
DiffusionRgqd: An R Package for Performing
Inference and Analysis on Time-Inhomogeneous

Quadratic Diffusion Processes

Etienne A.D. Pienaar
University of Cape Town

Melvin M. Varughese
University of Cape Town

Abstract

Diffusion processes are useful tools for quantifying the dynamics of real world processes.
By formulating a model in terms of a stochastic differential equation it is possible to gain
insight into the dynamics of continuously evolving processes from discretely sampled trajec-
tories using a compact set of equations. As such, diffusion models are extremely flexible and
have found application in numerous fields of science. Perhaps one of the principle limitations
in the use of diffusion models is the relatively sparse ecosystem of models with analytically
tractable dynamics. As such, analysis has often focused on linear, time-homogeneous models.
In this paper, we introduce the DiffusionRgqd package: A collection of tools for performing
inference and analysis on scalar and bivariate time-inhomogeneous diffusion processes with
quadratic drift and diffusion terms in R. The package focuses on likelihood based inference
and model selection for discretely observed diffusion processes, and analysis based on quan-
tities such as the transitional density and first passage time densities for scalar diffusion
processes. We illustrate various features of the package by analysing a number of non-linear
diffusion processes and performing inference on various diffusion models of a real-world
dataset.

Keywords: stochastic differential equation, diffusion process, R, first passage time density, C++.

1. Introduction

Stochastic calculus has been used in numerous scientific disciplines to characterize the dynamics
of stochastic systems. Diffusion processes can be seen as continuous time dynamical systems that
incur both deterministic and random fluctuations. Indeed, diffusion processes can be interpreted
as the stochastic counterparts to systems of ordinary differential equations (ODEs) that are so
ubiquitous in the sciences. As such diffusion processes provide a means of modelling both the
local behaviour (at small time scales) and global dynamics (on large time scales) of a process
using a single system of equations, whilst simultaneously accounting for random deviations in
the process trajectory. Although the analysis of diffusion processes have centred around diffusion
models with analytically tractable dynamics, such models often fall short in describing real-world
processes with more complex underlying behaviour driven by non-linear spatial and/or time
dependencies. Indeed, the problem of performing inference on non-linear diffusion processes
has led to the development of many innovative strategies for extracting model parameters from
discretely observed time series. Although these algorithms lend access to wide array of diffusion
models, the mathematics that underpin these methods can be daunting and often require a good
understanding of technical material from outside the discipline of pure statistics or the context
of the desired application. As such the use of these strategies have been limited to fields like
mathematical finance and physics that exhibit some theoretical overlap with stochastic calculus.
Whilst the application of non-linear diffusion models has propagated in recent years, the growth

2 DiffusionRgqd

has been somewhat stunted by the computational complexity of existing methodologies – at
least from the perspective of researchers in non-statistical or mathematical fields. Consequently
demand has arisen for software that makes non-linear diffusion models more accessible in less
mathematically focused sciences. In response to this demand we have endeavoured to develop a
series of packages for the ubiquitous statistical software language, R (R Core Team 2015), that
aims to collate methods for performing inference and analysis on diffusion processes.
Currently, there are a number of excellent R-packages for the analysis of diffusion processes.
Although there are some overlapping points of interest, these packages cover a number of topics.
For example, the Sim.DiffProc (Boukhetala, Guidoum et al. 2011; Guidoum and Boukhetala 2015)
provides a comprehensive list of advanced routines for the simulation of scalar and multivariate
diffusion processes in both Itô and Stratonovich form. This includes the simulation of bridge-
processes and first passage times. In addition, Sim.DiffProc also provides useful routines for
fitting diffusion models using speudo-likelihood methods based on small time approximations of
the transition density. Another package that covers the simulation and estimation of diffusion
models is the sde (Iacus 2015) package (see also Iacus (2009)). In addition to providing built-in
functions for the evaluation of transitional densities of well known analytically tractable diffusion
models, the package covers (among others, some of which overlap with the Sim.DiffProc package)
Hermite series approximations to the likelihood, as well as non-parametric techniques for the
estimation of the drift and diffusion coefficients. Packages that cover more specific topics are
also available: For example, the fptdApprox (Román-Román, Serrano-Pérez, and Torres-Ruiz
2014) covers advanced techniques for numerically evaluating the first passage time density for
diffusions with analytically tractable transition densities. There are also a number of packages
with minor relation to diffusion processes such as the fOptions (Team, Wuertz, Setz, and Chalabi
2015), RQuantLib (Eddelbuettel and Nguyen 2015), and NMOF (Gilli, Maringer, and Schumann
2011) packages, which touch on various financial applications of stochastic differential equations
and well known diffusion models.
In the present paper we develop the DiffusionRgqd (Pienaar and Varughese 2015) package – a
collection of tools for performing inference and analysis on a class of quadratic diffusion processes.
The routines are centred around a computationally efficient numerical method for calculating
accurate approximations to the transitional density of polynomial diffusion processes. By using
dynamic algorithm construction techniques, these routines construct solutions tailored to the
model specification without requiring any mathematical input from the user over and above the
model definition. As such we are able to optimize the computational efficiency of routines in the
package whilst providing minimal constraints on the model specification within the applicable
class of diffusions. By separating the user from the underlying mathematical technicalities, the
package provides access to a suitably general class of diffusions whilst demanding only basic
programming skills and a graduate level understanding of likelihood based inference procedures.
For the R package developed in the present paper we focus on two problems: Firstly, we develop
modules for performing likelihood inference on scalar and bivariate quadratic diffusion models
for discretely observed time-series. Secondly, we develop modules for computing the first passage
time density of a scalar diffusion transiting through a fixed barrier.
The paper is organised as follows: Section 2 introduces some theoretical concepts relating to
diffusion processes that are relevant to the methodology of the paper. In Section 3 we introduce
the modelling interface and outline the methodology that underpins the the package. This
is achieved by defining a suitably general class of quadratic diffusion processes that can be
easily communicated in the software environment. Subsequently, in Section 4 we develop the
mathematical underpinnings of the package based on a computationally efficient method for
calculating the transition density of a diffusion process. Section 5 focuses on the mechanical
aspects of routines in the package wherein we outline how mathematical redundancies are
combined with the C++ language in order to maximize computational efficiency of the package
within R. Section 6 gives an outline the routines contained package and their primary functions.

Etienne A.D. Pienaar, Melvin M. Varughese 3

Section 7 illustrates the capabilities of the package via practical examples and – where applicable
– comparisons to existing packages. Finally, in Section 8 we give some concluding remarks to the
paper.

2. Diffusion processes
Diffusion processes are defined as continuous-time continuous-state Markov processes, governed
by stochastic differential equations (SDEs). The dynamics of a k-dimensional diffusion process
Xt = {X1

t , X
2
t , . . . , X

k
t }′ is given by the SDE:

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt, (1)

where µ(Xt, t) = (µi(Xt, t))i=1,2,...,k is the k-dimensional drift vector of the process and σ(Xt, t) =
(σi,j(Xt, t))i,j=1,2,...,k gives the k × k diffusion matrix of the process. The system in Equation 1
is driven by a k-dimensional vector of independent Brownian motions Bt = {B1

t , B
2
t , . . . , B

k
t }′

with the fundamental properties:

• for all j = 1, . . . , k, Bj
0 = 0,

• non-overlapping increments Bj
t −Bj

s with s < t are independent and

• Bj
t −Bj

s ∼ N(0, t− s) where N(0, φ) is the Normal distribution with standard deviation√
φ and mean 0.

Furthermore, define Γ(Xt, t) = σ(Xt, t)σ′(Xt, t) = (γi,j(Xt, t))i,j=1,2,...,k then we have:

lim
t↓s

E
[
X

(i)
t −X

(i)
s |X(i)

s
]

t− s
= µi(Xt, t), i = 1, 2, . . . , k (2)

and

lim
t↓s

E
[
(X(i)

t −X
(i)
s)(X(j)

t −X
(j)
s)|X(i)

s
]

t− s
= γi,j(Xt, t), i, j = 1, 2, . . . , k (3)

where γi,j(Xt, t) = ∑k
n=1 σi,n(Xt, t)σj,n(Xt, t).

A pivotal quantity in the analysis of diffusion processes is the transition probability density
function. The transitional density, f(Xt|Xs), of the process moving from state Xs at time s to
state Xt at time t, is given by the Kolmogorov forward equation (Aït-Sahalia et al. 2008):

∂f(Xt|Xs)
∂t

= −
k∑
i=1

∂

∂X
(i)
t

[
µi(Xt, t)f(Xt|Xs)

]
+ 1

2

k∑
i=1

k∑
j=1

∂2

∂X
(i)
t ∂X

(j)
t

[
γi,j(Xt, t)f(Xt|Xs)

]
,

(4)
with the initial condition – that is the transitional density when t ↓ s – given by the multivariate
Dirac delta function f(x|Xs) = δ(x−Xs) where

δ(y) =
{
∞ if y = 0,
0 otherwise.

(5)

The intuition behind Equation 4 is that the transition density at time s starts from an infinite point
mass at the initial condition Xs (since this point is occupied with certainty) and subsequently
propagates mass over the state space as time increases. The behaviour of this probability flow is
dictated by the drift and diffusion differential terms on the right hand side of Equation 4. When
the drift and/or diffusion terms are time dependent the probability current in the state space
may increase, contract or oscillate with time. For example, Figure 1 illustrates the evolution

4 DiffusionRgqd

Figure 1: The approximate transitional density of a scalar diffusion process with drift µ(Xt, t) =
2(10+sin(2π(t−0.5))−Xt) and diffusion σ(Xt, t) =

√
0.25(1 + 0.75 sin(4πt))Xt with initial value

X1 = 8. This surface was generated using the GQD.density() function in the DiffusionRgqd
package.

of the transitional density of a time-inhomogeneous scalar diffusion model, whereby both the
drift and diffusion terms are sinusoidal. The solution of Equation 4 thus gives the probabilistic
evolution of Equation 1 and forms the starting point of probability based analysis of a given
diffusion process.
Although partial differential equations (PDEs) with singular initial conditions such as Equation 4
present various difficulties from a computational perspective, the notion of a continuously
evolving probability density function means that diffusion models can capture the dynamics of
continuously evolving real-world phenomena in a very natural way. Although analytical solutions
to Equation 4 can rarely be found, excellent methods for calculating analytical approximations
of the transition density do exist. For example, Aït-Sahalia et al. (2008) derive accurate
short-horizon approximations to Equation 4 based on a Hermite series that can accommodate
non-linearities in the drift and diffusion of the model. Huang (2011) applies Wagner-Platen
expansions (see Platen (1999)) to the conditional moments of a target diffusion which can then
be plugged into a surrogate density in order to yield a short-transition horizon approximation to
the transition density. In order to push beyond the threshold of short-horizon approximations
one has to resort to numerical methods. However, although numerical schemes such as the
Crank-Nicolson method (Crank and Nicolson 1996) or the method of lines (MOL) (Hamdi,
Schiesser, and Griffiths 2007) can be used to solve Equation 4 directly, the computational burden
of such schemes may magnify significantly in the present context. This follows since calculating
quantities of interest such as the likelihood for a discretely observed trajectory relies on numerous
evaluations of the transitional density, possibly over varying time-scales. In combination these
methods produce desirable results for a wide variety of non-linear diffusions, however, the aim of
the present paper is to develop software that can handle inference at sample resolutions that
may be too sparse for analytical short-horizon expansions whilst still remaining computationally
feasible in a non-parallel computing environment. As such we adopt the cumulant truncation

Etienne A.D. Pienaar, Melvin M. Varughese 5

t

λtXs

s TXs↑λt

Figure 2: First passage time TXs↑λt of a scalar diffusion (solid blue), starting in state Xs, to
crossing a time-varying barrier (solid black).

procedure developed by Varughese (2013), whereby the transition density can be approximated
accurately and efficiently over arbitrarily large transition horizons for a suitably general class of
non-linear diffusion models.
For purposes of inference we shall assume that the drift and diffusion terms - and consequently
the transitional density - are dependent on a vector of parameters, θ. When a finite number
of data points of the continuous process Xt is observed at discrete time epochs {t1, t2, . . . , tN},
resulting in the set of observations {Xti : i = 1, . . . , N}, the Markov property of the diffusion Xt

can be used in order to represent the likelihood as a product of the transitional densities of the
process (Aït-Sahalia et al. 2008):

L(θ|{Xti : i = 1, . . . , N}) ∝
N−1∏
i=1

f(Xti+1 |Xti). (6)

Thus, by approximating the transition density for a given diffusion model and plugging it into
Equation 6, we may estimate the parameter vector θ using standard likelihood-based inference
techniques.
Although most of the literature on diffusion processes are concerned with inferring dynamics
from discretely observed trajectories, the application of diffusion models extend far beyond
formulating a compact description of the dynamics of a given process. Often the objective of an
analysis is to gain insight into the behaviour of events contingent on the trajectory of the process
rather than the trajectory of the process itself. In a predictive context, one may be interested in
the probability of a particular event occurring by a given time in the future. As such, a quantity
that has been explored at length throughout the history of diffusion processes is the distribution
of the time elapsed until the diffusion crosses a predefined threshold. The distribution of the
first passage time

TXs↑λt = inf{t > s : Xt > λt} (7)

of a scalar diffusion process Xt crossing a barrier λt is given by the first kind Volterra equation

f(λt|Xs) =
∫ t

s
f(λt|λu)g(λu|Xs)du, (8)

where g(λt|Xs) denotes the first passage time density evaluated at time t. Figure 2 illustrates
the problem graphically.
Again, difficulties arise when attempting to solve first passage time problems analytically. It is
clear from Equation 8 that these difficulties stem from both the intractability of the transition

6 DiffusionRgqd

density f(Xt|Xs) and the encapsulating integral equation. Even when the transition density is
available analytically, solutions to Equation 8 are not guaranteed to exist. As such, the analysis
of first passage time problems has been limited to problems with features that aid the calculation
of analytical solutions. Consequently, when first passage time densities are used in practice,
researchers often have to resort to using diffusions with analytically tractable first passage time
densities. In such cases, both the dynamics of the process and the shape of the barrier are
dictated a priori to conducting the analysis. However, by combining theoretical modifications
of Equation 8 and numerical techniques for the evaluation of the resulting equation with the
transitional density approximation under the cumulant truncation procedure, we may calculate
first passage time densities for a class of non-linear diffusions transiting through time dependent
barriers.

3. Generalised quadratic diffusions
A common problem that arises when developing mathematical software is designing a mechanism
for translating the abstract lexical structures of mathematics into usable syntax for the program-
ming environment. Traversing this language barrier has become a science in itself, resulting
in numerous schools of thought on what constitutes optimal interface mechanics. Indeed, in
statistical fields such as generalised linear modelling, a very natural structural interface has
evolved in the underlying mathematics that has been emulated in software design, with models
being defined syntactically in much the same way as the written language. Although research
papers on diffusion processes usually reiterate some mathematical grammar like the ubiquitous
shorthand for SDEs (see for example Equation 1), a unified framework for specifying a diffusion
model in the context of inference is less established. This is due in part to the diversity of
methods and the classes of diffusions to which they apply. These classes are often defined by
precluding assumptions such as time-homogeneity and/or reducibility. In the absence of such
universally accepted ‘language’ we have adopted a simple design suitable for the methodology
we have chosen whereby the analysis is constrained to diffusions that have, at most, second order
polynomial terms in the drift and diffusion coefficients of the model process. We term these the
generalised quadratic diffusions (GQDs) which are characterized by the SDEs

dXt = [g0(t) + g1(t)Xt + g2(t)X2
t]dt+

√
q0(t) + q1(t)Xt + q2(t)X2

t dBt (9)

and

d

[
Xt

Yt

]
=
[∑

i+j≤2 aij(t)Xi
tY

j
t∑

i+j≤2 bij(t)Xi
tY

j
t

]
dt+

[
σ11(Xt, Yt, t) σ12(Xt, Yt, t)
σ21(Xt, Yt, t) σ22(Xt, Yt, t)

]
d

[
B1
t

B2
t

]
(10)

with

σ(Xt, Yt, t)σ′(Xt, Yt, t) =
[∑

i+j≤2 cij(t)Xi
tY

j
t

∑
i+j≤2 dij(t)Xi

tY
j
t∑

i+j≤2 eij(t)Xi
tY

j
t

∑
i+j≤2 fij(t)Xi

tY
j
t

]
, (11)

for the scalar and bivariate case respectively. For both scalar and bivariate GQDs the indices
of the coefficients are formulated to reflect powers of the diffusion process in the model, thus
providing a grammatical link between the coefficients and variables contained in the model.
Within this framework, a model can thus be specified simply by including the desired coefficients
of the relevant GQD. For example, a time-inhomogeneous stochastic volatility model with SDE

d

[
Xt

Yt

]
=
[

θ1(θ2 −Xt)
θ4(θ5 + θ6 sin(2πt)− Yt)

]
dt+

[
θ2

3Yt 0
0 θ2

7Yt

]1/2

d

[
B1
t

B2
t

]
, (12)

can easily be be identified within the GQD framework by matching the coefficients of terms in

Etienne A.D. Pienaar, Melvin M. Varughese 7

the target model to the those in the general model:

a00(t) = θ1θ2

a10(t) = −θ1

b00(t) = θ4(θ5 + θ6 sin(2πt))
b01(t) = −θ4

c01(t) = θ2
3

f01(t) = θ2
7.

