gbts: Hyperparameter Search for Gradient Boosted Trees

An implementation of hyperparameter optimization for Gradient Boosted Trees on binary classification and regression problems. The current version provides two optimization methods: Bayesian optimization and random search.

Version: 1.0.1
Depends: R (≥ 3.3.0)
Imports: doParallel, doRNG, foreach, gbm, xgboost, earth
Suggests: testthat
Published: 2016-10-17
Author: Waley W. J. Liang
Maintainer: Waley W. J. Liang <wliang10 at>
License: GPL-2 | GPL-3 | file LICENSE [expanded from: GPL (≥ 2) | file LICENSE]
NeedsCompilation: no
Materials: README NEWS
CRAN checks: gbts results


Reference manual: gbts.pdf
Package source: gbts_1.0.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel: not available
OS X Mavericks binaries: r-release: gbts_1.0.1.tgz, r-oldrel: not available
Old sources: gbts archive


Please use the canonical form to link to this page.