:5))
#We correct entries where E(D_i %*% D_i) is unequal to E(D_i)%*%E(D_i) (D %*% D).
correctionmatrix=matrix(c(1,1,1,1,1,1/0.6,1,1/0.6,1,1,1,1,1,1/0.6,1,1/0.6),nrow=4)
missingtype = "none"

robust=sandwich(yCov=ycov,D=D,V=V,missingtype=missingtype,correctionmatrix=correctionmatrix)
robust

#To see if that is correct we can verify it with function sandwich2, which is usable for
#this particular model with:
robust2=sandwich2(sigma = c(3,3),rho = 0.25,theta = 1,k = 1.5,Time = 0:5,
dropout = rep(0,6),Model = 1)
robust2[[1]]

# We can also test this with the the Model:
#\eqn{y_{ij}=\beta_0+\beta_2*j+\beta_3*I _{treat}*j+\epsilon_{ij}} which leads to
D = matrix(c(1,0,0,

1,1,0.6,
1,2,1.2,
1,3,1.8,



22 sandwich2

1,4,2.4,
1,5,3.0),nrow=3)

D=t(D)
V=diag(1,length(0:5))
#We correct entries where E(D_i %*% D_i) is unequal to E(D_i)%*%E(D_i) (D %*% D).
correctionmatrix =matrix(c(1,1,1, 1,1,1, 1,1,1/0.6),nrow=3)
missingtype = "none"

robust=sandwich(yCov=ycov,D=D,V=V,missingtype=missingtype,correctionmatrix=correctionmatrix)
robust
robust2=sandwich2(sigma = c(3,3),rho = 0.25,theta = 1,k = 1.5,Time = 0:5,
dropout = rep(0,6),Model = 2)
robust2[[1]]

sandwich2 Generate Time Series with Negative Binomial Distribution and Autore-
gressive Correlation Structure of Order One: NB-INAR(1)

Description

rnbinom.inar1 generates one or more independent time series following the NB-INAR(1) model.
The generated data has negative binomial marginal distribution and an autoregressive covariance
structure.

Usage

sandwich2(sigma, rho, theta, k, Time, dropout, Model)

Arguments

sigma assymptotic standard deviation for Full and subpupulation

rho correlation coefficient of the underlying autoregressive correlation structure. Must
be between 0 and 1.

theta correlation absorption coefficient if tinepoints are farther appart

k sample size allocation factor between groups: see ’Details’.

Time vector of measured timepoints

dropout vector describing the percentage of dropout in every timepoint

Model either 1 or 2, describing if 4-regressor or 3-regressor model was used.

Details

The generated marginal negative binomial distribution with mean mu = µ and size = η has density

(µ/(µ+ η))xΓ(x+ η)/(Γ(x+ 1)Γ(η))(η/(µ+ η))η

for 0 < µ, 0 < η and x = 0, 1, 2, ....
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Within the NB-INAR(1) model, the correlation between two time points t and s for rho = ρ is given
through

ρ|t− s|

for 0 ≤ ρ ≤ 1.

Value

rnbinom.inar1 returns a matrix of dimension n x tp with marginal negative binomial distribution
with mean mu and dispersion parameter size, and an autoregressive correlation structure between
time points.

Source

rnbinom.inar1 computes a reparametrization of the NB-INAR(1) model by McKenzie 1986 using
code contributed by Thomas Asendorf.

References

McKenzie Ed (1986), Autoregressive Moving-Average Processes with Negative-Binomial and Ge-
ometric Marginal Distributions. Advances in Applied Probability Vol. 18, No. 3, pp. 679-705.

Examples

set.seed(8)
random<-rnbinom.inar1(n=1000, size=0.6, mu=2, rho=0.8, tp=6)
cor(random)

#Check the marginal distribution of time point 3
plot(table(random[,3])/1000, xlab="Probability", ylab="Observation")
lines(0:26, dnbinom(0:26, mu=2, size=0.6), col="red")
legend("topright",legend=c("Theoretical Marginal Distribution", "Observed Distribution"),
col=c("red", "black"), lty=1, lwd=c(1,2))

sim.bssr.1subgroup Simulation of a One Subgroup Design with Internal Pilot Study

Description

Given estimates of the treatment effects to be proven, the variances, and the prevalence, sim.bssr.1subgroup
calculates a initial sample size and performes a blinded sample size recalculation after a prespec-
ified number of subjects have been enrolled. Each oberservation is simulated and a final analysis
executed. Several variations are included, such as different approximations or sample size alloca-
tion.
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Usage

sim.bssr.1subgroup(nsim = 1000, alpha, beta, delta, sigma, tau, vdelta,
vsigma, vtau, rec.at = 1/2, eps = 0.001, approx = c("conservative.t",
"liberal.t", "normal"), df = c("n", "n1"), fix.tau = c("YES", "NO"),
k = 1, adjust = c("YES", "NO"))