(13)

In R, the lexical structure of equations 9 and 10 can then easily be replicated by defining
functions with names that reflect those of the coefficients of the target model. For example,
using coefficients in Equation 13:

R> # Assign values to the parameter vector:
R> theta <- c(1,5,1,0.2,1,1,0.2)
R>
R> # Define the model:
R> a00 <- function(t){theta[1] * theta[2]}
R> a10 <- function(t){-theta[1]}
R> c01 <- function(t){theta[3] * theta[3]}
R> b00 <- function(t){theta[4] * (theta[5] + theta[6] * sin(2 * pi * t))}
R> b01 <- function(t){-theta[4]}
R> f01 <- function(t){theta[7] * theta[7]}
R>
R> # Now call some function from the DiffusionRgqd package:
R> BiGQD.density(Xs, Ys, Xt, Yt, s, t, delt)

By replicating this framework in the syntax of the DiffusionRgqd package, one can easily define
and distinguish between various models in a single workspace by using the subscripts of the
coefficients as visual cues for the model specification as opposed to having to identify models
based on long expressions for the drift and diffusion terms. Indeed, given that we have allowed
the models to have arbitrary time dependences, such expressions would most likely run over
multiple lines making them somewhat illegible. Interface considerations aside, placing constraints
on the spatial complexity of the models circumvents a number of mathematical subtleties that
arise when attempting to approximate the transitional densities of models with higher order
non-linear drift and diffusion terms. The generalised quadratic framework thus enables us to set
up a modelling ‘sandbox’ wherein robust and accurate numerical approximations of the transition
density can be calculated whilst providing an intuitive interface for the software environment.

4. Approximating the transitional density of a GQD
Varughese (2013) introduces a computationally efficient method to approximate the transitional
density of a diffusion process. The scheme aims to encapsulate information about the trajectory
of the transitional density in a finite system of ordinary differential equations that govern the
evolution of the cumulants of the process as opposed to dealing with the Kolmogorov equation
directly. Assuming that a sufficient amount of information is contained within these statistics,
we may subsequently obtain accurate approximations of the transitional density by way of a
surrogate density. We begin by outlining the scheme for scalar diffusions and then expand to
the bivariate case.

8 DiffusionRgqd

4.1. Deriving cumulant equations for GQDs

For a scalar diffusion process with SDE

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt, (14)

let M(Xt, t) = E[exp(αXt)] denote the moment generating function (MGF) ofXt. Then it can
be shown that M(x, t) satisfies the partial differential equation:

∂

∂t
M(α, t) = αµ

(
∂

∂α
, t

)
M(α, t) + 1

2α
2σ2

(
∂

∂α
, t

)
M(α, t), (15)

where µ(∂
∂α , t) and σ2(∂

∂α , t) are differential operators on M(α, t). That is, when µ(Xt, t) and
σ2(Xt, t) contain integer powers of Xt we may find a PDE for the MGF in terms of derivatives
with respect to α. For example, let µ(x, t) = A+Bx+ Cx2 and σ2(x, t) = D2 then:

∂

∂t
M(α, t) = α

[
A+B

∂

∂α
+ C

∂2

∂α2

]
M(α, t) + 1

2α
2D2M(α, t). (16)

Now, let uj(t) = E(Xj
t) and

M(α, t) =
∞∑
j=0

αjuj(t)
j! . (17)

Then we may easily derive a system of ODEs for the non-central moments of a diffusion process
by plugging Equation 17 into Equation 16 and equating the α coefficients on the LHS and RHS
of the resulting equations. In our example problem we would arrive at the system:

∂

∂t
uj(t) = j(A+Buj(t) + Cuj+1(t)) +D2 j(j − 1)

2 uj−2(t)1j≥2, ∀j ≥ 1; (18)

where 1A = Ind(A). Note however that Equation 18 implies that an infinite dimensional
system of non-central moments are required in order for the system to be determinate. The
dimensionality of the system is caused by the inclusion of the quadratic term in the drift. That
is, in order to evaluate the j-th non-central moment, we require knowledge of the trajectory of
the (j + 1)-th and subsequent non-central moments. Thus, when we look at a finite set, say
the first m, non-central moments of a non-linear polynomial diffusion we observe a substantial
amount of leakage of information into the higher-order moments. In order to deal with this
leakage we may alternatively consider the behaviour of the cumulants of such diffusion processes.
Let

K(α, t) =
∞∑
j=1

αjκj(t)
j! (19)

be the CGF where κj(t) denotes the j-th cumulant of the process at time t. The cumulants
κj(t) are then defined in relation to the non-central moments by:

∞∑
j=1

αjκj(t)
j! = log

(
1 +

∞∑
j=1

αjuj(t)
j!

)
. (20)

By making use of the relationship between the MGF and the cumulant generating function
(CGF):

1
M(α, t)

∂M(α, t)
∂v

= ∂K(α, t)
∂v

(21)

and the recursive relation

1
M

(
∂(r+1)M

∂v(r+1)

)
=
[
∂K

∂v

][1
M

(
∂(r)M

∂v(r)

)]
+ ∂

∂v

[1
M

(
∂(r)M

∂v(r)

)]
(22)

Etienne A.D. Pienaar, Melvin M. Varughese 9

for r = 1, 2, . . ., we may derive a similar system of ODEs for the cumulants of a diffusion process.
That is, by dividing both sides of Equation 15 by M(α, t) we may use Equation 22 in order
to derive a PDE for the cumulant generating function. Thus for scalar GQDs with drift and
diffusion coefficients {gi(t) : i = 0, 1, 2} and {qi(t) : i = 0, 1, 2} respectively, we have:

∂

∂t
K(α, t) = α

2∑
i=0

gi(t)
1
M

(
∂(i)M

∂u(i)

)
+ 1

2α
2

2∑
i=0

qi(t)
1
M

(
∂(i)M

∂u(i)

)
, (23)

where the terms 1
M (∂(i)M

∂u(i)) may be expressed in terms of K(α, t) via equations 21 and 22.
Then by replacing K(α, t) by the m-th order truncated series

K(m)(α, t) ≈
m∑
j=1

αjκj(t)
j! , (24)

plugging the relevant derivatives of Equation 24 into Equation 23 and equating coefficients on
the LHS and RHS, one can derive an m-dimensional system ODEs that describe the approximate
evolution of the cumulants {κj(t) : j = 1, ...,m; t > s} over time. For scalar GQDs we may derive
a closed form expression for the system of ODEs that govern the evolution of the cumulants. For
a m-th order truncation of a scalar GQD the ODEs that govern the evolution of the truncated
cumulants is given by the system:

∂

∂t
κj(t) =g0(t)1j=1

+ g1(t)jκj(t)

+ g2(t)
(
jκj+1(t) +

j∑
r=1

r

(
j

r

)
κr(t)κj−r+1(t)

)
+ q0(t)1j=2

+ q1(t)j(j − 1)
2 κj−1(t)1j≥2

+ q2(t)
(
j(j − 1)

2 κj(t) + j

2

j−1∑
r=1

r

(
j − 1
r

)
κr(t)κj−1−r+1(t)

)
1j≥2,

(25)

with initial conditions κ1(s) = Xs and κj(s) = 0 ∀j > 1. The initial conditions follow from the
fact that, at time s, the state Xs is occupied with certainty, hence the first moment of the process
reflects this position and the zero-valued higher order moments reflect the absolute certainty.
The advantage of this route is twofold: Firstly, we can manage the ‘leakage’ that occurs in the
cumulants by assuming that cumulants above a certain order negligible and subsequently set
them equal to zero - an assumption that is valid for diffusions of the quadratic class assumed in
the present paper. Secondly, the non-central moments usually assume values that are orders of
magnitude larger than the cumulants, which may lead to instabilities under numerical evaluation.
Consider now a bivariate diffusion process with SDE:

d

[
Xt

Yt

]
=
[
µ1(Xt, Yt, t)
µ2(Xt, Yt, t)

]
dt+

[
σ1,1(Xt, Yt, t) σ1,2(Xt, Yt, t)
σ2,1(Xt, Yt, t) σ2,2(Xt, Yt, t)

]
d

[
B1
t

B2
t

]
. (26)

By imposing the drift and diffusion structure of Equation 10 the corresponding PDE for the

10 DiffusionRgqd

bivariate MGF, M2(Xt, Yt, t) = E[exp(αXt + βYt)], becomes:

∂

∂t
M2(α, β, t) =

[
α
∑
i+j≤2

aij(t)
∂i

∂αi
∂j

∂βj
+ β

∑
i+j≤2

bij(t)
∂i

∂αi
∂j

∂βj

]
M2(α, β, t)

+ 1
2

[
α2 ∑

i+j≤2
cij(t)

∂i

∂αi
∂j

∂βj
+ αβ

∑
i+j≤2

dij(t)
∂i

∂αi
∂j

∂βj

+ αβ
∑
i+j≤2

eij(t)
∂i

∂αi
∂j

∂βj
+ β2 ∑

i+j≤2
fij(t)

∂i

∂αi
∂j

∂βj

]
M2(α, β, t).

(27)

By applying the cumulant truncation procedure to the bivariate GQD we can derive in similar
fashion a general expression for the system of ODEs that govern the evolution of the cumulants,
truncated up to an arbitrary order m. That is by assuming that κij(t) = 0 ∀ i+ j > m the
truncated CGF is given by:

K
(m)
2 (α, β, t) =

∑
i+j≤m

αiβj

i!j! κij(t). (28)

Now define the retention operator, Jvwij that operates on α and β:

Jvwij α
rβs = 1r+v=i,s+w=j . (29)

Furthermore, let

Lxy =
m∑
i=0

m∑
j=0

αi−xβj−yixjy/(i!j!)κij(t) (30)

where ix = i(i − 1) . . . (i − x + 1) and jy = j(j − 1) . . . (j − y + 1), Θ = {a, b, c, d, e, f}′ and
define a set of multi-indexes λ = {(00), (10), (20), (01), (02), (11)}′. Let the subscript q denote
the q-th entry of the vectors λ and Θ. Then the system of ODEs that govern the evolution of
the cumulants of Equation 10 is given by:

∂

∂t
κij(t) =

∑
q

J
λq
ij [(Θq)001λq + (Θq)10L10 + (Θq)01L01 + (Θq)02[L11 − L10L01]

+ (Θq)20[L20 − L10L10] + (Θq)02[L02 − L01L01],
(31)

with initial conditions κ10(s) = Xs, κ01(s) = Ys and κij(s) = 0 otherwise. As in the scalar
case, the initial conditions for the cumulant equations reflects the fact that the position of the
process at the starting coordinate (Xs, Ys) is known. Consequently, all second order and higher
cumulants have initial conditions equal to zero.

4.2. Surrogate densities
By applying the cumulant truncation procedure to SDEs of the generalised quadratic form we
may accurately approximate the evolution of the cumulants over arbitrarily large time horizons.
However, in order to approximate the transitional density at any given point in the support of
the process, we need to carry these cumulants into a probability density function. If the first
two or three cumulants contain sufficient information about the probabilistic evolution of the
process, standard densities such as the Normal or Gamma distribution may be used. However, for
diffusion processes it often occurs that higher order cumulants are indeed informational. As such
we employ a number of density approximations suitable for carrying higher order cumulants into
the approximate transitional density. One such approach is to use the saddlepoint approximation.
For scalar GQDs under truncation order m, the univariate saddlepoint approximation is given
by:

f̃
(m)
sdl (xt|Xs) = 1√

2π ∂2K(m)

∂α2 (α0, t)
exp

(
K(m)(α0, t)− α0xt

)
, (32)

Etienne A.D. Pienaar, Melvin M. Varughese 11

where α0 solves
∂K(m)

∂α
(α, t) = xt. (33)

As an alternative to the saddlepoint approximation we may employ suitable members of the
multimodal Pearson system developed by Cobb, Koppstein, and Chen (1983). The system consists
of a set of kernel functions that depend on a predetermined number of non-central moments.
These kernels serve to extend four principal classes of density, namely the Normal, Gamma,
Inverse Gamma and Beta distributions. In addition, each distribution class is characterized by a
system of equations which relate the non-central moments to the parameters of each respective
kernel. Thus, given a finite set of non-central moments we may evaluate any density nested
within the system by calculating the kernel parameters and plugging them into a the appropriate
kernel expression. In the present context we may thus, in similar fashion to the saddlepoint
approximation, calculate the transitional density based on the trajectories of the non-central
moments of a given diffusion. Formally, given an even number of m non-central moments
{ui(t) : i = 1 : m}, we re-iterate the expressions of Cobb et al. (1983) under the notation of the
present paper:
Let

A =

1 u1(t) . . . um/2(t)

u1(t) u2(t) . . . um/2+1(t)
...

...
um/2(t) um/2+1(t) . . . um(t)

 , (34)

and β = {β1, β2, . . . , βm/2+1}.
Then the multimodal Normal class is given by:

f̃
(m)
N (xt|Xs) ∝ exp

(
−
m/2+1∑
i=1

βix
i
t/i

)
∀ xt ∈ (−∞,∞), (35)

where β = Av and v = {vi = (i− 1)ui−2(t) : i = 1, ...,m/2 + 1}′.
The multimodal Gamma class is given by

f̃
(m)
G (xt|Xs) ∝ x−β1

t exp
(
−
m/2+1∑
i=2

βix
i−1
t /(i− 1)

)
∀ xt ∈ [0,∞), (36)

where β = Av and v = {vi = iui−1(t) : i = 1, ...,m/2 + 1}′.
The multimodal Inverse Gamma class is given by

f̃
(m)
IG (xt|Xs) ∝ x−β2

t exp
(
−β1/xt −

m/2+1∑
i=3

βix
i−2
t /(i− 2)

)
∀ xt ∈ [0,∞), (37)

where β = Av and v = {vi = (i+ 1)ui(t) : i = 1, ...,m/2 + 1}′.
The multimodal Beta class is given by

f̃
(m)
B (xt|Xs) ∝ x−β1

t (1− x)−
∑m/2+1

i=1 βi exp
(
−
m/2−1∑
i=1

(m/2∑
j=i+1

βj
)
xi/i

)
∀ xt ∈ [0, 1], (38)

where β = Av and v = {vi = iui−1(t) − (i + 1)ui(t) : i = 1, ...,m/2 + 1}′. By applying the
cumulant truncation procedure we may recover the approximate trajectories of the non-central
moments through the well known relation:

u1(t) = κ1(t),

ui(t) = κi(t) +
i−1∑
j=1

(
i− 1
j − 1

)
κj(t)ui−j(t) ∀i = 2, . . . ,m.

(39)

12 DiffusionRgqd

Subsequently, by plugging the ui(t) into any of the above densities we may approximate the
transitional density of a scalar GQD.
For bivariate GQDs under an (even) m-th order truncation, the saddlepoint approximation
(Renshaw 2000) is given by:

f̃
(m)
sdl ({xt, yt}|{Xs, Ys}) =

exp
(
K

(m)
2 (α0, β0)− α0xt − β0yt

)
2π
√

∂2K
(m)
2

∂α2
∂2K

(m)
2

∂β2 −
(∂K(m)

2
∂α∂β

)2 , (40)

for

K
(m)
2 (α, β) = ακ10(t) + α2

2 κ20(t) + α3

6 κ30(t) + α4

24κ40(t) + . . .+ αm

m! κm0(t)

+ βκ01(t) + β2

2 κ02(t) + β3

6 κ03(t) + β4

24κ04(t) + . . .+ αm

m! κ0m(t)

+ αβκ11(t) + α2β

2 κ21(t) + αβ2

2 κ12(t) + . . .+ αm/2βm/2

(m/2)!)2 κ((m/2)(m/2)(t) + . . .

+ αm−1β

(m− 1)!κ(m−1)1(t) + αβm−1

(m− 1)!κ1(m−1)(t),

(41)
where α0 and β0 solves the system:

∂K
(m)
2
∂α

(α, β) = xt,

∂K
(m)
2
∂β

(α, β) = yt.

