Last updated on 2017-02-24 23:52:16.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.4.6 | 1.24 | 29.28 | 30.52 | OK | |
r-devel-linux-x86_64-debian-gcc | 0.4.6 | 1.32 | 28.38 | 29.70 | OK | |
r-devel-linux-x86_64-fedora-clang | 0.4.6 | 52.54 | OK | --no-stop-on-test-error | ||
r-devel-linux-x86_64-fedora-gcc | 0.4.6 | 51.61 | OK | --no-stop-on-test-error | ||
r-devel-macos-x86_64-clang | 0.4.6 | 43.09 | NOTE | --no-stop-on-test-error | ||
r-devel-windows-ix86+x86_64 | 0.4.6 | 7.00 | 74.00 | 81.00 | OK | |
r-patched-linux-x86_64 | 0.4.6 | 1.15 | 23.99 | 25.14 | OK | |
r-patched-solaris-sparc | 0.4.6 | 290.30 | NOTE | |||
r-patched-solaris-x86 | 0.4.6 | 57.00 | NOTE | |||
r-release-linux-x86_64 | 0.4.6 | 1.41 | 23.88 | 25.30 | OK | |
r-release-osx-x86_64-mavericks | 0.4.6 | NOTE | ||||
r-release-windows-ix86+x86_64 | 0.4.6 | 5.00 | 44.00 | 49.00 | OK | |
r-oldrel-windows-ix86+x86_64 | 0.4.6 | 7.00 | 60.00 | 67.00 | ERROR |
Version: 0.4.6
Flags: --no-stop-on-test-error
Check: package dependencies
Result: NOTE
Package suggested but not available for checking: ‘BRugs’
Flavor: r-devel-macos-x86_64-clang
Version: 0.4.6
Check: package dependencies
Result: NOTE
Package suggested but not available for checking: ‘BRugs’
Flavors: r-patched-solaris-sparc, r-patched-solaris-x86, r-release-osx-x86_64-mavericks
Version: 0.4.6
Check: examples
Result: ERROR
Running examples in 'bcrm-Ex.R' failed
The error most likely occurred in:
> ### Name: bcrm
> ### Title: Bayesian Continual Reassessment Method for Phase I
> ### Dose-Escalation Trials
> ### Aliases: bcrm
>
> ### ** Examples
>
> ## Dose-escalation cancer trial example as described in Neuenschwander et al 2008.
> ## Pre-defined doses
> dose<-c(1,2.5,5,10,15,20,25,30,40,50,75,100,150,200,250)
> ## Pre-specified probabilities of toxicity
> ## [dose levels 11-15 not specified in the paper, and are for illustration only]
> p.tox0<-c(0.010,0.015,0.020,0.025,0.030,0.040,0.050,0.100,0.170,0.300,0.400,0.500,0.650
+ ,0.800,0.900)
> ## Data from the first 5 cohorts of 18 patients
> data<-data.frame(patient=1:18,dose=rep(c(1:4,7),c(3,4,5,4,2)),tox=rep(0:1,c(16,2)))
> ## Target toxicity level
> target.tox<-0.30
>
> ## A 1-parameter power model is used, with standardised doses calculated using
> ## the plug-in prior median
> ## Prior for alpha is lognormal with mean 0 (on log scale)
> ## and standard deviation 1.34 (on log scale)
> ## The recommended dose for the next cohort if posterior mean is used
> Power.LN.bcrm<-bcrm(stop=list(nmax=18),data=data,p.tox0=p.tox0,dose=dose
+ ,ff="power",prior.alpha=list(3,0,1.34^2),target.tox=target.tox,constrain=FALSE
+ ,sdose.calculate="median",pointest="mean")
Stopping: Reached maximum sample size
> print(Power.LN.bcrm)
Estimation method: exact
Model: 1-parameter power
Prior: Lognormal( Mean:0, Variance:1.7956)
Standardised doses (skeleton):
1 2.5 5 10 15 20 25 30 40 50 75 100 150
0.010 0.015 0.020 0.025 0.030 0.040 0.050 0.100 0.170 0.300 0.400 0.500 0.650
200 250
0.800 0.900
Unmodified (unconstrained) CRM used
Posterior mean estimate of probability of toxicity used to select next dose
Toxicities observed:
Doses
1 2.5 5 10 15 20 25 30 40 50 75 100 150 200 250
n 3 4 5 4 0 0 2 0 0 0 0 0 0 0 0
Toxicities 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
Posterior estimates of toxicity:
Doses
1 2.5 5 10 15 20 25 30 40 50
Mean 0.0702 0.0866 0.1010 0.1130 0.1250 0.1460 0.1650 0.244 0.333 0.467
SD 0.0558 0.0630 0.0686 0.0731 0.0769 0.0831 0.0879 0.102 0.109 0.108