Arguments

nsim number of simulation runs.

alpha level (type I error) to which the hypothesis is tested.

beta type II error (power=1-beta) to which an alternative should be proven.

delta vector of true treatment effects, c(outside subgroup, inside subgroup).

sigma vector of true standard deviations, c(outside subgroup, inside subgroup).

tau subgroup prevalence.

vdelta vector of treatment effects to be proven, c(outside subgroup, inside subgroup).

vsigma vector of assumed standard deviations, c(outside subgroup, inside subgroup).

vtau expected subgroup prevalence.

rec.at blinded sample size review is performed after rec.at*100% subjects of the
initial sample size calculation.

eps precision parameter concerning the power calculation in the iterative sample size
search algorithm.

approx approximation method: Use a conservative multivariate t distribution ("conser-
vative.t"), a liberal multivariate t distribution ("liberal.t") or a multivariate nor-
mal distribution ("normal") to approximate the joint distribution of the standard-
ized teststatistics.

df in case of a multivariate t distribution approximation, recalculate sample size
with degrees of freedom depending on the size of the IPS (df=n1) or depending
on the final sample size (df=n).

fix.tau subgroup prevalence is fixed by design (e.g. determined by recruitment) or is
simulated and has to be reestimated during the blinded review.

k sample size allocation factor between groups: see ’Details’.

adjust adjust blinded estimators for assumed treatment effect ("YES","No").

Details

This function combines sample size estimation, blinded sample size reestimation and analysis in a
design with a subgroup within a full population where we want to test for treatment effects between
a control and a treatment group. The required sample size for the control and treatment group
to prove an existing alternative delta with a specified power 1-beta when testing the global null
hypothesis H0 : ∆F = ∆S = 0 to level alpha is calculated prior to the study and then recalculated
in an internal pilot study.

For sample sizes nC and nT of the control and treatment group, respectively, the argument k is the
sample size allocation factor, i.e. k = nT /nC .
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The parameter df provides a difference to the standard sample size calculation procedure imple-
mented in n.1subgroup. When applying a multivariate t distribution approximation to approximate
the joint distribution of the standardized test statistics it gives the opportunity to use degrees of free-
dom depending on the number of subjects in the IPS instead of degrees of freedom depending on the
projected final sample size. Note that this leads to better performance when dealing with extremely
small subgroup sample sizes but significantly increases the calculated final sample size.

Value

sim.bssr.1subgroup returns a data.frame containing the mean recalculated sample size within
the control group and treatment group and the achieved simulated power along with all relevant
parameters.

Source

sim.bssr.1subgroup uses code contributed by Marius Placzek.

See Also

sim.bssr.1subgroup makes use of n.1subgroup, bssr.1subgroup, and r.1subgroup.

Examples

sim.bssr.1subgroup(nsim=10,alpha=0.025,beta=0.1,delta=c(0,1),sigma=c(1,1.3),tau=0.2,
vdelta=c(0,1),vsigma=c(1,1),vtau=0.3,eps=0.002, approx="conservative.t",df="n",
fix.tau="YES",k=1,adjust="NO")

sim.bssr.gee.1subgroup

Simulation of a longitudinal One Subgroup Design with Internal Pilot
Study

Description

Given estimates of the treatment effects to be proven, the variances, and the prevalence, sim.bssr.gee.1subgroup
calculates an initial sample size and performes a blinded sample size recalculation after a prespec-
ified number of subjects have been enrolled. Each oberservation is simulated and a final analysis
executed. Several variations are included, such as different approximations or sample size alloca-
tion.

Usage

sim.bssr.gee.1subgroup(nsim = 1000, alpha = 0.05, tail = "both",
beta = 0.2, delta = c(0.1, 0.1), vdelta = c(0.1, 0.1),
sigma_pop = c(3, 3), vsigma_pop = c(3, 3), tau = 0.5, rho = 0.25,
vrho = 0.25, theta = 1, vtheta = 1, Time = 0:5, rec.at = 0.5,
k = 1, model = 1, V = diag(rep(1, length(Time))), OD = 0,
vdropout = rep(0, length(Time)), missingtype = "none",
vmissingtype = "none", seed = 2015)
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Arguments

nsim number of simulation runs.

alpha level (type I error) to which the hypothesis is tested.