(42)

Since Equation 42 requires numerical evaluation, it is possible in certain circumstances that
numerical instabilities arise when using the bivariate saddlepoint approximation. For this reason
we include, as an alternative to the bivariate saddlepoint approximation, the bivariate Edgeworth
expansion (Barndorff-Nielsen and Cox 1979): Let f̃N ({xt, yt}|{Xs, Ys}) denote the bivariate
Normal distribution

f̃N ({xt, yt}|{Xs, Ys}) =
1

2π
√
κ20κ02(1− ρ2

11)
exp

(
− (xt − κ10)2

2κ20(1− ρ2
11) + 2ρ11(xt − κ10)(yt − κ01)

2√κ20κ02(1− ρ2
11) − (y − κ01)2

2κ02(1− ρ2
11)

)
,

(43)

Hi(u) the i-th scalar Hermite polynomial (see Andrews, Askey, and Roy (1999))

Hi(u) = (−1)ie
u2
2
∂i

∂ui
e−

u2
2 (44)

with H0(u) = 1 and ρij = κij√
κi20κ

j
02
. Then the fourth-order bivariate Edgeworth expansion for

the transitional density is given by:

f̃edg({xt, yt}|{Xs, Ys}) = f̃N ({xt, yt}|{Xs, Ys})×
(

1 + 1
6A(ẋt, ẏt) + 1

24B(ẋt, ẏt) + 1
72C(ẋt, ẏt))

)
(45)

where ẋt = (xt − κ10)/√κ20, ẏt = (yt − κ01)/√κ02 and the terms A, B and C are given by:

A(u, v) = H3(u)ρ30 + 3H2(u)H1(v)ρ21 + 3H1(u)H2(v)ρ12 +H3(v)ρ03,

B(u, v) = H4(u)ρ40 + 4H3(u)H1(v)ρ31 + 6H2(u)H2(v)ρ22 + 4H1(u)H3(v)ρ13 +H4(v)ρ04,
(46)

Etienne A.D. Pienaar, Melvin M. Varughese 13

and

C(u, v) = H6(u)ρ2
30 + 6H5(u)H1(v)ρ21ρ30 + 6H4(u)H2(v)ρ12ρ30 + 2H3(u)H3(v)ρ03ρ30

+ 9H4(u)H2(v)ρ2
21 + 18H3(u)H3(v)ρ21ρ12 + 6H2(u)H4(v)ρ21ρ03 + 9H2(u)H4(v)ρ2

12

+ 6H1(u)H5(v)ρ12ρ03 +H1(u)H6(v)ρ2
03.

(47)
We end off with some remarks on the cumulant truncation procedure as applied to GQDs. Due
to the inter-dependence between the cumulants according to the systems in equations 25 and
31 one requires a sufficiently large truncation order (m) in order for the systems to accurately
replicate the time-evolution of a given diffusion process’ cumulants. That is, unless it happens
that the transitional density turns out to be Normal - in which case a second order truncation
(m = 2) will describe the cumulants exactly – a sufficient number of higher order cumulants
need to be included in the cumulant system in order for the cumulant trajectories to be accurate.
Fortunately under the GQD framework, truncation orders of m = 4 produce sufficiently accurate
approximations for use in practical applications for both scalar and bivariate GQDs. Furthermore,
we find that the saddlepoint approximations perform well as surrogate densities and prove to be
quite reliable. Thus, as a default, we recommend using a 4-th order truncation in conjunction
with the corresponding saddlepoint approximation in order to approximate the transitional
density of a GQD. For scalar GQDs where the saddlepoint approximation breaks down, for
example when the dynamics of the diffusion dictate that the diffusion has finite support, one
may employ an appropriate member of the multimodal Pearson system of densities or Normal
distribution. Likewise should the saddlepoint approximation break down for whatever reason in
the bivariate case, we provide the option of selecting either the bivariate Edgeworth expansion
or bivariate Normal distribution. Although we fix the maximum truncation order for bivariate
GQDs to m = 4, the DiffusionRgqd package supports cumulant and density truncations for even
orders up to and including m = 8 for scalar GQDs.

4.3. Approximating the first passage time density of a scalar GQD

It is well known that the distribution for the first passage time of a scalar diffusion process
starting in Xs transiting through a constant threshold λt = φ is given by the solution to the
Volterra integral equation of the first kind:

f(λt|Xs) =
∫ t

s
f(λt|λu)g(λu|Xs)du. (48)

where g(λt|Xs) denotes the first passage time density at time t.
Unfortunately, even when f(Xt|Xs) is known, Equation 48 may not be analytically tractable. By
applying a Euler approximation to Equation 48 one may derive an iterative updating equation
as follows: Split the time domain into N + 1 equispaced time nodes t0 = s, t1 = s+ ∆, . . . , tN =
s+N∆ and set g(λt1 |Xt0) = f(λt1 |Xt0). Then for i = 2, . . . , N evaluate:

g(λti |Xt0) = f(λti |Xs)−
∑i
k=0 f(λti |λtk)g(λtk |Xt0)∆
f(λti |λti−1)∆ . (49)

However, due to the singular integrand of Equation 48 at s (Ricciardi and Sacerdote 1979),
numerical solutions such as Equation 49 may be subject to systematic error. Although these
singularities occur at an infinitesimal scale, the effects are not inconsequential on a finite scale
(i.e., under discritisation of the time domain). In order to deal with this, Buonocore, Nobile, and
Ricciardi (1987) developed an alternative integral equation wherein the kernel of the integral
equation can be modified in order to remove the singularities prior to the calculation of the
first passage time density. The second kind Volterra integral equation for the first passage time

14 DiffusionRgqd

density under Buonocore et al. (1987) is given by:

g(λt|Xs) = 2ψ(λt|Xs)− 2
∫ t

s
g(λv|Xs)ψ(λt|λv)dv (50)

for Xs < Bs, where

ψ(xt|yt) = ∂

∂t
F (xt|yt) + k(t)f(xt|ys) + r(t)[1− F (xt|ys)]. (51)

and k(t) and r(t) are chosen in such a way so as to ensure ‘regularity’ of the kernel. It is important
to make the distinction that this revised integral equation not only deals with the irregularity
of the kernel but also permits the barrier λt to be time dependent (note the assumption that
λt = φ for all t in Equation 48). Although the revised equation rather elegantly circumvents
the drawbacks of Equation 8, it does introduce some minor mathematical complications. Note
that ψ(xt|ys) depends on both the transition p.d.f. and c.d.f. of Xt. In order to make the
revised equation usable within the practical confines of a software package, we circumvent both
integration of the p.d.f., i.e., remove F (xt|ys), and find a systematic way of choosing r(t) and k(t).
Fortunately the literature provides us with a solution to both problems: Note that Equation 51
can be related to the probability current

c(xt|ys) = [µ(Xt, t)− σ(xt, t)σ′(xt, t)]f(xt|ys)−
1
2σ

2(xt, t)f ′(xt|ys) (52)

where σ′(xt, t) = ∂
∂uσ(u, t)|u=xt and f ′(xt, t) = ∂

∂uf(u, t)|u=xt . This expression may then be
simplified further by observing that

∂

∂t
f(xt|ys) = − ∂

∂xt
c(xt|ys) (53)

and thus
∂

∂t
F (xt|ys) = −c(xt|ys). (54)

Consequently, one may simplify Equation 51 by removing the derivative of the cumulative density
function:

ψ(xt|ys) = −c(xt|ys) + k(t)f(xt|ys) + r(t)[1− F (xt|ys)]. (55)

Then, following corollary 1 in Jáimez, Román, and Ruiz (1995): Set

r(t) = 0 (56)

and
k(t) = 1

2

[
µ(λt, t)−

∂

∂t
λt −

1
2σ(λt, t)σ′(λt, t)

]
. (57)

Subsequently Equation 55 may be evaluated in terms of the transition probability density
function and its first derivative alone

ψ(xt|xs) = −
[1

2µ(xt, t)−
1
2
∂

∂t
λt −

3
4σ(xt, t)σ′(xt, t)

]
f(xt|xs) + 1

2σ
2(xt, t)f ′(xt|xs), (58)

thus avoiding the need to evaluate F (xt|ys) whilst ensuring regularity of the kernel of Equation 50.
Since (50) is still not analytically tractable Buonocore et al. (1987) gives the discretised counter-
part to the revised second kind Volterra equation in the form of the iterative updating equation:

g̃(λti |Xt0) = −2ψ(λti |Xt0) +
i−1∑
k=0

2ψ(λti |λtk)g̃(λtk |Xt0)∆, (59)

Etienne A.D. Pienaar, Melvin M. Varughese 15

for i = 2, . . . , N where again t0 = s, t1 = s+ ∆, . . . , tN = s+N∆.
Given the transitional density of a diffusion process, Equation 59 may then be used to accurately
approximate the first passage time density of a scalar diffusion transiting through a single barrier.
Previously, Varughese and Pienaar (2015) developed an updating equation for evaluating the
first passage time density of time-homogeneous diffusion processes. Specifically, by incorporating
the cumulant truncation procedure in the evaluation of the transitional densities on which the
updating equation relies, it is possible to evaluate first passage times for polynomial diffusion
processes. Similarly, by combining Equation 59 with the cumulant truncation procedure we can
extend the analysis to time-inhomogeneous non-linear diffusions by plugging the appropriate
density approximations into Equation 58 and applying Equation 59. That is let f̃ (m)

sdl (xt|xs)
and f̃ ′(m)

sdl (xt|xs) denote the density approximation and its first derivative under the cumulant
truncation procedure. Then the revised probability current under an m-th order truncation may
be approximated by:

ψ̃(m)(xt|xs) = −
[1

2µ(xt, t)−
1
2
∂

∂t
λt−

3
4σ(xt, t)σ′(xt, t)

]
f̃

(m)
sdl (xt|xs)+

1
2σ

2(xt, t)f̃ ′(m)
sdl (xt|xs). (60)

In order to calculate the revised probability current we require evaluation of the derivative of the
density approximation f̃ (m)

sdl (xt, xs). For example, under the saddlepoint approximation this can
be achieved as follows: Since α0 in Equation 32 depends on xt through Equation 33 it follows
that:

∂

∂xt
α0 =

(m∑
i=2

αi−2
0

(i− 2)!κi(t)
)−1

. (61)

Furthermore, let α′0 = ∂
∂xt

α0 then the first derivative of the saddlepoint approximation can be
verified as:

f̃
′(m)
sdl (xt|xs) =

[
− 1

2∂2K(m)

∂α2 (α0, t)

(m∑
i=3

αi−3
0 α′0

(i− 3)!κi(t)
)

+
(m∑
i=3

αi−3
0 α′0

(i− 3)!κi(t)− α
′
0xt − α0

)]
× f̃ (m)

sdl (xt|xs).

(62)
Thus, using Equation 62 in conjunction with equations 60 and 59 we can numerically evaluate
the first passage time density of scalar GQDs transiting through time dependent barriers.
For the initial version of the DiffusionRgqd package, first passage time densities are calculated
using m = 4 in conjunction with the saddlepoint approximation. Furthermore, first passage
time calculations for time-homogeneous and time-inhomogeneous are carried out using separate
routines. This is done so as to take advantage of computational redundancies that manifest
in the time-homogeneous case, meaning that computations can be carried out with greater
efficiency than for time-inhomogeneous first passage time problems.

5. Building computationally optimized solutions in R with C++
Although the cumulant truncation procedure provides a computationally efficient means of
approximating the transition density of a non-linear diffusion, the application thereof in the
context of likelihood inference may be computationally demanding if not coded efficiently. In
general, given N observations of a process, a single evaluation of the likelihood demandsN − 1
approximations of the transitional density. This overhead is magnified when evaluations of
the likelihood are made iteratively in MCMC procedures and/or when transition densities are
approximated over relatively large time-horizons. For example, when evaluating the likelihood
of 500 observations of a bivariate process for 100 000 iterations of an MCMC we are required
to numerically solve (thus incurring further iteration) a multidimensional, non-linear system of
ODEs 499× 100000 times - a tedious task even under ideal computing conditions. Thus care
needs to be taken when setting up code within interpretive languages such as R.

16 DiffusionRgqd

Given that inference procedures within the DiffusionRgqd package will be applied to datasets of
varying complexity (i.e., size, time dependence, linearity etc.) we are prompted to maximize
the computational efficiency of relevant routines. As the first step in improving computational
efficiency we circumvent the interpretive overhead of theR language by making use of the C++
language which may be interfaced with the R environment through the Rcpp package (Eddel-
buettel and François 2011; Eddelbuettel 2013). This is further facilitated by the RcppArmadillo
package (Eddelbuettel and Sanderson 2014) - a linear algebra library written for use with the
C++ language in R. By combining the C++ language with the RcppArmadillo libraries we can
efficiently manipulate large matrices, thus making it possible to vectorise all numerical elements
of the cumulant truncation procedure within the C++ language.
A natural consequence of adopting the GQD framework is that various forms of mathematical
redundancies surface that may be exploited for further computational gains. As mentioned
in Section 4.1, depending on the coefficients that are included or excluded for a given GQD,
components of the cumulant truncation procedure may be simplified in order to avoid unnecessary
calculations. For example, when a model has redundant higher order cumulants, the dimension
of the cumulant system from equations 25 or 31 may be reduced. Where the analysis permits a
second order truncation the Normal distribution may be used in place of the saddlepoint approx-
imation. Furthermore when the data is of homogeneous resolution (equispaced observations)
we circumvent the need to keep track of each transition horizon individually. Within the GQD
framework we may identify these redundancies prior to conducting the analysis and adapt a
given routine accordingly. We emulate this in the GQD package source code by identifying
reducible components from coefficients supplied by the user in real time and subsequently stitch
together an optimal solution from predefined blocks of code.
Consider for example applying the cumulant truncation procedure to the bivariate GQD. By
checking which of the 36 coefficients are included in the model specification we can identify a
optimum algorithmic solution. When the dimensions of the process are independent one of four
outcomes are possible: Either both dimensions are normally distributed, the Xt dimension is
normally distributed and the Yt dimension is non-normal, vice versa or both are non-normal.
Normality of either dimension can be established by checking whether the coefficients of non-
linear terms in the drift or diffusion of the relevant dimension are absent. Furthermore since
the cross-cumulants of a bivariate density become redundant when no interaction terms are
included, the dimensions of the cumulant system resulting from Equation 31 can be reduced
to 4,6 or 8 dimensions depending on which of the aforementioned outcomes apply. Finally and
perhaps the most important reducible component for independent dimensions is the fact that
we may evaluate the surrogate density analytically, as opposed to Equation 40 which requires
numerical evaluation of the roots of Equation 42.
Whenever interaction terms are included in the model, one of 2 outcomes are possible: either
the model has a bivariate Normal transition density or not, in which case we employ either the
bivariate saddlepoint approximation or the bivariate Edgeworth expansion. The corresponding
cumulant system is then 5-dimensional if bivariate Normal or 14-dimensional whenever non-linear
terms are included. Thus, for a bivariate Normal density we may evaluate the surrogate density
analytically whilst the bivariate saddlepoint requires an additional layer of numerical overhead.
Figure 3 summarizes how various particular solutions of the cumulant truncation procedure for
the bivariate GQD arise.
As an example of how model specification effects computational complexity and the structure of
a ‘coded’ solution, consider evaluating the likelihood of an SDE:

dXt = θ1(θ2 + θ3 sin(2π(t))−Xt)dt+ θ4
√
XtdB

(1)
t

dYt = θ5Yt(θ6 − Yt)dt+ θ7YtdB
(2)
t .

(63)

By applying the cumulant truncation procedure, we first derive the system of ODEs that govern

Etienne A.D. Pienaar, Melvin M. Varughese 17

Linear diffusion

+ No interaction

Linear diffusion +

Linear interaction

Xt Linear + Yt Non-

linear + No interaction

Xt Non-linear + Yt

Linear + No interaction

Xt Non-linear + Yt Non-

Linear + No interaction

Xt Non-linear +

Yt Non-Linear +

Any interaction

4D ODEs

5D ODEs

6D ODEs

6D ODEs

8D ODEs

14D ODEs

Two 1D Normal dists.

One 2D Normal dist.

1D normal dist

+ 1D fsdl(.).

1D fsdl(.) +

1D Normal dist.

Two 1D fsdl(.)’s.

One 2D fsdl(.)

or 2D Edgeworth.

2nd order trunc.

2nd order trunc.

2nd + 4th order trunc.

4th + 2nd order trunc.

4th + 4th order trunc.

4th order trunc.