Median 0.0561 0.0723 0.0865 0.0995 0.1110 0.1330 0.1530 0.237 0.330 0.471
Doses
75 100 150 200 250
Mean 0.5580 0.641 0.757 0.8650 0.9330
SD 0.0996 0.088 0.066 0.0398 0.0205
Median 0.5640 0.648 0.764 0.8700 0.9360
Doses
Quantiles 1 2.5 5 10 15 20 25 30 40 50
2.5% 0.00493 0.00787 0.0110 0.0142 0.0175 0.0244 0.0316 0.0702 0.130 0.249
25% 0.02860 0.03910 0.0488 0.0579 0.0667 0.0833 0.0990 0.1690 0.255 0.395
50% 0.05610 0.07230 0.0865 0.0995 0.1110 0.1330 0.1530 0.2370 0.330 0.471
75% 0.09710 0.11900 0.1380 0.1540 0.1690 0.1960 0.2190 0.3120 0.408 0.544
97.5% 0.21300 0.24400 0.2690 0.2900 0.3080 0.3400 0.3660 0.4620 0.552 0.668
Doses
Quantiles 75 100 150 200 250
2.5% 0.347 0.450 0.608 0.773 0.886
25% 0.493 0.586 0.717 0.842 0.922
50% 0.564 0.648 0.764 0.870 0.936
75% 0.629 0.704 0.804 0.893 0.948
97.5% 0.735 0.792 0.865 0.928 0.965
Next recommended dose: 40
> plot(Power.LN.bcrm)
>
> ## Simulate 10 replicate trials of size 36 (cohort size 3) using this design
> ## with constraint (i.e. no dose-skipping) and starting at lowest dose
> ## True probabilities of toxicity are set to pre-specified probabilities (p.tox0)
> Power.LN.bcrm.sim<-bcrm(stop=list(nmax=36),p.tox0=p.tox0,dose=dose,ff="power"
+ ,prior.alpha=list(3,0,1.34^2),target.tox=target.tox,constrain=TRUE
+ ,sdose.calculate="median",pointest="mean",start=1,simulate=TRUE,nsims=10,truep=p.tox0)
1
2
3
4
5
6
7
8
9
10
> print(Power.LN.bcrm.sim)
Operating characteristics based on 10 simulations:
Sample size 36
Doses
1 2.5 5 10 15 20 25
Experimentation proportion 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833
Recommendation proportion 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Doses
30 40 50 75 100 150 200 250
Experimentation proportion 0.0833 0.108 0.133 0.075 0.0167 0 0 0
Recommendation proportion 0.0000 0.100 0.500 0.200 0.2000 0 0 0
Probability of DLT
[0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]
Experimentation proportion 0.775 0.208 0.0167 0 0
Recommendation proportion 0.100 0.700 0.2000 0 0
> plot(Power.LN.bcrm.sim)
Warning: Ignoring unknown aesthetics: bw
>
> ## Comparing this CRM design with the standard 3+3 design
> ## (only considering the first 12 dose levels)
> ## Not run:
> ##D Power.LN.bcrm.compare.sim<-bcrm(stop=list(nmax=36),p.tox0=p.tox0[1:12],dose=dose[1:12]
> ##D ,ff="power",prior.alpha=list(3,0,1.34^2),target.tox=target.tox,constrain=TRUE
> ##D ,sdose.calculate="median",pointest="mean",start=1,simulate=TRUE,nsims=50
> ##D ,truep=p.tox0[1:12],threep3=TRUE)
> ##D print(Power.LN.bcrm.compare.sim,threep3=TRUE)
> ##D plot(Power.LN.bcrm.compare.sim,threep3=TRUE)
> ## End(Not run)
>
> ## A 2-parameter model, using priors as specified in Neuenschwander et al 2008.
> ## Posterior mean used to choose the next dose
> ## Standardised doses using reference dose, 250mg
> sdose<-log(dose/250)
> ## Bivariate lognormal prior for two parameters
> mu<-c(2.15,0.52)
> Sigma<-rbind(c(0.84^2,0.134),c(0.134,0.80^2))
> ## Using rjags (requires JAGS to be installed)
> TwoPLogistic.mean.bcrm<-bcrm(stop=list(nmax=18),data=data,sdose=sdose
+ ,dose=dose,ff="logit2",prior.alpha=list(4,mu,Sigma),target.tox=target.tox
+ ,constrain=FALSE,pointest="mean",method="rjags")
Error: .onLoad failed in loadNamespace() for 'rjags', details:
call: fun(libname, pkgname)
error: The environment variable JAGS_HOME is set to
c:/Program Files/JAGS/JAGS-4.0.0
but no JAGS installation can be found there
Execution halted
Flavor: r-oldrel-windows-ix86+x86_64