This vignette dimeonstrates how to use the clubSandwich
package to conduct a meta-analysis of dependent effect sizes with robust variance estimation. Tests of meta-regression coefficients and F-tests of multiple-coefficient hypotheses are calculated using small-sample corrections proposed by Tipton (2015) and Tipton and Pustejovsky (2015). The example uses a dataset of effect sizes from a Campbell Collaboration systematic review of dropout prevention programs, conducted by Sandra Jo Wilson and colleagues (2011).
The original analysis included a meta-regression with covariates that capture methodological, participant, and program characteristics. The regression specification used here is similar to Model III from Wilson et al. (2011), but treats the evaluator_independence
and implementation_quality
variables as categorical rather than interval-level. Also, the original analysis clustered at the level of the sample (some studies reported results from multiple samples), whereas here we cluster at the study level. The meta-regression can be fit in several different ways. We first demonstrate using the robumeta
package (Fisher & Tipton, 2015) and then using the metafor
package (Viechtbauer, 2010).
library(clubSandwich)
library(robumeta)
data(dropoutPrevention)
# clean formatting
names(dropoutPrevention)[7:8] <- c("eval","implement")
levels(dropoutPrevention$eval) <- c("independent","indirect","planning","delivery")
levels(dropoutPrevention$implement) <- c("low","medium","high")
levels(dropoutPrevention$program_site) <- c("community","mixed","classroom","school")
levels(dropoutPrevention$study_design) <- c("matched","unmatched","RCT")
levels(dropoutPrevention$adjusted) <- c("no","yes")
m3_robu <- robu(LOR1 ~ study_design + attrition + group_equivalence + adjusted
+ outcome + eval + male_pct + white_pct + average_age
+ implement + program_site + duration + service_hrs,
data = dropoutPrevention, studynum = studyID, var.eff.size = varLOR,
modelweights = "HIER")
print(m3_robu)
## RVE: Hierarchical Effects Model with Small-Sample Corrections
##
## Model: LOR1 ~ study_design + attrition + group_equivalence + adjusted + outcome + eval + male_pct + white_pct + average_age + implement + program_site + duration + service_hrs
##
## Number of clusters = 152
## Number of outcomes = 385 (min = 1 , mean = 2.53 , median = 1 , max = 30 )
## Omega.sq = 0.24907
## Tau.sq = 0.1024663
##
## Estimate StdErr t-value dfs P(|t|>) 95% CI.L 95% CI.U Sig
## 1 intercept 0.016899 0.615399 0.0275 16.9 0.97841541 -1.28228 1.31608
## 2 study_designunmatched -0.002626 0.185142 -0.0142 40.5 0.98875129 -0.37667 0.37141
## 3 study_designRCT -0.086872 0.140044 -0.6203 38.6 0.53869676 -0.37024 0.19650
## 4 attrition 0.118889 0.247228 0.4809 15.5 0.63732597 -0.40666 0.64444
## 5 group_equivalence 0.502463 0.195838 2.5657 28.7 0.01579282 0.10174 0.90318 **
## 6 adjustedyes -0.322480 0.125413 -2.5713 33.8 0.01470796 -0.57741 -0.06755 **
## 7 outcomeenrolled 0.097059 0.139842 0.6941 16.5 0.49727848 -0.19862 0.39274
## 8 outcomegraduation 0.147643 0.134938 1.0942 30.2 0.28253825 -0.12786 0.42315
## 9 outcomegraduation.ged 