Figure 3: Default solution types for various bivariate GQD: Depending on the coefficients of a
given model, the moment equations may become reducible due to redundant dimensions. As
such computational efficieny may be improved in certain cases by evaluating a smaller set of
moment equations as well as a simpler density approximation. Although the dimensions of the
cumulant equations (second column) are always determined by the diffusion, the package does
allow one to override the type of density approximation used manually should the need arise.

the evolution of the cumulants. Following Figure 3 we apply a 4-th order truncation on each
dimension which results in the cumulant system:

κ′10(t) = θ1(θ2 + θ3 sin(2πt))− θ1κ10(t)
κ′20(t) = −θ12κ20(t) + θ2

4κ10(t)
κ′30(t) = −θ13κ30(t) + θ2

43κ20(t)
κ′40(t) = −θ14κ40(t) + θ2

46κ30(t)
κ′01(t) = θ5θ6κ01 − θ5(κ01κ01 + 1κ02)
κ′02(t) = θ5θ62κ02 − θ5(4κ02κ01 + 2κ03) + θ2

7(κ02 + κ01κ01)
κ′03(t) = θ5θ63κ03 − θ5(6κ01κ03 + 6κ02κ02 + 3κ04) + θ2

7(3κ03 + 6κ01κ02)
κ′04(t) = θ5θ64κ04 − θ5(8κ01κ04 + 12κ02κ03 + 12κ03κ02) + θ2

7(6κ04 + 12κ01κ03 + 12κ02κ02)
(64)

with initial conditions κ10(s) = xs, κ01(s) = ys and κ.(s) = 0 otherwise.
In order to solve Equation 64 we may employ single-step Runge-Kutta methods: A process
whereby a system of ODEs is evaluated numerically at fixed points over a desired transition
horizon [s, t]. Let

d

dt
κ(t) = h(κ(t), t) (65)

denote the system of cumulant equations for a given diffusion model (i.e., for Equation 63 h(κ(t), t)
is given by the right hand side of Equation 64). Then, subject to the initial condition κ(s) = κ0(s),
we can evaluate the cumulant trajectories at consecutive time points t0 = s, t1, t2, . . . , tM+1 = t
via updating equations of the form:

κn(ti+1) = κ0(ti) +
n−1∑
j=0

cjh(κj(ti + aj∆), ti + aj∆)∆ (66)

18 DiffusionRgqd

for i = 0, 1, . . .M , with

κj(ti + aj∆) = κ0(ti) +
j−1∑
k=0

bijh(κk(ti + ak∆), ti + ak∆)∆ (67)

for j = 1, 2, . . . , n− 1, a., b.. and c. all real valued and integer n. The order of the approximation
and its accuracy depend on both n (the number of stages used during a single update) and
the values chosen for the coefficients a., b.. and c.. For introductory material on Runge-Kutta
methods see for example Butcher (2007) or Atkinson (2008). For purposes of the DiffusionRgqd
package we employ either a 4(5)-th order Runge-Kutta method using the coefficients of the
so-called Runge-Kutta-Fehlberg method (Fehlberg 1970), or the 8(10)-th order Runge-Kutta
scheme of Feagin (2007) where the term in brackets indicates the embedded order used in order
to evaluate the local truncation error estimate. Note that in the case of the 4(5) method we
use the 4-th order result in order to update the approximation and in the case of the 8(10)
method we use the 10-th order result. Throughout the package we opt to use fixed step sizes,
say t0 = s, t1 = s+ ∆, ..., ti = s+ i∆, ..., t−∆, t with ∆ = (t− s)/M , as opposed to adaptive
step sizes. In addition to providing more control over the quality of the approximate cumulant
systems within a given application we find that fixed step-size schemes are significantly less
prone to breaking down in comparison to adaptive step sizes.
As the final step in evaluating the likelihood we need to evaluate the transitional density.
Note that since both dimensions are non-linear and no interaction terms are present we may
approximate the transitional density at t by plugging the approximate solution to the cumulants
into the product of two scalar saddlepoint approximations (see Equation 32):

f
(4)
sdl ({xt, yt}|{xs, ys}) =

exp
(
K

(4)
x (α0, t)− α0xt +K

(4)
y (β0, t)− β0yt

)
2π
√

∂2

∂α2K
(4)
x (α0, t) ∂2

∂β2K
(4)
y (β0, t)

, (68)

where
K(4)
x (α, t) = κ10(t)α+ κ20(t)α2

2 + κ30(t)α3

6 + κ40(t)α4

24
(69)

and

α0 = −κ30(t)
κ40(t) +

(
−q2 +

√
C

)1/3
−
(
q

2 +
√
C

)1/3
, (70)

with

p = 1
3

(1
2κ40(t)κ20(t)− 1

4κ30(t)2
)
/

(1
6κ40(t)

)2
,

q = 1
27

(27
36κ40(t)2(κ10(t)− xt)−

3
4κ40(t)κ30(t)κ20(t) + 1

4κ30(t)3
)
/

(1
6κ40(t)

)3
,

C = q2

4 + p3

27

(71)

and β0 can be evaluated similarly for K(4)
y (β, t).

Finally, by combining these elements we can evaluate the log-likelihood of Equation 63 numerically
for any number of transitions. Now, altering the model only slightly by for example including
an interaction term, say θ8XtYt in the drift of Xt, would result in a much more complex
solution, which in turn would require similarly more complex code. As such, for any given
model we would have to go through the same process as above in order to identify the most
computationally efficient solution. This remains true for the scalar case as well. For example,
depending on what density and truncation order that is used, various approximations to the

Etienne A.D. Pienaar, Melvin M. Varughese 19

likelihood may be constructed. As such we have developed the DiffusionRgqd package so as
to identify the most efficient algorithm for a given model specification. From this a solution is
constructed in C++ code which can then be compiled by the sourceCpp() function from the
Rcpp package, which may subsequently be called as a function in the R environment. Thus, by
delegating computationally expensive parts of the cumulant truncation procedure to C++ we
can significantly speed up likelihood whilst managing the algorithms that employ the likelihood
equations using R. In this way we are able to construct computationally efficient routines for
performing inference and analysis on diffusion processes nested within the generalised quadratic
framework.

6. The DiffusionRgqd package

6.1. Outline of the package

DiffusionRgqd consists of a set of functions that allow the user to perform inference and analysis
on generalised quadratic diffusions. The main routines that appear in the package are (main
functions that do not use C++ are indicated with an asterisk):

BiGQD.density*: Calculate the transition density of a bivariate GQD with time inhomo-
geneous coefficients over a specified time interval.

BiGQD.mcmc : Use an MCMC algorithm to draw parameters of a bivariate GQD model
with time-inhomogeneous coefficients.

BiGQD.mle : Calculate maximum likelihood estimates for the parameters of a bivariate
GQD model with time-inhomogeneous coefficients.

GQD.density* : Calculate the transition density of a scalar GQD with time-inhomogeneous
coefficients over a specified time interval.

GQD.mcmc : Use an MCMC algorithm to draw the parameters of a scalar GQD model with
time-inhomogeneous coefficients.

GQD.mle : Calculate maximum likelihood estimates for the parameters of a GQD model
with time-inhomogeneous coefficients.

GQD.passage : Approximate the first passage time density of a time-homogeneous GQD
to a fixed boundary.

GQD.TIpassage : Approximate the first passage time density of a GQD with time-
inhomogeneous coefficients to a fixed boundary.

In addition to the main routines, some supporting functions have been created to make the
package more user friendly. These include:

GQD.remove : Removes the coefficients of an existing GQD model from the current
workspace.

BiGQD.dic : Summarizes DIC values from a list of GQD.mcmc and BiGQD.mcmc objects.

BiGQD.aic : Summarizes AIC values from a list of GQD.mle and BiGQD.mle objects.

GQD.plot : Plot routines for various classes of objects in the DiffusionRgqd package.

20 DiffusionRgqd

6.2. GQD.mcmc() details

Before commencing with concrete examples of the package we detail some of the input parameters
and how they relate to the theory developed in sections 4.1 and 4.3 by focusing on the GQD.mcmc()
function. GQD.mcmc() is perhaps the most involved function in the package with respect to
input, however most of the parametric input of GQD.mcmc() is shared by other routines in the
package. The function call consists of (see usage in the package help files):
GQD.mcmc(X, time, mesh, theta, sds,...)

The input parameters for GQD.mcmc() are

X:
A vector containing discretely observed data points of a time series to be modelled.

time:
A vector containing the time points at which the observations in X were made. Although
time values are restricted to be numeric e.g., 0, 0.1, 0.2, . . ., dates can easily be converted to
numerical values prior to input using the standard as.Date functions in R. It is important
to distinguish the unit of measurement used relative to the time signature e.g., monthly
data using a yearly unit interval may result in a time signature seq(0, 1, by = 1/12)
for each unit of time.

mesh:
mesh gives number of updates used in the evaluation of the chosen Runge-Kutta scheme
(see equations 66 and 67) for all transition horizons. The number of updates imply the time
discritization of each transition horizon. Each transition horizon time[i + 1]-time[i] is
subdivided into mesh subintervals, i.e., mesh + 1 mesh points, over which the cumulant
equations are evaluated numerically. Note that the same number of points are used
regardless of the individual magnitudes of time[i + 1] - time[i]. Thus if the data are
not equispaced, mesh should be chosen so as to be large enough to ensure a sufficiently
fine mesh on the maximal transition horizon max(diff(time)).

theta:
The parameter vector of the process. The values given for the vector theta are used as the
starting values for parameter chains generated using a Random Walk Metropolis Hastings
scheme (RWMH). Note that the estimation routines in DiffusionRgqd use C++. Thus, in
order to ensure the syntactical compatibility with the underlying C++ code, theta is used
as a reserved name for parameters in the coefficient functions. As such any unrecognised
variables will result in the execution of the algorithm being halted. In any event, where
needed, routines will conduct a number of basic syntax checks in order to guide the user
in the right direction.

sds:
Proposal distribution standard deviations under the RWMH scheme. That is, for the i-th
parameter the proposal distribution is Normal(..., sds[i] * sds[i]).

updates:
The number of MCMC updates/iterations to perform (including burn-in).

burns:
The number of MCMC updates/iterations to burn/discard. When calculating parameter
estimates this value may be changed externally.

Etienne A.D. Pienaar, Melvin M. Varughese 21

Trunc:
A vector indicating the truncation order to be used on the cumulant equations and the
density approximation respectively. Possible values arec(4, 4), c(6, 4), c(8, 4), c(6,
6), c(8,6) and c(8, 8). This follows since the number of coordinates in the cumulant
equations (Equation 25) preclude those in the corresponding density approximations.

Dtype:
The density approximation to be used. Possible values are ’Saddlepoint’, ’Normal’,
’Gamma’, ’InvGamma’ and ’Beta’ corresponding to the saddlepoint approximation (Equa-
tion 32) and the respective classes of the Pearson system (equations 35, 36, 37 and
38).

P:
The number of mesh points used in the normalization of the Pearson system (see Appendix
A).

alpha:
A ‘spread’ parameter controlling mesh spacing used in the normalization of the Pearson
system (see Appendix A).

lower, upper:
Upper and lower bounds used in the normalization of the Pearson system (see Appendix
A).

plot.chain:
If = TRUE (default), a trace plot of the MCMC chain will be made along with a trace of
the acceptance rate.

Tag:
A text tag that can be assigned to a given model for easy identification when calling
summary functions such as GQD.dic().

7. Example applications
In the examples that follow we demonstrate how DiffusionRgqd package is used in practice.
The package can be found on GitHub at https://github.com/eta21 and CRAN at https:
//cran.r-project.org/package=DiffusionRgqd. Full scripts and replication materials for
the examples shown here can be found within the package vignettes by running the command:
browseVignettes("DiffusionRgqd").

7.1. Generate the transition density of a time-inhomogeneous GQD

As an introductory example to the DiffusionRgqd package we approximate the transitional
density of a scalar diffusion over an arbitrarily chosen transition horizon. This can be achieved
using the GQD.density() function. GQD.density() generates the transitional density of a
GQD for a given initial value using the cumulant truncation procedure outlined in Section
4.1. The function serves as a good starting point for any analysis being conducted using the
DiffusionRgqd package as it allows one to check whether a proposed model does not exhibit
nonsensical dynamics with respect to the problem at hand. Perhaps more importantly, it can be
used to check the validity of the density approximation and/or an appropriate truncation order
for the cumulants.

https://github.com/eta21
https://cran.r-project.org/package=DiffusionRgqd
https://cran.r-project.org/package=DiffusionRgqd

22 DiffusionRgqd

Consider a Cox-Ingersoll-Ross (CIR) (Cox, Ingersoll, and Ross 1985) process with time-dependent
coefficients:

dXt = 2(10 + sin(2π(t− 0.5))−Xt)dt+
√

0.25(1 + 0.75 sin(4πt))XtdBt. (72)

In order to analyse Equation 72 in R we need to define the model within the workspace. Since
DiffusionRgqd uses a functional input interface which relies on declaring the functional form of
a given model’s coefficients, we need to make sure that the workspace doesn’t contain any object
names that might clash with those of the model coefficients. We can do this by simply running
the GQD.remove() command:

R> library("DiffusionRgqd")
R> GQD.remove()

[1] "Removed : NA "

If any objects are recognized with names that may clash with names reserved for use with the
GQD.density() function they will subsequently be removed. In this case we used a vanilla R
session so the function will simply indicate that no clashes were detected and removed. The
purpose of the GQD.remove() function is to act as a model-eraser in situations where multiple
models are being defined in a single R session. The next step is to write Equation 72 in terms of
its coefficients. We can define Equation 72 in the current R session by declaring the coefficient
functions:

R> G0 <- function(t){2 * (10 + sin(2 * pi * (t - 0.5)))}
R> G1 <- function(t){-2}
R> Q1 <- function(t){0.25 * (1 + 0.75 * (sin(4 * pi * t)))}

The functions G0, G1 and Q1 together constitute the R-language counterpart of Equation 72
under the framework of Section 3. Note that for scalar GQDs we have capitalized the coefficient
names given in Section 3 in order to avoid the possibility of calling q() accidentally, in which
case the R console will prompt to quit.
In order to approximate the transitional density using the methodology of Section 4.1 we need to
define the peripheral parameters of the problem. This consists of giving the initial condition of
the SDE (the starting value of the diffusion), the starting time of the diffusion and the geometry
of the transitional horizon, i.e., spatial values where the density is to be evaluated and the
corresponding time mesh. These elements can be defined by assigning values to the arguments
of GQD.density(): Xs, Xt, s, t, and delt. Respectively, these parameters represent the initial
value, the values at which to evaluate the transition density, the starting time, the final time
and the step size for the time mesh. That is, for a diffusion process starting at time s in state
Xs, the transition density is approximated at times s + delt, s + 2delt ... upto and including
t at all values of the vector Xt. In R:

R> states <- seq(5, 15, 1/10)
R> initial <- 8
R> Tmax <- 5
R> Tstart <- 1
R> increment <- 0.01
R>
R> M <- GQD.density(Xs = initial, Xt = states, s = Tstart, t = Tmax,
+ delt = increment)

Etienne A.D. Pienaar, Melvin M. Varughese 23

GQD.density() creates a list containing a matrix of density values, spatial coordinates at which
the density was evaluated, corresponding time coordinates for the time mesh and finally a
matrix of trajectories for the cumulants and moments that were used in evaluating the density
approximation. In this case we have assigned the output to an object called M for further use in
the workspace. Since the density approximation is evaluated over a space-time lattice it can
best be visualized with a perspective plot. For example, using the rgl package (Adler, Murdoch
et al. 2014):

R> library("rgl")
R> open3d(windowRect = c(50, 50, 690, 690), zoom = 0.95)
R> persp3d(x = M$Xt,y = M$time,z = M$density, col = 'white', box = F,
+ xlab = 'State (X_t)', ylab = 'Time(t)',zlab = 'Density f(X_t|X_s)')

we can recreate the surface in Figure 1. Alternatively, one can simply use GQD.plot(M) in order
to visualize a given density approximation in a similar way.
Note that we have not directly specified what truncation order to be used in the calculation
of the density approximation. As mentioned in Section 4.2, the default is to use a 4-th order
truncation in conjunction with a 4-th order truncated saddlepoint approximation. In most cases
it suffices to use the default settings although, as will be shown in the following example, little
effort is required to extend the analysis to higher order truncations and/or alternate density
approximations. Although this example operates well within the limits of the capabilities of the
methodology it serves to illustrate the simplicity of the interface of the DiffusionRgqd package -
often producing desired results in less than 10 lines of code with minimal mathematical input.