tail which type of test is used, e.g. which quartile und H0 is calculated

beta type II error (power=1-beta) to which an alternative should be proven.

delta vector of true treatment effects, c(allcomers, inside subgroup).

vdelta vector of treatment effects to be proven, c(allcomers, inside subgroup).

sigma_pop vector of true standard deviations, c(allcomers, inside subgroup).

vsigma_pop vector of assumed standard deviations, c(allcomers, inside subgroup).

tau subgroup prevalence.

rho true correlation coefficent between two adjasent timepints

vrho initial expectation of the correlation coefficent between two adjasent timepints

theta true correlation absorption coefficient if tinepoints are farther appart

vtheta expected correlation absorption coefficient if tinepoints are farther appart

Time vector of measured timepoints

rec.at blinded sample size review is performed after rec.at*100% subjects of the
initial sample size calculation.

k sample size allocation factor between groups: see ’Details’.

model which of the two often revered statistical models should be used?: see ’Details’.

V working covariance matrix. Easiest case ist the identity matrix.

OD overall dropout measuered at last timepoint

vdropout vector of expected dropouts per timepoint if missingness is to be expected

missingtype true missingtype underlying the missingness

vmissingtype initial assumptions about the missingtype underlying the missingness

seed set seed value for the simulations to compare resutlts.

Details

This function combines sample size estimation, blinded sample size reestimation and analysis in a
design with a subgroup within a full population where we want to test for treatment effects between
a control and a treatment group. The required sample size for the control and treatment group
to prove an existing alternative delta with a specified power 1-beta when testing the global null
hypothesis H0 : ∆F = ∆S = 0 to level alpha is calculated prior to the study and then recalculated
in an internal pilot study.

For sample sizes nC and nT of the control and treatment group, respectively, the argument k is the
sample size allocation factor, i.e. k = nT /nC .

Value

sim.bssr.1subgroup returns a data.frame containing the mean and variance of recalculated sample
sizes within the control group and treatment group respectively and the achieved simulated power
along with all relevant parameters.
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Source

sim.bssr.gee.1subgroup uses code contributed by Roland Gerard Gera.

See Also

sim.bssr.gee.1subgroup makes use of n.gee.1subgroup, bssr.gee.1subgroup, and r.gee.1subgroup.

Examples

sim.bssr.gee.1subgroup(nsim = 5,missingtype = "intermittened")

summary.bssrest Summarizing Blinded Sample Size Reestimation

Description

summary method for class "bssrest".

Usage

## S3 method for class 'bssrest'
summary(object, ...)

Arguments

object an object of class "bssrest".

... Arguments to be passed to methods.

Details

summary.bssrest gives back blinded sample size estimates. Furthermore, inputs are displayed for
double checking.

See Also

n.nb.inar1 for initial sample size estimates within the NB-INAR(1) model.

Examples

#Calculate required sample size to find significant difference with
#80% probability when testing the Nullhypothesis H_0: mu_T/mu_C >= 1
#assuming the true effect delta is 0.8 and rate, size and correlation
#parameter in the control group are 2, 1 and 0.5, respectively.

estimate<-n.nb.inar1(alpha=0.025, power=0.8, delta=0.8, muC=2, size=1, rho=0.5, tp=7, k=1)

#Simulate data
set.seed(8)
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placebo<-rnbinom.inar1(n=50, size=1, mu=2, rho=0.5, tp=7)
treatment<-rnbinom.inar1(n=50, size=1, mu=1.6, rho=0.5, tp=7)

#Blinded sample size reestimation
estimate<-bssr.nb.inar1(alpha=0.025, power=0.8, delta=0.8, x=rbind(placebo, treatment),
n=c(50,50), k=1)
summary(estimate)

summary.ssest Summarizing Initial Sample Size Estimates

Description

summary method for class "ssest".

Usage

## S3 method for class 'ssest'
summary(object, ...)

Arguments

object an object of class "ssest".

... Arguments to be passed to methods.

Details

summary.ssest gives back initial sample size estimates required. Furthermore, inputs are displayed
for double checking.

See Also

n.nb.inar1 for initial sample size estimates within the NB-INAR(1) model.

Examples

#Calculate required sample size to find significant difference with
#80% probability when testing the Nullhypothesis H_0: mu_T/mu_C >= 1
#assuming the true effect delta is 0.8 and rate, size and correlation
#parameter in the control group are 2, 1 and 0.5, respectively.

estimate<-n.nb.inar1(alpha=0.025, power=0.8, delta=0.8, muC=2, size=1, rho=0.5, tp=7, k=1)
summary(estimate)
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