0.258034 0.169134 1.5256 16.3 0.14632629 -0.10006 0.61613
## 10 evalindirect -0.765085 0.399109 -1.9170 6.2 0.10212896 -1.73406 0.20389
## 11 evalplanning -0.920874 0.346536 -2.6574 5.6 0.04027061 -1.78381 -0.05794 **
## 12 evaldelivery -0.916673 0.304303 -3.0124 4.7 0.03212299 -1.71432 -0.11903 **
## 13 male_pct 0.167965 0.181538 0.9252 16.4 0.36824526 -0.21609 0.55202
## 14 white_pct 0.022915 0.149394 0.1534 21.8 0.87950385 -0.28704 0.33287
## 15 average_age 0.037102 0.027053 1.3715 21.2 0.18458247 -0.01913 0.09333
## 16 implementmedium 0.411779 0.128898 3.1946 26.7 0.00358205 0.14714 0.67642 ***
## 17 implementhigh 0.658570 0.123874 5.3164 34.6 0.00000635 0.40699 0.91015 ***
## 18 program_sitemixed 0.444384 0.172635 2.5741 28.6 0.01550504 0.09109 0.79768 **
## 19 program_siteclassroom 0.426658 0.159773 2.6704 37.4 0.01115192 0.10303 0.75028 **
## 20 program_siteschool 0.262517 0.160519 1.6354 30.1 0.11236814 -0.06525 0.59028
## 21 duration 0.000427 0.000873 0.4895 36.7 0.62736846 -0.00134 0.00220
## 22 service_hrs -0.003434 0.005012 -0.6852 36.7 0.49752503 -0.01359 0.00672
## ---
## Signif. codes: < .01 *** < .05 ** < .10 *
## ---
## Note: If df < 4, do not trust the results
Note that robumeta
produces small-sample corrected standard errors and t-tests, and so there is no need to repeat those calculations with clubSandwich
. The eval
variable has four levels, and it might be of interest to test whether the average program effects differ by the degree of evaluator independence. The null hypothesis in this case is that the 10th, 11th, and 12th regression coefficients are all equal to zero. A small-sample adjusted F-test for this hypothesis can be obtained as follows. The vcov = "CR2"
option means that the standard errors will be corrected using the bias-reduced linearization estimator described in Tipton and Pustejovsky (2015).
Wald_test(m3_robu, constraints = 10:12, vcov = "CR2")
## Test F d.f. p.val
## HTZ 2.78 16.8 0.0732
By default, the Wald_test
function provides an F-type test with degrees of freedom estimated using the approximate Hotelling’s \(T^2_Z\) method. The test has less than 17 degrees of freedom, even though there are 152 independent studies in the data, and has a p-value that is not quite significant at conventional levels. The low degrees of freedom are a consequence of the fact that one of the levels of evaluator independence
has only a few effect sizes in it:
table(dropoutPrevention$eval)
##
## independent indirect planning delivery
## 6 33 43 303
clubSandwich
also works with models fit using the metafor
package. Here we re-fit the same regression specification, but use REML to estimate the variance components (robumeta
uses a method-of-moments estimator), as well as a somewhat different weighting scheme than that used in robumeta
.
library(metafor)
m3_metafor <- rma.mv(LOR1 ~ study_design + attrition + group_equivalence + adjusted
+ outcome + eval
+ male_pct + white_pct + average_age
+ implement + program_site + duration + service_hrs,
V = varLOR, random = list(~ 1 | studyID, ~ 1 | studySample),
data = dropoutPrevention)
summary(m3_metafor)