7.2. Time-inhomogeneous Jacobi diffusion: A scalar diffusion with finite sup-
port

Although most practical applications of diffusion processes result in the use of diffusions with
uni-modal transitional densities it is still possible to conceive of a diffusion within the GQD
framework that exhibits atypical dynamics. For example, a particularly interesting phenomena
occurs when considering GQDs for which the diffusion term is of the form:

σ(Xt, t) = c
√
Xt(1−Xt). (73)

Assuming the process starts within the interval [0, 1], whenever the diffusion approaches the
bounds 0 or 1, the dynamics of the process is dominated by the behaviour of the drift function,
µ(Xt, t). Provided ∂/∂xµ(x, t)|x=0 > 0 and ∂/∂xµ(x, t)|x=1 < 0 ∀t are sufficiently large, the
process will reflect from the boundaries and remain within the interval [0, 1]. A special case of this
behaviour can be seen with the so-called Jacobi diffusion (Gouriéroux and Valéry 2004), whereby
µ(Xt, t) is linear in Xt. For purposes of the illustration we shall assume a time-inhomogeneous
Jacobi diffusion:

dXt = a(b(1 + 0.25 sin(πt))−Xt)dt+ c
√
Xt(1−Xt)dBt, (74)

with X0, b ∈ [0, 1] and a > 0. The diffusion exhibits oscillating drift dynamics whereby the
process is pulled towards a point fluctuating between 0.75b and 1.25b. If and when the trajectory
of the process hits 0 or 1 it is reflected toward the interior of the domain. By applying the
cumulant truncation procedure to Equation 74 we approximate the evolution of the cumulants
for various orders of truncation under the Beta-type density from the multimodal Pearson system
(Equation 38). This may be achieved in R using the code:

24 DiffusionRgqd

R> GQD.remove()
R> a <- 0.5; b <- 0.6; cc <- 1; X0 <- 0.5;
R>
R> G0 <- function(t){a * (b * (1 + 0.25 * sin(pi * t)))}
R> G1 <- function(t){-a}
R> Q1 <- function(t){cc}
R> Q2 <- function(t){-cc}
R>
R> states <- seq(0.001, 0.999, 0.001)
R> res1 <- GQD.density(X0, states, 0, 2, 0.01, Dtype='Beta', Trunc=c(4, 4))
R> res2 <- GQD.density(X0, states, 0, 2, 0.01, Dtype='Beta', Trunc=c(6, 6))
R> res3 <- GQD.density(X0, states, 0, 2, 0.01, Dtype='Beta', Trunc=c(8, 8))

The objects res1, res2 and res3 now contain the transitional density approximations for
truncation order 4, 6 and 8. The additional parameter Dtype = ’Beta’ sets the density
approximation to Equation 38 while the variable Trunc = c(6, 6) sets the cumulant truncation
(first item in c(6, 6)) to m = 6 (thus evaluating Equation 25 for all i = 1, 2, . . . , 6) whilst
setting m = 6 for Equation 38 (second item in c(6, 6)). Note that we separate the cumulant
truncation order from that of the density in order to allow lower order density truncations under
a given cumulant truncation order, for example Trunc = c(6, 4).
In order to check the accuracy of the approximation we may compare the approximate transition
density to a simulated transition density of the Jacobi diffusion. This can be achieved by
simulating a number of sample paths for Equation 74 and subsequently plotting a histogram of
the resulting trajectories. For a diffusion process with SDE:

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt (75)

we may simulate a trajectory at discrete time points by applying a Euler-Maruyama scheme to
75 and evaluate the resulting difference equation iteratively. That is given an initial value Xt0 ,
we evaluate for all i = 1, 2, . . .:

Xti = Xti−1 + µ(Xti−1 , ti−1)∆ + σ(Xti−1 , ti−1)r∆ (76)

where r∆ ∼ N(0, σ2 = ∆) and ti − ti−1 = ∆. By plugging the drift and diffusion terms of
Equation 74 into this updating equation we may simulate a number of trajectories for the
restricted diffusion. However, since Equation 76 is not exact the simulated paths may actually
exit the [0, 1] region. As such we employ the simple modification that at each iteration Xti is
set to min(max(0, Xti−1 + µ(Xti−1 , ti−1)∆ + σ(Xti−1 , ti−1)r∆), 1). By simulating a large number
of trajectories we can compare each respective density approximation by superimposing the
approximation over a histogram of the simulated trajectories at any given time point. This can
easily be achieved using the code:

R> delt <- 0.001
R> N <- 100000
R> d <- 0
R> X <- rep(X0,N)
R> when <- c(0, 0.25, 0.5, 1, 1.75)
R>
R> for(i in 2:2000)
+ {
+ X <- pmax(pmin(X + (G0(d)+ G1(d) * X) * delt
+ + sqrt(Q1(d) * X + Q2(d) * X^2) * rnorm(length(X), sd = sqrt(delt)),

Etienne A.D. Pienaar, Melvin M. Varughese 25

+ 1), 0)
+
+ d <- d + delt
+ if(any(when == round(d, 3)))
+ {
+ index <- which(res1$time == round(d, 3))
+ hist(X, col = '#F7F7F7', freq = F, breaks = 30,
+ main = paste0('Transitional Density at t = ', round(d, 3)),
+ ylim = c(0, 3))
+ lines(res1$density[, index] ~ res1$Xt, col = '#1B7837', lty = 'dotdash')
+ lines(res2$density[, index] ~ res2$Xt, col = '#D92120', lty = 'solid')
+ lines(res3$density[, index] ~ res3$Xt, col = '#5289C7', lty = 'dashed')
+ }
+ }

The resulting output is given in Figure 4. The figures suggest that the approximation remains
accurate for truncation orders 6 and 8 whilst m = 4 produces less desirable results. Interestingly,
as time progresses it seems that all orders of approximation produce a reasonable approximation
of the transition density. This may be due to the long-run dynamics of the process being
somewhat simpler than in early phases in the transition horizon. Figure 5 shows a perspective
plot of the entire trajectory of the transitional density using the 8-th order truncation. As in the
previous example this can be done by using the GQD.plot() command i.e., GQD.plot(res2).
As is typical for diffusion processes we see that the transitional density starts out as an infinite
point mass and shortly exhibits a normal-like distribution. As time progresses, however, the
density transits into a ‘U-shape’ with oscillating peakedness in conjunction with the sinusoidal
term of the drift function.

7.3. Bivariate non-linear dynamics: The stochastic Lotka-Volterra equations
Although the DiffusionRgqd package allows one to perform comprehensive analysis on scalar
quadratic diffusions, similar analysis can be conducted for interesting bivariate diffusions. A
model that is often used to illustrate non-linear dynamics in the analysis of ODEs is that of the
Lotka-Volterra model. The corresponding ODEs are typically given as:

∂xt
∂t

= axt − bxtyt
∂yt
∂t

= −cyt + dxtyt

(77)

for some positive a, b, c and d. The equations are often used to describe the dynamics of two
interacting populations wherein the population growth rate of the populations are mutually
influenced by the current level of the opposing population. As such the model has been used
to explain oscillatory behaviour in predator-prey relationships (Hoppensteadt 2006) where xt
denotes the prey population and yt the predator population at time t. Continuing with the
predator-prey metaphor, perhaps one deficiency of the model, one might argue, is the absence of
random input and subsequent effects on population levels. Indeed, under the ODE formulation the
predicted population behaviour (given fixed parameters) are completely deterministic. Another
deficiency might be the absence of growth inhibiting factors such as disease or over-grazing. For
these purposes we may define an example of a stochastic counterpart to the Lotka-Volterra
equations as:

dXt = (aXt − bXtYt)dt+ f
√
XtdB

(1)
t

dYt = (−cYt + dXtYt − eY 2
t)dt+ g

√
YtdB

(2)
t

(78)

26 DiffusionRgqd

Transitional Density (t = 0.25)

Xt

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Truncation: (4, 4)
Truncation: (6, 6)
Truncation: (8, 8)

Transitional Density (t = 0.5)

Xt

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Truncation: (4, 4)
Truncation: (6, 6)
Truncation: (8, 8)

Transitional Density (t = 1)

Xt

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Truncation: (4, 4)
Truncation: (6, 6)
Truncation: (8, 8)

Transitional Density (t = 1.75)

Xt

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Truncation: (4, 4)
Truncation: (6, 6)
Truncation: (8, 8)

Figure 4: Histograms of simulated trajectories for Equation 74 and transitional density approxi-
mations for various truncation orders at the indicated times. Truncation orders 6 (light blue)
and 8 (dark blue, dashed) prove accurate while a fourth-order truncation (black, dotted) fails to
reproduce the desired shape for the transitional density at t = 0.5.

Etienne A.D. Pienaar, Melvin M. Varughese 27

Figure 5: Evolution of the transition density of Equation 74 over time using the 8-th order cumu-
lant truncation in conjunction with 8-th order truncated Pearson Beta density (see Equation 38).

The intuition behind the example Equation 78 is that the drift terms replicate Equation 77 but
with the addition of the −eY 2

t term. The additional term represents the effect of overpopulation
for the predator when, for example, harvesting of prey becomes ever more inefficient as the
predator population grows. Furthermore, the population volatilities are assumed to increase
with population size meaning that random fluctuations are less severe when populations are
small and vice versa.
In order to analyse Equation 78, we may consider the evolution of its transitional density. This
can be achieved in similar fashion to the previous examples through the BiGQD.density()
function. For purposes of this example, consider the SDE:

dXt = (1.5Xt − 0.4XtYt)dt+
√

0.05XtdB
(1)
t

dYt = (−1.5Yt + 0.4dXtYt − 0.2Y 2
t)dt+

√
0.1YtdB(2)

t

(79)

with initial values X0 = 5 and Y0 = 5. In R we may generate the transitional density over the
transition horizon t ∈ [0, 10] using the code:

R> GQD.remove()
R> a10 <- function(t){1.5}
R> a11 <- function(t){-0.4}
R> c10 <- function(t){0.05}
R>
R> b01 <- function(t){-1.5}
R> b11 <- function(t){0.4}
R> b02 <- function(t){-0.2}
R> f01 <- function(t){0.1}
R>
R> res <- BiGQD.density(Xs = 5, Ys = 5, Xt = seq(3, 8, length = 50),
+ Yt = seq(2, 6, length = 50), s = 0, t = 10, delt = 0.01)

As in the scalar case, a model is coded by defining the coefficients of the diffusion as functions with
names that reflect the powers of each terms’ Xt and Yt components. As with GQD.density(),

28 DiffusionRgqd

BiGQD.density() approximates the transition density at times s, s + delt ... on a lattice of
grid points given by the user (Xt = seq(3, 8, length = 50) and Xt = seq(2, 6, length =
50)) for a given pair of initial values (Xs = 5,Ys = 5). Since the transition density of a bivariate
diffusion at a fixed time point is given by a surface in three dimensions, BiGQD.density() returns
a three dimensional array wherein the transition density approximation is given as slices of this
array corresponding to each time point s, s+delt etc. We can visualize the evolution of the
transition density over time by making contour plots of the transition density at different time
points. Incidentally the mean trajectory of Equation 78 corresponds exactly to the trajectory of
Equation 77 with the addition of the term −0.2Y 2

t . In order to visualize the evolution of the
transition density we may make use of contour plots evaluated at various points in time. Figure 6
illustrates the evolution of the transition density and compares the predicted expectation of
Equation 79 under the cumulant truncation procedure to the simulated mean trajectory of the
process. The transition density demonstrates is that, in contrast to the deterministic nature of
Equation 77, the inclusion of the Brownian motion terms in Equation 78 implies vastly different
population dynamics: In the deterministic case the trajectories are predicted to move ever closer
to an equilibrium point (attractor), whilst with the stochastic equations it is likely for either
of the two populations to move far away from such an equilibrium point due to the presence
of random fluctuations - even as the expected trajectory stabilizes over time. Thus, where the
deterministic equations may predict both populations to survive with certainty, as is with the
current parameter set, under the stochastic equations both extinction and explosion events are
probable while on average the population coordinates will tend to some equilibrium position as
time increases.

7.4. Maximum likelihood estimation: Stochastic volatility models

Diffusion processes are often used in financial applications to model the trajectories of asset
prices or financial instruments. Although a great deal of literature is dedicated to the fitting
and calibration of well known diffusion models to financial data, less time is spent assessing
how well the dynamics of such models represent that which is observed in a given real-world
dataset. Thus, for the present example we analyse a dataset that is often used to demonstrate
the application of stochastic volatility models in finance, namely the Standard and Poor’s 500
index (SPX)1. Although the term ‘stochastic volatility’ may be used to refer to any model with
randomly varying higher order moments, in the context of diffusion models it usually refers
to the process of treating the volatility terms of a scalar diffusion model as being driven by
a stochastic process itself. Perhaps the most famous stochastic volatility model is the Heston
model (Heston 1993), a bivariate SDE of the form:

dSt = θ1Stdt+ θ2St
√
VtdB

(1)
t

dVt = (θ3 − θ4Vt)dt+ θ5
√
VtdB

(2)
t

(80)

where St denotes the spot price process and Vt denotes the corresponding variance process.
Thus, in the Heston model the spot price is modelled by a geometric Brownian motion with the
addition that the volatility coefficient for the spot price is itself driven by a diffusion process –
in this case, a CIR process. Furthermore, it is assumed that the Brownian motions dB(1)

t and
dB

(2)
t are correlated i.e., corr(B(1)

t , B
(2)
t) = θ6. For the SPX, although data for the spot process

St is readily available, obtaining the trajectory of the volatility process is less trivial. In order to
conduct the analysis we shall assume a suitable proxy for the volatility of the index by making
use if the Chicago Board Options Exchange (CBOE) Market Volatility Index (VIX), which is
based on the implied volatility of options written on the SPX. We source data for the index by
using the Quandl package (Raymond McTaggart and Gergely Daroczi 2015) as follows:

1The corresponding ticker symbols for Google finance and Yahoo finance are INX and ˆGSPC respectively

Etienne A.D. Pienaar, Melvin M. Varughese 29

0

1

2

3

4

5

●

3 4 5 6 7 8

2

3

4

5

6

●

Simulated Expectation
Predicted Expectation

Transition Density (t = 0.1)

Prey

P
re

da
to

r

Figure 6: Coloured contour plots of the transition density at fixed time points t ∈ {0.1, 3, 7.5, 10}.
Superimposed on the simulated mean trajectory, (E(Xt), E(Yt)), of the process (dashed line) is
the predicted expectation under the cumulant truncation procedure (white circle).

Etienne A.D. Pienaar, Melvin M. Varughese 35

0 20 40 60 80 100

0
5

10
15

20
25

30

Simulated Data

Time (t)

S
ta

te

Xt
Yt

Figure 8: Simulated trajectory of Equation 88. TheXt trajectory (light blue) exhibits periodic
increases in state and volatility in conjunction with Yt (dark blue). The trajectory of Yt exhibits
dominating sinusoidal dynamics with little volatility.

from a time-inhomogeneous bivariate GQD with stochastic volatility. For purposes of the
experiment we shall simulate a target SDE:

dXt = (1.0(7.5−Xt) + 1.5Yt)dt+ 0.5
√
XtYtdB

(1)
t

dYt = (1.5(5− Yt) + 3 sin(0.25πt))dt+ 0.25
√
YtdB

(2)
t .

(88)

We simulate Equation 88 by performing Euler-Maruyama updates of the target diffusion and
recording the trajectory at the desired time points. For the current example updates were made
at a resolution of ∆ = 1/2000 after which every 500-th update was recorded for a total of 401
observations, thus resulting in equidistant transition horizons of 1/4 time units. For convenience
we have included a simulated trajectory of the target model in the package’s datasets which
may be called into the workspace in standard fashion using the data() command:

R> data("SDEsim4")
R> attach(SDEsim4)
R> plot(Xt~time, type = 'l', col = 'blue', ylim = c(0, 30),
+ main = 'Simulated Data', xlab = 'Time (t)', ylab = 'State')
R> lines(Yt~time, col = 'red')

Figure 8 shows a plot of the resulting time-series. For purposes of the experiment we shall
fit three competing models of which one is the true data generating process. The competing
models are chosen to have superficially similar dynamics. For brevity we shall assume that we
know from the outset that the process exhibits sinusoidal dynamics with known periodicity.
This is not unrealistic as in practice it is usually clear from the context what the periodicity of
the process is relative to the time scale on which the data were observed. For the first model,
we shall assume sinusoidal time-dependence for the drift of the y-dimension with interaction

36 DiffusionRgqd

occurring only through the diffusion terms:

dXt = (θ1θ2 − θ1Xt)dt+ θ3
√
XtYtdB

(1)
t

dYt = (θ4θ5 − θ4Yt + θ7 sin(0.25πt))dt+ θ6
√
YtdB

(2)
t .

(89)

For the second model we assume that the Xt and Yt trajectories arise independently with the
oscillatory dynamics resulting purely from time-inhomogeneity:

dXt = (θ1θ2 − θ1Xt)dt+
√
θ7(1 + sin(0.25πt)) + θ2

3XtdB
(1)
t

dYt = (θ4θ5 − θ4Yt + θ8 sin(0.25πt))dt+ θ6
√
YtdB

(2)
t .

(90)

Finally, for the third candidate we assume the true model:

dXt = (θ1θ2 − θ1Xt + θ7Yt)dt+ θ3
√
XtYtdB

(1)
t

dYt = (θ4θ5 − θ4Yt + θ8 sin(0.25πt))dt+ θ6
√
YtdB

(2)
t .

(91)

In R we can specify the first candidate model as per the usual GQD syntax:

R> GQD.remove()
R> a00 <- function(t){theta[1] * theta[2]}
R> a10 <- function(t){-theta[1]}
R> c11 <- function(t){theta[3] * theta[3]}
R> b00 <- function(t){theta[4] * theta[5]+theta[7] * sin(0.25 * pi * t)}
R> b01 <- function(t){-theta[4]}
R> f01 <- function(t){theta[6] * theta[6]}

After the model has been specified we may infer parameter estimates using the BiGQD.mcmc()
routine. As outlined in Section 5, BiGQD.mcmc() sets up a computationally efficient likelihood
evaluation routine in C++ code which is subsequently called within a Metropolis-Hastings
algorithm in order to produce sample chain of the model parameters under a given model
specification. The algorithm as implemented by BiGQD.mcmc() follows:

1. Given some starting parameter vectors θp×1 and σθp×1, set θold = θ and

2. propose an update for the parameter vector by setting

θnewi = θoldi + Zσθi
(92)

for all i = 1, 2, . . . p, where Zσθi are N(0, (σθi)2) random deviates.

3. Subsequently, evaluate the ratio:

R =
∏N−1
i=1 fθnew(Xti+1 |Xti)π(θnew)∏N−1
i=1 fθold(Xti+1 |Xti)π(θold)

(93)

where π(θ) denotes a prior density on the parameter vector.

4. Then accept the proposed move with probability min(R, 1). That is set

θold =
{
θnew if min(R, 1) > u

θold otherwise,
(94)

where u is a U(0, 1) random deviate.

Etienne A.D. Pienaar, Melvin M. Varughese 37

5. Return to step 1.

In R, the parameters of the algorithm are passed as arguments to BiGQD.mcmc(). For example,
the starting parameters corresponding to the vector θ may be set using the theta argument,
while the proposal standard deviations σθ may be set using the sds argument. Other arguments
pertaining the density approximation such as the time-mesh step size and density type may
be specified as with BiGQD.mle() in the previous example. The algorithm is then repeated a
specified number of times as per the argument updates.
Apart from the parametric nuances introduced by the Metropolis-Hastings algorithm, another
point that warrants attention is the inclusion of prior densities. For all of the models above we
shall assume prior densities on the parameters θ1 and θ4 with θ1 ∼ N(1, 52) and θ4 ∼ N(1, 52).
These densities can be included in the R environment by defining a function named priors()
(a function name that will be recognized by BiGQD.mcmc() in similar fashion to the model
coefficients) taking the vector theta as an argument. The function body can then be written
as a product of the desired prior densities using standard R density functions such as dnorm(),
dgamma() etc. or any other user defined density function:

R> priors <- function(theta){dnorm(theta[1], 1, 5) * dnorm(theta[4], 1, 5)}

After defining a model and the prior densities to be used in the analysis we can make an initial
run of the M-H algorithm by providing a starting parameter vector, standard deviation vector
for the proposal densities and the number of M-H updates to perform:

R> mesh <- 10
R> updates <- 150000
R> burns <- 50000
R> X <- cbind(Xt, Yt)
R> th <- c(5, 5, 5, 5, 5, 5, 5)
R> par.sds <- c(0.22, 0.30, 0.02, 0.11, 0.04, 0.01, 0.21)
R> m1 <- BiGQD.mcmc(X, time, mesh, th, par.sds, updates, burns)

When the calculations are complete, BiGQD.mcmc() will return a list with the resulting MCMC
chain, the history of acceptance rates and other information pertaining to the model such as
DIC statistics. By default, BiGQD.mcmc() will also make a trace plot of the resulting Markov
chain as illustrated in Figure 9.
If the resulting trace-plot is satisfactory, estimates for the model can be calculated by passing the
model object to the GQD.estimates() function as in the previous example. GQD.estimates()
will recognize the model as MCMC output and calculate parameter estimates by discarding the
first burns iterations and thinning the chain by a specified amount (using the argument thin).
Subsequently, the resulting parameter estimates, 90% credibility intervals and correlation matrix
is printed to the console. For diagnostic purposes an ACF-plot for each element of the parameter
chain is plotted using the same colour-coding as the trace-plot produced by BiGQD.mcmc():

R> GQD.estimates(m1, thin = 200)

Estimate Lower_CI Upper_CI
theta[1] 0.955 0.707 1.218
theta[2] 14.15 13.315 14.981
theta[3] 0.539 0.507 0.574
theta[4] 1.591 1.447 1.74
theta[5] 5 4.938 5.064
theta[6] 0.264 0.25 0.281
theta[7] 3.222 2.97 3.475

38 DiffusionRgqd

Figure 9: A trace plot of the parameter updates for model 89 generated by BiGQD.mcmc(). A
trace plot is drawn for each parameter of the target model in conjunction with rejected proposals
(light gray). The vertical dashed lines indicate the end of the burn in period. In addition, a
trace plot of the acceptance rate of the RWMH algorithm is drawn with guide lines ranging from
0% to 100% in increments of 10% (20% and 40% highlighted in red).

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF: theta[1]
Thin=200, Burns=50000, N=501

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF: theta[2]
Thin=200, Burns=50000, N=501

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF: theta[3]
Thin=200, Burns=50000, N=501

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF: theta[4]
Thin=200, Burns=50000, N=501

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF: theta[5]
Thin=200, Burns=50000, N=501

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF: theta[6]
Thin=200, Burns=50000, N=501

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF: theta[7]
Thin=200, Burns=50000, N=501

Figure 10: Autocorrelation function (ACF) plot for the thinned parameter chain of Equation 89.
The ACF-plot is produced when GQD.estimates() is called.

Etienne A.D. Pienaar, Melvin M. Varughese 39

Should a more detailed analysis of the parameter chains be required, this can easily done
using using packages such as coda (Plummer, Best, Cowles, and Vines 2006) which provide a
comprehensive set of MCMC analysis tools. For example, mcmc.coda <- mcmc(m1$par.matrix)
creates an mcmc object that will be recognized by routines in the coda library.

In order to assess convergence of the MH-algorithm it is standard practice to run multiple chains
from different starting points. Although this is typically achieved by manually running the
MH-algorithm multiple times the practice warrants at least some degree of automation. For
these purposes we have included a fail-over variable in the output of the BiGQD.mcmc() function.
That is should BiGQD.mcmc() fail for any reason, whether it be unrealistic initial values or some
numerical failure, a variable is returned in the output list indicating that failure has occurred.
This variable may thus be monitored within a loop, making it easy to make repeated MCMC
runs automatically. In addition to the fail-over variable we have included a tagging argument
which can be used to mark an instance of a call to BiGQD.mcmc(). In the current example each
model is assigned the tag ‘Model A_run_()’ with the convention that () keeps track of which
run the object pertains to. Using randomly chosen starting points one can perform a number of
MCMC runs and store the output in a list object:

R> M <- 4
R> SaveOutput <- list()
R> M.counter <- 1
R> Tot.counter <- 1
R> kill.count <- 1
R> while((M.counter <= M) & (kill.count < 20))
+ {
+ th <- runif(7, 1, 10)
+ m1 <- BiGQD.mcmc(X, time, mesh, th, par.sds, updates, burns,
+ Tag = paste0('Model_A_run_', M.counter))
+ if(!m1$failed.chain)
+ {
+ SaveOutput[[Tot.counter]] <- m1
+ Tot.counter <- Tot.counter + 1
+ M.counter <- M.counter + 1
+ kill.count <- 1
+ }else
+ {
+ kill.count <- kill.count + 1
+ }
+ }

By repeating this process we can conduct inference on the second and third model as well,
and subsequently fill the SaveOutput list with consecutive MCMC runs for ach model. Once
all the MCMC runs are concluded we may summarise the output via the GQD.dic() function.
GQD.dic() collates DIC statistics and other relevant information from a list of BiGQD.mcmc()
output objects in a concise form. For example, when the routine is applied to the SaveOutput
variable. The minimum DIC model is then indicated by a [=] marker.

R> GQD.dic(SaveOutput)

40 DiffusionRgqd

Elapsed_Time Time_Homogeneous p DIC pD N
Model_A_run_1 00:09:14 No 7.00 1640.18 7.10 401
Model_A_run_2 00:08:49 No 7.00 1640.04 7.04 401
Model_A_run_3 00:08:34 No 7.00 1640.04 7.04 401
Model_A_run_4 00:08:04 No 7.00 1640.11 7.07 401
Model_B_run_1 00:09:42 No 8.00 1649.66 7.86 401
Model_B_run_2 00:09:21 No 8.00 1649.65 7.83 401
Model_B_run_3 00:09:21 No 8.00 1650.00 8.03 401
Model_B_run_4 00:09:21 No 8.00 1650.10 8.07 401
Model_C_run_1 00:08:21 No 8.00 [=] 1618.95 7.78 401
Model_C_run_2 00:08:28 No 8.00 1619.48 8.05 401
Model_C_run_3 00:08:23 No 8.00 1619.64 8.12 401
Model_C_run_4 00:08:34 No 8.00 1619.67 8.14 401

From the DIC calculations the algorithm does indeed narrow down the correct model. Finally,
we can compare the estimated parameters of Equation 91 to the true model parameters by
applying the GQD.estimates() function to the final MCMC run:

R> GQD.estimates(SaveOutput[[12]], 200)

Estimate Lower_CI Upper_CI
theta[1] 1.162 0.885 1.477
theta[2] 6.873 4.176 9.752
theta[3] 0.54 0.507 0.578
theta[4] 1.584 1.434 1.75
theta[5] 4.997 4.94 5.059
theta[6] 0.264 0.247 0.281
theta[7] 1.787 1.124 2.422
theta[8] 3.206 2.958 3.507

Given the relatively low sample resolution of the simulated dataset, the parameter estimates
compare favourably with the true parameter set. Interestingly, the credibility intervals for
the estimates of θ2 and θ7 are quite wide, whilst those for the diffusion parameters θ3 and θ6
are relatively narrow. This suggests that for a diffusion process with dynamics governed by
Equation 88, the current observed trajectory is relatively short, making it difficult to accurately
measure the drift dynamics. Indeed, this is an important practical consideration when conducting
inference on diffusion models: Since one can only partially observe a single trajectory of the
process over a finite horizon, the quality of inference that can be made on any given model is
necessarily dictated by the regularity with which observations are made and the length of the
observation horizon. Thus, for simple models such as Equation 89, there is often more certainty
about what parameter values could have likely resulted in the observed trajectory than for more
complicated models such as equations 90 and 91.

7.6. Scalar first passage time problems

Another useful application of DiffusionRgqd package is the approximation of first passage
time densities via the GQD.TIpassge() function. The GQD.TIpassage() function uses the
same GQD interface as other functions in the package and operates in similar fashion to the
GQD.density() function. However, since GQD.TIpassage() relies on calculating transitional
density approximations for a large number of initial values in combination with the recursive
updating algorithm of Equation 59, its internal workings have more in common with the
GQD.mle() and GQD.mcmc() functions, where computationally optimized solutions with respect

Etienne A.D. Pienaar, Melvin M. Varughese 41

to the cumulant truncation procedure are constructed in C++ which is subsequently executed
in R. As an introduction to the function, we first compare the GQD.TIpassage() function to
an existing R package for calculating first passage time densities for Gaussian diffusions and
subsequently investigate the properties of the first passage time density of a non-linear diffusion
transiting through a moving barrier.
An excellent package for the analysis of first passage time problems is the fptdApprox (Román-
Román et al. 2014) package. Since fptdApprox can very effectively handle first passage time
problems for diffusions with analytically tractable transitional densities we use it to compare
some of the results from the DiffusionRgqd package. Consider for example a diffusion process
with SDE:

dXt = 0.5(5−Xt)dt+ dBt, (95)
with X0 = 3. For purposes of calculating a first passage time consider then also a continuous
barrier

λt = 5 + 0.25 sin(2πt). (96)
Under the fptdApprox package we may use the Approx.fpt.density() function in order to ap-
proximate the first passage time density. The interface requires that one define a diffusion process
by configuring an object that consists of expressions giving the drift, diffusion and transitional
density of the model at hand. The resulting object is then used by the Approx.fpt.density()
function to approximate the first passage time density. More formally:

R> OU <- diffproc(c("alpha * x + beta", "sigma^2",
+ "dnorm((x-(y * exp(alpha * (t-s)) - beta * (1 - exp(alpha * (t-s)))
+ / alpha)) / (sigma * sqrt((exp(2 * alpha * (t-s)) - 1) / (2 * alpha))),
+ 0, 1) / (sigma * sqrt((exp(2 * alpha * (t-s)) - 1) / (2 * alpha)))",
+ "pnorm(x, y * exp(alpha * (t-s)) - beta * (1 - exp(alpha * (t-s))) /
+ alpha, sigma * sqrt((exp(2 * alpha * (t-s)) - 1) / (2 * alpha)))"))
R>
R> res1 <- Approx.fpt.density(OU, 0, 10, 3, "5+0.25 * sin(2 * pi * t)",
+ list(alpha = -0.5, beta = 0.5 * 5, sigma = 1))

Computing... Done.

The value of the cumulative integral of the approximation is
0.992261204012805 < 1 - tol. If the value of the cumulative integral is
not high and the final stopping instant is less than T, it may be
appropriate:

- Check if the value of the final stopping instant increases using k
argument to summary the fptl class object, or

- Approximate the density again with to.T = TRUE.

Using the DiffusionRgqd package we begin by defining the model as per usual according to
the GQD framework. Then we call the GQD.TIpassage() function and provide it with the
parameters of the first passage time problem. Note that GQD.TIpassage() circumvents the need
to specify the transitional density as it will use the model coefficients to recognize and construct
the appropriate numerical approximation of the required transitional densities. In present form,
for computational purposes, the GQD.TIpassage() function evaluates Equation 59 for constant
barriers only. However, this is not a limiting constraint as it can be shown that for any barrier
function that can be decomposed as:

λt = φ+ h(t) (97)

42 DiffusionRgqd

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

DiffusionRgqd vs. fptdApprox.