##
## Multivariate Meta-Analysis Model (k = 385; method: REML)
##
## logLik Deviance AIC BIC AICc
## -489.0357 978.0714 1026.0714 1119.5371 1029.6217
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.2274 0.4769 152 no studyID
## sigma^2.2 0.1145 0.3384 317 no studySample
##
## Test for Residual Heterogeneity:
## QE(df = 363) = 1588.4397, p-val < .0001
##
## Test of Moderators (coefficient(s) 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22):
## QM(df = 21) = 293.8694, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.5296 0.7250 0.7304 0.4651 -0.8915 1.9506
## study_designunmatched -0.0494 0.1722 -0.2871 0.7741 -0.3870 0.2881
## study_designRCT 0.0653 0.1628 0.4010 0.6884 -0.2538 0.3843
## attrition -0.1366 0.2429 -0.5623 0.5739 -0.6126 0.3395
## group_equivalence 0.4071 0.1573 2.5877 0.0097 0.0988 0.7155 **
## adjustedyes -0.3581 0.1532 -2.3371 0.0194 -0.6585 -0.0578 *
## outcomeenrolled -0.2831 0.0771 -3.6709 0.0002 -0.4343 -0.1320 ***
## outcomegraduation -0.0913 0.0657 -1.3896 0.1646 -0.2201 0.0375
## outcomegraduation/ged 0.6983 0.0805 8.6750 <.0001 0.5406 0.8561 ***
## evalindirect -0.7530 0.4949 -1.5214 0.1282 -1.7230 0.2171
## evalplanning -0.7700 0.4869 -1.5814 0.1138 -1.7242 0.1843
## evaldelivery -1.0016 0.4600 -2.1774 0.0294 -1.9033 -0.1000 *
## male_pct 0.1021 0.1715 0.5951 0.5518 -0.2341 0.4382
## white_pct 0.1223 0.1804 0.6777 0.4979 -0.2313 0.4758
## average_age 0.0061 0.0291 0.2091 0.8344 -0.0509 0.0631
## implementmedium 0.4738 0.1609 2.9445 0.0032 0.1584 0.7892 **
## implementhigh 0.6318 0.1471 4.2965 <.0001 0.3436 0.9201 ***
## program_sitemixed 0.3289 0.2413 1.3631 0.1729 -0.1440 0.8019
## program_siteclassroom 0.2920 0.1736 1.6821 0.0926 -0.0482 0.6321 .
## program_siteschool 0.1616 0.1898 0.8515 0.3945 -0.2104 0.5337
## duration 0.0013 0.0009 1.3423 0.1795 -0.0006 0.0031
## service_hrs -0.0003 0.0047 -0.0654 0.9478 -0.0096 0.0090
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
metafor
produces model-based standard errors, t-tests, and confidence intervals. The coef_test
function from clubSandwich
will calculate robust standard errors and robust t-tests for each of the coefficients:
coef_test(m3_metafor, vcov = "CR2")
## Coef Estimate SE d.f. p-val (Satt) Sig.
## 1 intrcpt 0.529569 0.724851 20.08 0.47347
## 2 study_designunmatched -0.049434 0.204152 58.42 0.80952
## 3 study_designRCT 0.065272 0.149146 53.17 0.66342
## 4 attrition -0.136575 0.306429 10.52 0.66485
## 5 group_equivalence 0.407108 0.210917 23.10 0.06595 .
## 6 adjustedyes -0.358124 0.136132 43.20 0.01176 *
## 7 outcomeenrolled -0.283124 0.237199 7.08 0.27108
## 8 outcomegraduation -0.091295 0.091465 9.95 0.34188
## 9 outcomegraduation/ged 0.698328 0.364882 8.02 0.09188 .
## 10 evalindirect -0.752994 0.447670 6.56 0.13929
## 11 evalplanning -0.769968 0.403898 6.10 0.10446
## 12 evaldelivery -1.001648 0.355989 4.89 0.03834 *
## 13 male_pct 0.102055 0.148410 9.68 0.50782
## 14 white_pct 0.122255 0.141470 16.88 0.39961
## 15 average_age 0.006084 0.033387 15.79 0.85772
## 16 implementmedium 0.473789 0.148660 22.44 0.00419 **
## 17 implementhigh 0.631842 0.138073 28.68 < 0.001 ***
## 18 program_sitemixed 0.328941 0.196848 27.47 0.10607
## 19 program_siteclassroom 0.291952 0.146014 42.70 0.05195 .
## 20 program_siteschool 0.161640 0.171700 29.27 0.35420
## 21 duration 0.001270 0.000978 31.96 0.20332
## 22 service_hrs -0.000309 0.004828 49.63 0.94915
Note that coef_test
assumed that it should cluster based on studyID
, which is the outer-most random effect in the metafor model. This can be specified explicitly by including the option cluster = dropoutPrevention$studyID
in the call.
The F-test for degree of evaluator independence uses the same syntax as before:
Wald_test(m3_metafor, constraints = 10:12, vcov = "CR2")
## Test F d.f. p.val
## HTZ 2.71 18.3 0.0753
Despite some differences in weighting schemes, the p-value is very close to the result obtained using robumeta
.
Fisher, Z., & Tipton, E. (2015). robumeta: An R-package for robust variance estimation in meta-analysis. arXiv:1503.02220
Tipton, E. (2015). Small sample adjustments for robust variance estimation with meta-regression. Psychological Methods, 20(3), 375-393. doi: 10.1037/met0000011
Tipton, E., & Pustejovsky, J. E. (2015). Small-sample adjustments for tests of moderators and model fit using robust variance estimation in meta-regression. Journal of Educational and Behavioral Statistics, 40(6), 604-634. doi: 10.3102/1076998615606099
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48. URL: http://www.jstatsoft.org/v36/i03/
Wilson, S. J., Lipsey, M. W., Tanner-Smith, E., Huang, C. H., & Steinka-Fry, K. T. (2011). Dropout prevention and intervention programs: Effects on school completion and dropout Among school-aged children and youth: A systematic review. Campbell Systematic Reviews, 7(8). URL: http://www.campbellcollaboration.org/lib/project/158/