Time(t)

F
P

T
 D

en
si

ty

fptdApprox
DiffusionRgqd

Figure 11: Approxiate first passage times for Equation 95 transiting through a sinusoidal barrier
calculated using the fptdApprox package (light blue) and DiffusionRgqd package (dark blue,
dashed). The approximate solutions produce nearly identical results.

where h(t) is continuous, the first passage time problem {Yt = Xt − h(t) ↑ φ|Xs − h(s)} is
equivalent to that of {Xt ↑ λt|Xs}. All that remains is to calculate the dynamics of Yt under
Itô’s lemma:

R> GQD.remove()
R> G0 <- function(t)
+ {
+ 0.5 * 5 - 0.5 * pi * cos(2 * pi * t)-0.5 * 0.25 * sin(2 * pi * t)
+ }
R> G1 <- function(t){-0.5}
R> Q0 <- function(t){1}
R> res2 <- GQD.TIpassage(Xs = 3, B = 5, s = 0, t = 10, delt = 1 / 200)

By plotting the subsequent approximations we infer from Figure 11 that the approximations are
near identical.
Note that since functions in the DiffusionRgqd always assumes that a numerical solution is
required, it is possible for this example, where the transition density is available analytically, to
produce a solution that is more efficiently calculable. However, the aim of the package is tackle
problems with intractable dynamics under the GQD framework, where transition densities are
rarely analytically available. Furthermore, as with the inference procedures, we again have a
great deal of freedom for specifying a first passage time problem and subsequently calculating
an accurate approximate solution. Consider for example a diffusion with SDE:

dXt = θ1Xt(10 + 0.2 sin(2πt) + 0.3
√
t(1 + cos(3πt))−Xt)dt+

√
0.1XtdBt, (98)

with X1 = 8, θ1 a fixed parameter, and a constant barrier λt = 12. Note that for Equation 98,
no analytical solution for the transition density exists. Consequently, we can no longer make

Etienne A.D. Pienaar, Melvin M. Varughese 43

use of the fptdApprox package in order to generate the desired first passage time density, albeit
for comparative purposes. As such we compare the resulting approximation to a simulated first
passage time density for Equation 98 transiting through λt = 12. Perhaps the simplest algorithm
for achieving this is to simulate numerous trajectories of Equation 98 using a Euler-Murayama
scheme and subsequently record the times at which these trajectories cross λt. It is important to
note that this scheme is subject to bias since the finite step size used in the simulation implies
that the scheme fails to account for trajectories that may have already crossed λt yet are recorded
below λt subsequent to each update (Giraudo and Sacerdote 1999). However this is a somewhat
technical matter which falls outside of the scope of the present paper. As such we have chosen
the parameters of the diffusion in such a way that the scheme suffices for visual comparison. For
comparative purposes we have included a simulated first passage time density, which can be
called using the command data("SDEsim5").
Using GQD.TIpassage() we can again analyse the first passage time problem by defining the
model in terms of GQD-coefficients:

R> GQD.remove()

[1] "Removed : G0 G1 Q0"

R> G1 <- function(t)
+ {
+ theta[1] * (10+0.2 * sin(2 * pi * t) + 0.3 * prod(sqrt(t),
+ 1+cos(3 * pi * t)))
+ }
R> G2 <- function(t){-theta[1]}
R> Q2 <- function(t){0.1}
R> res3 = GQD.TIpassage(8, 12, 1, 4, 1 / 100, theta = c(0.5))

Note that we have parametrised the coefficients using the reserved variable theta in similar
fashion to BiGQD.mcmc(). This allows one to calculate the first passage time density for various
parameter values without having to re-compile C++ code repeatedly. For example, we can
evaluate the first passage time problem for Equation 98 for θ1 running from 0.1 to 0.5:

R> plot(res3$density ~ res3$time, type = 'l', ylim = c(0, 1.0),
+ main = 'First Passage Time Density', ylab = 'Density', xlab = 'Time',
+ cex.main = 0.95)
R> data("SDEsim5")
R> lines(SDEsim5$density ~ c(SDEsim5$mids - diff(SDEsim5$mids)[1] / 2),
+ type = 's', lty = 'solid', lwd = 1)
R>
R> library("colorspace")
R> colpal = function(n){rev(sequential_hcl(n, power = 0.8, l = c(40, 90),
+ h = c(-61, -10)))}
R> th.seq = seq(0.1, 0.5, 1 / 20)
R> for(i in 2:length(th.seq))
+ {
+ res3 = GQD.TIpassage(8, 12, 1, 4, 1 / 100, theta = c(th.seq[i]))
+ lines(res3$density ~ res3$time, type = 'l', col = colpal(10)[i])
+ }

44 DiffusionRgqd

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

First Passage Time Density

Time

D
en

si
ty

θ1

0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

Figure 12: First passage time density of Equation 98 through λt = 12 for various values of
θ1. Superimposed (black outline) is a histogram of simulated first passage times for θ1 = 0.5,
calculated from 500 000 simulated trajectories using a step size increment of 1/2000 time units.

Figure 12 illustrates the effect of varying θ1: As the value of the parameter decreases the time
taken to reach and exceed the barrier increases and the effect of the time dependent terms
become less prominent. This makes sense since θ1 in some sense dictates the ‘speed’ at which
the process drifts toward the equilibrium line 10 + 0.2 sin(2πt) + 0.3

√
t(1 + cos(3πt)). Since this

line starts out above the starting point X1 = 8, θ1 will dictate how intensely the drift of the
process pulls it in the direction of the barrier. Finally, comparing the approximate first passage
time density to that of the simulated first passage time, it can be seen that the approximation is
indeed valid.

8. Summary
Diffusion processes are a flexible tool for modelling phenomena from various fields of science. By
making use of a computationally efficient algorithm for calculating the transition density of a
diffusion process we develop a class of scalar and bivariate quadratic diffusion processes termed
the generalised quadratic diffusion processes for which we can calculate accurate approximations
to the likelihood of a discretely observed processes. Using this framework we develop the
DiffusionRgqd package: A collection of tools for performing inference and analysis on time-
inhomogeneous quadratic diffusion processes. By identifying computational redundancies within
the generalised quadratic class it is possible to define an algorithm whereby computational
overhead of calculating the likelihood of a given model can be minimised. Combining this with
the speed of the C++ language within R, it is possible to perform likelihood based inference on
discretely observed processes very efficiently in a non-parallel computing environment. In addition
to the inference procedures, we develop accompanying routines for calculating approximations
to the transition density of a given diffusion as well as the first passage time density of a scalar
transition density transiting through a barrier. These peripheral functions can be used to
investigate the dynamics of a given model directly and may aid in the formulation of appropriate

Etienne A.D. Pienaar, Melvin M. Varughese 45

diffusion models prior to conducting inference on an observed process or the analysis of a model
under fitted parameters.
We demonstrate how the package may be used to analyse various time-inhomogeneous non-linear
diffusion models and how one may conduct model selection for discretely observed diffusions by
comparing standard goodness of fit statistics such as the AIC, BIC and DIC for a plethora of
models. Using the DiffusionRgqd package it is possible analyse real world data using non-linear,
time-inhomogeneous diffusion models with minimal mathematical input over and above defining
a model of interest. By providing a simple interface to the relatively complicated mathematical
objects which are stochastic differential equations, it is hoped that the package will make diffusion
models more accessible to areas of science where diffusion processes are less frequently used, and
perhaps make it possible to conduct analysis that has previously been limited by the analytical
intractability of non-linear diffusion processes.

Acknowledgements
Etienne Pienaar and Melvin Varughese were both funded by the National Research Foundation
of South Africa.

References

Adler D, Murdoch D, et al. (2014). rgl: 3D Visualization Device System (OpenGL). R package
version 0.93.996, URL http://CRAN.R-project.org/package=rgl.

Aït-Sahalia Y, et al. (2008). “Closed-form Likelihood Expansions for Multivariate Diffusions.”
The Annals of Statistics, 36(2), 906–937.

Andrews GE, Askey R, Roy R (1999). Special Functions, volume 71. Cambridge University
Press.

Atkinson KE (2008). An Introduction to Numerical Analysis. John Wiley & Sons.

Barndorff-Nielsen O, Cox DR (1979). “Edgeworth and Saddle-Point Approximations With
Statistical Applications.” Journal of the Royal Statistical Society B, pp. 279–312.

Boukhetala K, Guidoum A, et al. (2011). “Sim.DiffProc: A package for simulation of diffusion
processes in R.” Preprint submitted to Journal of Statistical Software.

Buonocore A, Nobile A, Ricciardi L (1987). “A New Integral Equation for the Evaluation of
First-Passage-Time Probability Densities.” Advances in Applied Probability, 19, 784–800.

Butcher J (2007). “Runge-Kutta Methods.” Scholarpedia, 2(9), 3147. Revision #91735.

Cobb L, Koppstein P, Chen NH (1983). “Estimation and Moment Recursion Relations for
Multimodal Distributions of the Exponential Family.” Journal of the American Statistical
Association, 78(381), 124–130.

Cox J, Ingersoll J, Ross S (1985). “A Theory of the Term Structure of Interest Rates.” Econo-
metrica, 53, 385–407.

Crank J, Nicolson P (1996). “A Practical Method for Numerical Evaluation of Solutions of
Partial Differential Equations of the Heat-Conduction Type.” Advances in Computational
Mathematics, 6(1), 207–226.

http://CRAN.R-project.org/package=rgl

46 DiffusionRgqd

Eddelbuettel D (2013). Seamless R and C++ Integration With Rcpp. Springer, New York. ISBN
978-1-4614-6867-7.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/i08/.

Eddelbuettel D, Nguyen K (2015). RQuantLib: R Interface to the ‘RQuantLib’ Library. R
package version 0.4.2, URL https://CRAN.R-project.org/package=RQuantLib.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R With High-Performance
C++ Linear Algebra.” Computational Statistics and Data Analysis, 71, 1054–1063. URL
http://dx.doi.org/10.1016/j.csda.2013.02.005.

Feagin T (2007). “A Tenth-Order Runge-Kutta Method With Error Estimate.” In Proceedings
of the IAENG Conference on Scientific Computing.

Fehlberg E (1970). “Classical Fourth- and Lower Order Runge-Kutta Formulas With Stepsize
Control and Their Application to Heat Transfer Problems.” Computing, 6(1), 61–71.

Gilli M, Maringer D, Schumann E (2011). Numerical Methods and Optimization in Finance.
Academic Press, Waltham, MA, USA. URL http://nmof.net.

Giraudo MT, Sacerdote L (1999). “An Improved Technique for the Simulation of First Passage
Times for Diffusion Processes.” Communications in Statistics-Simulation and Computation,
28(4), 1135–1163.

Gouriéroux C, Valéry P (2004). “Estimation of a Jacobi Process.” Preprint, p. 116.

Guidoum A, Boukhetala K (2015). Sim.DiffProc: Simulation of Diffusion Processes. R package
version 3.1, URL http://CRAN.R-project.org/package=Sim.DiffProc.

Hamdi S, Schiesser WE, Griffiths GW (2007). “Method of Lines.” Scholarpedia, 2(7), 2859.

Heston SL (1993). “A Closed-Form Solution for Options With Stochastic Volatility With
Applications to Bond and Currency Options.” Review of Financial Studies, 6(2), 327–343.

Hoppensteadt F (2006). “Predator-Prey Model.” Scholarpedia, 1(10), 1563. Revision #91666.

Huang X (2011). “Quasi-Maximum Likelihood Estimation of Discretely Observed Diffusions.”
The Econometrics Journal, 14(2), 241–256.

Hurn AS, Lindsay KA, McClelland AJ (2015). “Estimating the Parameters of Stochastic
Volatility Models Using Option Price Data.” Journal of Business & Economic Statistics, 33(4),
579–594.

Iacus SM (2009). Simulation and Inference for Stochastic Differential Equations: With R
Examples. Springer Science & Business Media.

Iacus SM (2015). sde: Simulation and Inference for Stochastic Differential Equations. R package
version 2.0.14, URL https://CRAN.R-project.org/package=sde.

Jáimez RG, Román PR, Ruiz FT (1995). “A Note on the Volterra Integral Equation for the
First-Passage-Time Probability Density.” Journal of applied probability, pp. 635–648.

Pienaar EAD, Varughese MM (2015). DiffusionRgqd: An R Package for Performing Inference
and Analysis on Time-Inhomogeneous Quadratic Diffusion Processes. R package version 0.1.2,
URL https://CRAN.R-project.org/package=DiffusionRgqd.

http://www.jstatsoft.org/v40/i08/
https://CRAN.R-project.org/package=RQuantLib
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://nmof.net
http://CRAN.R-project.org/package=Sim.DiffProc
https://CRAN.R-project.org/package=sde
https://CRAN.R-project.org/package=DiffusionRgqd

Etienne A.D. Pienaar, Melvin M. Varughese 47

Platen E (1999). “An Introduction to Numerical Methods for Stochastic Differential Equations.”
Acta Numerica, 8, 197–246.

Plummer M, Best N, Cowles K, Vines K (2006). “CODA: Convergence Diagnosis and Output
Analysis for MCMC.” R News, 6(1), 7–11. URL http://CRAN.R-project.org/doc/Rnews/.

Raymond McTaggart, Gergely Daroczi (2015). Quandl: API Wrapper for Quandl.com. R
package version 2.6.0, URL http://CRAN.R-project.org/package=Quandl.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Renshaw E (2000). “Applying the Saddlepoint Approximation to Bivariate Stochastic Processes.”
Mathematical Biosciences, 168(1), 57–75.

Ricciardi LM, Sacerdote L (1979). “The Ornstein-Uhlenbeck Process as a Model for Neuronal
Activity.” Biological Cybernetics, 35(1), 1–9.

Román-Román P, Serrano-Pérez J, Torres-Ruiz F (2014). “More General Problems on First-
Passage Times for Diffusion Processes: A New Version of the fptdApprox R Package.” Applied
Mathematics and Computation, 244, 432–446.

Team RC, Wuertz D, Setz T, Chalabi Y (2015). fOptions: Rmetrics - Pricing and Evaluating
Basic Options. R package version 3022.85, URL https://CRAN.R-project.org/package=
fOptions.

Varughese MM (2011). “A Framework for Modelling Ecological Communities and Their Interac-
tions With the Environment.” Ecological Complexity, 8(1), 105–112.

Varughese MM (2013). “Parameter Estimation for Multivariate Diffusion Systems.” Computa-
tional Statistics & Data Analysis, 57(1), 417–428.

Varughese MM, Pienaar EAD (2013). “Statistical Inference for a Multivariate Diffusion Model
of an Ecological Time Series.” Ecosphere, 4(8), art104.

Varughese MM, Pienaar EAD (2015). “Computing the First Passage Time Density for Time-
Homogeneous, Polynomial Diffusion Processes.” Technical report.

Appendix

A. Normalization of the Pearson-system densities
Although the Pearson system offers a considerable amount of flexibility with respect to carrying
moments into a valid density approximation, this flexibility comes at the cost of having to
compute normalizing constants. Unfortunately analytical expressions for integrals of the kernels
in equations 35 - 38 over their respective support cannot in general be found for m > 2. As
such we have to resort to numerical methods in order to normalize the Pearson densities. For
example, for the Normal class we may employ the trapezoidal approximation:

∫ ∞
−∞

N(x|Xs)dx ≈
P−1∑
i=1

N
(
τi|Xs

)
ρi∆ (99)

with the modifications τi = yi
1−(yi)2 e

α + u1, ρi = 1+y2
i

(1−(yi)2)2 e
α, where P > 1 is a positive integer

with yi = −L+ 2i∆ for i = 0, 1, . . . , P .

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/package=Quandl
http://www.R-project.org/
https://CRAN.R-project.org/package=fOptions
https://CRAN.R-project.org/package=fOptions

48 DiffusionRgqd

Note that, in this particular instance, evaluation starts at (τ1, ρ1) and ends at (τP−1, ρP−1) since
by definition N

(
−∞|Xs

)
= N

(
∞|Xs

)
= 0, thus negating the endpoints under the trapezoidal

rule. The parameters L and ∆ are in turn determined by the relations:

L = − 1
2(u1 − x−)

(√
e2α + 4(u1 − x−)2 − eα

)
(100)

and
∆ =

(
− 1

2(u1 − x+)
(√

e2α + 4(u1 − x+)2 − eα
)
− L

)
/P. (101)

The parameters x− and x+ represent pre-defined lower and upper bounds on the integration
range in the original coordinate system, i.e., the support of the diffusion. By evaluating the
limits limx−→−∞ τ and limx−→∞ τ , the behaviour of the infinite integral is preserved. However,
in practice these limits will typically be made finite in order to avoid numerical underflow at the
extremes of a given distribution. The role of the parameters α and P is to control the mesh
spacing within the limits [x−, x+]. For a given number of mesh points P , increasing α will lower
the concentration of mesh points around u1, whilst increasing P increases the mesh resolution.
Finally we note the important distinction that the resulting mesh under this scheme is in fact time
dependent. This is due to the u1 being included in the mesh translation. This, in conjunction
with the exponential mesh spacing ensures that the numerical integration accumulates more
information within ‘dense’ regions of the support and less information where there is little
density, provided that it is unimodal. To see the effect of varying P and α parameters we follow
up the example of Section 7.1 and use two sets of parameters for α and P :

R> M1 <- GQD.density(Xs = initial, Xt = states, s = Tstart, t = Tmax,
+ delt = increment, Dtype = 'Normal', P = 100, alpha = 1, lower = 1,
+ upper = 20)
R>
R> M2 <- GQD.density(Xs = initial, Xt = states, s = Tstart, t = Tmax,
+ delt = increment, Dtype = 'Normal', P = 200, alpha = 3, lower = 1,
+ upper = 20)

Subsequently, we can extract the mesh used for the normalization in each case and plot the
mesh points as they vary over time. The resulting plots are given in Figure 13.

R> plot(1, 1, type = 'n', xlim = c(1, 5), ylim = c(1, 20), xlab = 'Time (t)',
+ ylab = 'Mesh')
R> for(i in 1:100)
+ {
+ lines(M1$mesh[i,] ~ M1$time)
+ }
R> plot(1, 1, type = 'n', xlim = c(1, 5), ylim = c(1, 20), xlab = 'Time (t)',
+ ylab = 'Mesh')
R> for(i in 1:200)
+ {
+ lines(M2$mesh[i,] ~ M1$time)
+ }

Etienne A.D. Pienaar, Melvin M. Varughese 49

1 2 3 4 5

5
10

15
20

Time (t)

M
es

h

1 2 3 4 5

5
10

15
20

Time (t)

M
es

h
Figure 13: Various mesh structures used for normalising the 4-th order Noramal type Pearson
density. Using α = 1 for P = 100 points over the interval [1, 20] (left) results in a mesh that is
concentrated arounf the mean trajectory of the process and sparse closer to the extrmes whilst
setting α = 3 for P = 200 (right) gives a more uniform mesh.

B. Cumulant equations for bivariate GQDs
By expanding Equation 31, one may derive a system of ODEs that approximates the evolution
of the cumulants of a bivariate GQD over time. Tables 1 to 6 give terms to include on the RHS
of the cumulant system for each coefficient of Equation 10. That is, for each dimension on the
left of 31 (first column), include the terms in the column of every non-zero coefficient. Note that
we have dropped the explicit dependence of κij on t (i.e κij(t) = κij) for compactness. Also
κ̇ij = ∂

∂tκij .

50 DiffusionRgqd

a00 a10 a20 a01 a02 a11
κ̇10 1 +1κ10 +1κ10κ10 + 1κ20 +1κ01 +1κ01κ01 + 1κ02 +1κ11 + 1κ10κ01
κ̇20 . +2κ20 +2κ10κ20 +

2κ20κ10 + 2κ30

+2κ11 +2κ01κ11 +
2κ11κ01 + 2κ12

+2κ21 + 2κ10κ11 +
2κ20κ01

κ̇30 . +3κ30 +3κ10κ30 +
6κ20κ20+3κ30κ10+
3κ40

+3κ21 +3κ01κ21 +
6κ11κ11+3κ21κ01+
3κ22

+3κ31 + 3κ10κ21 +
6κ20κ11 + 3κ30κ01

κ̇40 . +4κ40 +4κ10κ40 +
12κ20κ30 +
12κ30κ20 +4κ40κ10

+4κ31 +4κ01κ31 +
12κ11κ21 +
12κ21κ11 +4κ31κ01

+4κ10κ31 +
12κ20κ21 +
12κ30κ11 +4κ40κ01

κ̇01
κ̇02
κ̇03
κ̇04
κ̇11 . +1κ11 +1κ10κ11 +

1κ11κ10 + 1κ21

+1κ02 +1κ01κ02 +
1κ02κ01 + 1κ03

+1κ12 + 1κ10κ02 +
1κ11κ01

κ̇12 . +1κ12 +1κ10κ12 +
2κ11κ11+1κ12κ10+
1κ22

+1κ03 +1κ01κ03 +
2κ02κ02+1κ03κ01+
1κ04

+1κ13 + 1κ10κ03 +
2κ11κ02 + 1κ12κ01

κ̇21 . +2κ21 +2κ10κ21 +
2κ11κ20+2κ20κ11+
2κ21κ10 + 2κ31

+2κ12 +2κ01κ12 +
2κ02κ11+2κ11κ02+
2κ12κ01 + 2κ13

+2κ22 + 2κ10κ12 +
2κ11κ11+2κ20κ02+
2κ21κ01

κ̇22 . +2κ22 +2κ10κ22 +
4κ11κ21+2κ12κ20+
2κ20κ12+4κ21κ11+
2κ22κ10

+2κ13 +2κ01κ13 +
4κ02κ12+2κ03κ11+
2κ11κ03+4κ12κ02+
2κ13κ01

+2κ10κ13 +
4κ11κ12+2κ12κ11+
2κ20κ03+4κ21κ02+
2κ22κ01

κ̇13 . +1κ13 +1κ10κ13 +
3κ11κ12+3κ12κ11+
1κ13κ10

+1κ04 +1κ01κ04 +
3κ02κ03+3κ03κ02+
1κ04κ01

+1κ10κ04 +
3κ11κ03+3κ12κ02+
1κ13κ01

κ̇31 . +3κ31 +3κ10κ31 +
3κ11κ30+6κ20κ21+
6κ21κ20+3κ30κ11+
3κ31κ10

+3κ22 +3κ01κ22 +
3κ02κ21+6κ11κ12+
6κ12κ11+3κ21κ02+
3κ22κ01

+3κ10κ22 +
3κ11κ21+6κ20κ12+
6κ21κ11+3κ30κ02+
3κ31κ01

Table 1: Cumulant equation terms for coefficients a00 to a11 of Equation 10.

b00 b10 b20 b01 b02 b11
κ̇10
κ̇20
κ̇30
κ̇40
κ̇01 1 +1κ10 +1κ10κ10 + 1κ20 +1κ01 +1κ01κ01 + 1κ02 +1κ11 + 1κ01κ10
κ̇02 . +2κ11 +2κ10κ11 +

2κ11κ10 + 2κ21

+2κ02 +2κ01κ02 +
2κ02κ01 + 2κ03

+2κ12 + 2κ01κ11 +
2κ02κ10

κ̇03 . +3κ12 +3κ10κ12 +
6κ11κ11+3κ12κ10+
3κ22

+3κ03 +3κ01κ03 +
6κ02κ02+3κ03κ01+
3κ04

+3κ13 + 3κ01κ12 +
6κ02κ11 + 3κ03κ10

κ̇04 . +4κ13 +4κ10κ13 +
12κ11κ12 +
12κ12κ11 +4κ13κ10

+4κ04 +4κ01κ04 +
12κ02κ03 +
12κ03κ02 +4κ04κ01

+4κ01κ13 +
12κ02κ12 +
12κ03κ11 +4κ04κ10

κ̇11 . +1κ20 +1κ10κ20 +
1κ20κ10 + 1κ30

+1κ11 +1κ01κ11 +
1κ11κ01 + 1κ12

+1κ21 + 1κ01κ20 +
1κ11κ10

κ̇12 . +2κ21 +2κ10κ21 +
2κ11κ20+2κ20κ11+
2κ21κ10 + 2κ31

+2κ12 +2κ01κ12 +
2κ02κ11+2κ11κ02+
2κ12κ01 + 2κ13

+2κ22 + 2κ01κ21 +
2κ02κ20+2κ11κ11+
2κ12κ10

κ̇21 . +1κ30 +1κ10κ30 +
2κ20κ20+1κ30κ10+
1κ40

+1κ21 +1κ01κ21 +
2κ11κ11+1κ21κ01+
1κ22

+1κ31 + 1κ01κ30 +
2κ11κ20 + 1κ21κ10

κ̇22 . +2κ31 +2κ10κ31 +
2κ11κ30+4κ20κ21+
4κ21κ20+2κ30κ11+
2κ31κ10

+2κ22 +2κ01κ22 +
2κ02κ21+4κ11κ12+
4κ12κ11+2κ21κ02+
2κ22κ01

+2κ01κ31 +
2κ02κ30+4κ11κ21+
4κ12κ20+2κ21κ11+
2κ22κ10

κ̇13 . +3κ22 +3κ10κ22 +
6κ11κ21+3κ12κ20+
3κ20κ12+6κ21κ11+
3κ22κ10

+3κ13 +3κ01κ13 +
6κ02κ12+3κ03κ11+
3κ11κ03+6κ12κ02+
3κ13κ01

+3κ01κ22 +
6κ02κ21+3κ03κ20+
3κ11κ12+6κ12κ11+
3κ13κ10

κ̇31 . +1κ40 +1κ10κ40 +
3κ20κ30+3κ30κ20+
1κ40κ10

+1κ31 +1κ01κ31 +
3κ11κ21+3κ21κ11+
1κ31κ01

+1κ01κ40 +
3κ11κ30+3κ21κ20+
1κ31κ10

Table 2: Cumulant equation terms for coefficients b00 to b11 of Equation 10.

Etienne A.D. Pienaar, Melvin M. Varughese 51

c00 c10 c20 c01 c02 c11
κ̇10
κ̇20 1 +1κ10 +1κ20 + 1κ10κ10 +1κ01 +1κ02 + 1κ01κ01 +1κ11 + 1κ01κ10
κ̇30 . +3κ20 +3κ30 + 3κ10κ20 +

3κ20κ10

+3κ11 +3κ12 + 3κ01κ11 +
3κ11κ01

+3κ21 + 3κ01κ20 +
3κ11κ10

κ̇40 . +6κ30 +6κ40 + 6κ10κ30 +
12κ20κ20 +6κ30κ10

+6κ21 +6κ22 + 6κ01κ21 +
12κ11κ11 +6κ21κ01

+6κ31 + 6κ01κ30 +
12κ11κ20 +6κ21κ10

κ̇01
κ̇02
κ̇03
κ̇04
κ̇11
κ̇12
κ̇21 . +1κ11 +1κ21 + 1κ10κ11 +

1κ11κ10

+1κ02 +1κ03 + 1κ01κ02 +
1κ02κ01

+1κ12 + 1κ01κ11 +
1κ02κ10

κ̇22 . +1κ12 +1κ22 + 1κ10κ12 +
2κ11κ11 + 1κ12κ10

+1κ03 +1κ04 + 1κ01κ03 +
2κ02κ02 + 1κ03κ01

+1κ13 + 1κ01κ12 +
2κ02κ11 + 1κ03κ10

κ̇13
κ̇31 . +3κ21 +3κ31 + 3κ10κ21 +

3κ11κ20+3κ20κ11+
3κ21κ10

+3κ12 +3κ13 + 3κ01κ12 +
3κ02κ11+3κ11κ02+
3κ12κ01

+3κ22 + 3κ01κ21 +
3κ02κ20+3κ11κ11+
3κ12κ10

Table 3: Cumulant equation terms for coefficients c00 to c11 of Equation 10.

d00 d10 d20 d01 d02 d11
κ̇10
κ̇20
κ̇30
κ̇40
κ̇01
κ̇02
κ̇03
κ̇04
κ̇11 1 +0.5κ10 +0.5κ20 +

0.5κ10κ10

+0.5κ01 +0.5κ02 +
0.5κ01κ01

+0.5κ11 +
0.5κ01κ10

κ̇12 . +1κ11 +1κ21 + 1κ10κ11 +
1κ11κ10

+1κ02 +1κ03 + 1κ01κ02 +
1κ02κ01

+1κ12 + 1κ01κ11 +
1κ02κ10

κ̇21 . +1κ20 +1κ30 + 1κ10κ20 +
1κ20κ10

+1κ11 +1κ12 + 1κ01κ11 +
1κ11κ01

+1κ21 + 1κ01κ20 +
1κ11κ10

κ̇22 . +2κ21 +2κ31 + 2κ10κ21 +
2κ11κ20+2κ20κ11+
2κ21κ10

+2κ12 +2κ13 + 2κ01κ12 +
2κ02κ11+2κ11κ02+
2κ12κ01

+2κ22 + 2κ01κ21 +
2κ02κ20+2κ11κ11+
2κ12κ10

κ̇13 . +1.5κ12 +1.5κ22 +
1.5κ10κ12 +
3κ11κ11 +
1.5κ12κ10

+1.5κ03 +1.5κ04 +
1.5κ01κ03 +
3κ02κ02 +
1.5κ03κ01

+1.5κ13 +
1.5κ01κ12 +
3κ02κ11 +
1.5κ03κ10

κ̇31 . +1.5κ30 +1.5κ40 +
1.5κ10κ30 +
3κ20κ20 +
1.5κ30κ10

+1.5κ21 +1.5κ22 +
1.5κ01κ21 +
3κ11κ11 +
1.5κ21κ01

+1.5κ31 +
1.5κ01κ30 +
3κ11κ20 +
1.5κ21κ10

Table 4: Cumulant equation terms for coefficients d00 to d11 of Equation 10.

52 DiffusionRgqd

e00 e10 e20 e01 e02 e11
κ̇10
κ̇20
κ̇30
κ̇40
κ̇01
κ̇02
κ̇03
κ̇04
κ̇11 1 +0.5κ10 +0.5κ20 +

0.5κ10κ10

+0.5κ01 +0.5κ02 +
0.5κ01κ01

+0.5κ11 +
0.5κ01κ10

κ̇12 . +1κ11 +1κ21 + 1κ10κ11 +
1κ11κ10

+1κ02 +1κ03 + 1κ01κ02 +
1κ02κ01

+1κ12 + 1κ01κ11 +
1κ02κ10

κ̇21 . +1κ20 +1κ30 + 1κ10κ20 +
1κ20κ10

+1κ11 +1κ12 + 1κ01κ11 +
1κ11κ01

+1κ21 + 1κ01κ20 +
1κ11κ10

κ̇22 . +2κ21 +2κ31 + 2κ10κ21 +
2κ11κ20+2κ20κ11+
2κ21κ10

+2κ12 +2κ13 + 2κ01κ12 +
2κ02κ11+2κ11κ02+
2κ12κ01

+2κ22 + 2κ01κ21 +
2κ02κ20+2κ11κ11+
2κ12κ10

κ̇13 . +1.5κ12 +1.5κ22 +
1.5κ10κ12 +
3κ11κ11 +
1.5κ12κ10

+1.5κ03 +1.5κ04 +
1.5κ01κ03 +
3κ02κ02 +
1.5κ03κ01

+1.5κ13 +
1.5κ01κ12 +
3κ02κ11 +
1.5κ03κ10

κ̇31 . +1.5κ30 +1.5κ40 +
1.5κ10κ30 +
3κ20κ20 +
1.5κ30κ10

+1.5κ21 +1.5κ22 +
1.5κ01κ21 +
3κ11κ11 +
1.5κ21κ01

+1.5κ31 +
1.5κ01κ30 +
3κ11κ20 +
1.5κ21κ10

Table 5: Cumulant equation terms for coefficients e00 to e11 of Equation 10.

f00 f10 f20 f01 f02 f11
κ̇10
κ̇20
κ̇30
κ̇40
κ̇01
κ̇02 1 +1κ10 +1κ20 + 1κ10κ10 +1κ01 +1κ02 + 1κ01κ01 +1κ11 + 1κ01κ10
κ̇03 . +3κ11 +3κ21 + 3κ10κ11 +

3κ11κ10

+3κ02 +3κ03 + 3κ01κ02 +
3κ02κ01

+3κ12 + 3κ01κ11 +
3κ02κ10

κ̇04 . +6κ12 +6κ22 + 6κ10κ12 +
12κ11κ11 +6κ12κ10

+6κ03 +6κ04 + 6κ01κ03 +
12κ02κ02 +6κ03κ01

+6κ13 + 6κ01κ12 +
12κ02κ11 +6κ03κ10

κ̇11
κ̇12 . +1κ20 +1κ30 + 1κ10κ20 +

1κ20κ10

+1κ11 +1κ12 + 1κ01κ11 +
1κ11κ01

+1κ21 + 1κ01κ20 +
1κ11κ10

κ̇21
κ̇22 . +1κ30 +1κ40 + 1κ10κ30 +

2κ20κ20 + 1κ30κ10

+1κ21 +1κ22 + 1κ01κ21 +
2κ11κ11 + 1κ21κ01

+1κ31 + 1κ01κ30 +
2κ11κ20 + 1κ21κ10

κ̇13 . +3κ21 +3κ31 + 3κ10κ21 +
3κ11κ20+3κ20κ11+
3κ21κ10

+3κ12 +3κ13 + 3κ01κ12 +
3κ02κ11+3κ11κ02+
3κ12κ01

+3κ22 + 3κ01κ21 +
3κ02κ20+3κ11κ11+
3κ12κ10

κ̇31

Table 6: Cumulant equation terms for coefficients f00 to f11 of Equation 10.

Etienne A.D. Pienaar, Melvin M. Varughese 53

Affiliation:
Etienne A.D. Pienaar
Department of Statistical Sciences
University of Cape Town
Rondebosch, Cape Town 7707
South Africa
E-mail: etiennead@gmail.com

Melvin M. Varughese
Department of Statistical Sciences
University of Cape Town
Rondebosch, Cape Town 7707
South Africa
E-mail: melvin.varughese@uct.ac.za
Telephone: +27/21/650-5230
Fax: +27/21/650-4773

mailto:etiennead@gmail.com
mailto:melvin.varughese@uct.ac.za

	Introduction
	Diffusion processes
	Generalised quadratic diffusions
	Approximating the transitional density of a GQD
	Deriving cumulant equations for GQDs
	Surrogate densities
	Approximating the first passage time density of a scalar GQD

	Building computationally optimized solutions in R with C++
	The DiffusionRgqd package
	Outline of the package
	GQD.mcmc() details

	Example applications
	Generate the transition density of a time-inhomogeneous GQD
	Time-inhomogeneous Jacobi diffusion: A scalar diffusion with finite support
	Bivariate non-linear dynamics: The stochastic Lotka-Volterra equations
	Maximum likelihood estimation: Stochastic volatility models
	Model selection for 2D diffusions via DIC
	Scalar first passage time problems

	Summary
	Normalization of the Pearson-system densities
	Cumulant equations for bivariate GQDs

