Tables are an essential part of publishing, well… anything. I therefore want to explore the options available for generating these in markdown. It is important to remember that there are two ways of generating tables in markdown:
As the htmlTable
-package is all about HTML tables we will start with these.
Tables are possibly the most tested HTML-element out there. In early web design this was the only feature that browsers handled uniformly, and therefore became the standard way of doing layout for a long period. HTML-tables are thereby an excellent template for generating advanced tables in statistics. There are currently a few different implementations that I’ve encountered, the xtable, ztable, the format.tables, and my own htmlTable function. The format.tables
is unfortunately not yet on CRAN and will not be part of this vignette due to CRAN rules. If you are interested you can find it here.
htmlTable
-packageI developed the htmlTable
in order to get tables matching those available in top medical journals. After finding no HTML-alternative to the Hmisc::latex
function on Stack Overflow I wrote a basic function allowing column spanners and row groups. Below is a basic example on these two:
output <-
matrix(paste("Content", LETTERS[1:16]),
ncol=4, byrow = TRUE)
library(htmlTable)
htmlTable(output,
header = paste(c("1st", "2nd",
"3rd", "4th"), "header"),
rnames = paste(c("1st", "2nd",
"3rd", "4th"), "row"),
rgroup = c("Group A",
"Group B"),
n.rgroup = c(2,2),
cgroup = c("Cgroup 1", "Cgroup 2†"),
n.cgroup = c(2,2),
caption="Basic table with both column spanners (groups) and row groups",
tfoot="† A table footer commment")
Basic table with both column spanners (groups) and row groups | |||||
Cgroup 1 | Cgroup 2† | ||||
---|---|---|---|---|---|
1st header | 2nd header | 3rd header | 4th header | ||
Group A | |||||
1st row | Content A | Content B | Content C | Content D | |
2nd row | Content E | Content F | Content G | Content H | |
Group B | |||||
3rd row | Content I | Content J | Content K | Content L | |
4th row | Content M | Content N | Content O | Content P | |
† A table footer commment |
In order to make a more interesting example we will try to look at how the average age changes between Swedish counties the last 15 years. Goal: visualize migration patterns.
The dataset has been downloaded from Statistics Sweden and is attached to the htmlTable-package. We will start by reshaping our tidy dataset into a more table adapted format.
data(SCB)
# The SCB has three other coulmns and one value column
library(reshape)
SCB$region <- relevel(SCB$region, "Sweden")
SCB <- cast(SCB, year ~ region + sex, value = "values")
# Set rownames to be year
rownames(SCB) <- SCB$year
SCB$year <- NULL
# The dataset now has the rows
names(SCB)
## [1] "Sweden_men" "Sweden_women"
## [3] "Norrbotten county_men" "Norrbotten county_women"
## [5] "Stockholm county_men" "Stockholm county_women"
## [7] "Uppsala county_men" "Uppsala county_women"
# and the dimensions
dim(SCB)
## [1] 15 8
The next step is to calculate two new columns:
To convey all these layers of information will create a table with multiple levels of column spanners:
County | ||||||
Men | Women | |||||
Age | Δint. | Δext. | Age | Δint. | Δext. |
mx <- NULL
for (n in names(SCB)){
tmp <- paste0("Sweden_", strsplit(n, "_")[[1]][2])
mx <- cbind(mx,
cbind(SCB[[n]],
SCB[[n]] - SCB[[n]][1],
SCB[[n]] - SCB[[tmp]]))
}
rownames(mx) <- rownames(SCB)
colnames(mx) <- rep(c("Age",
"Δ<sub>int</sub>",
"Δ<sub>std</sub>"),
times = ncol(SCB))
mx <- mx[,c(-3, -6)]
# This automated generation of cgroup elements is
# somewhat of an overkill
cgroup <-
unique(sapply(names(SCB),
function(x) strsplit(x, "_")[[1]][1],
USE.NAMES = FALSE))
n.cgroup <-
sapply(cgroup,
function(x) sum(grepl(paste0("^", x), names(SCB))),
USE.NAMES = FALSE)*3
n.cgroup[cgroup == "Sweden"] <-
n.cgroup[cgroup == "Sweden"] - 2
cgroup <-
rbind(c(cgroup, rep(NA, ncol(SCB) - length(cgroup))),
Hmisc::capitalize(
sapply(names(SCB),
function(x) strsplit(x, "_")[[1]][2],
USE.NAMES = FALSE)))
n.cgroup <-
rbind(c(n.cgroup, rep(NA, ncol(SCB) - length(n.cgroup))),
c(2,2, rep(3, ncol(cgroup) - 2)))
print(cgroup)
## [,1] [,2] [,3] [,4]
## [1,] "Sweden" "Norrbotten county" "Stockholm county" "Uppsala county"
## [2,] "Men" "Women" "Men" "Women"
## [,5] [,6] [,7] [,8]
## [1,] NA NA NA NA
## [2,] "Men" "Women" "Men" "Women"
print(n.cgroup)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 4 6 6 6 NA NA NA NA
## [2,] 2 2 3 3 3 3 3 3
Next step is to output the table after rounding to the correct number of decimals. The txtRound
function helps with this, as it uses the sprintf
function instead of the round
the resulting strings have the correct number of decimals, i.e. 1.02 will by round become 1 while we want it to retain the last decimal, i.e. be shown as 1.0.
htmlTable(txtRound(mx, 1),
cgroup = cgroup,
n.cgroup = n.cgroup,
rgroup = c("First period",
"Second period",
"Third period"),
n.rgroup = rep(5, 3),
tfoot = txtMergeLines("Δ<sub>int</sub> correspnds to the change since start",
"Δ<sub>std</sub> corresponds to the change compared to national average"))
Sweden | Norrbotten county | Stockholm county | Uppsala county | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | ||||||||||||||||||||||
Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | ||||||||
First period | |||||||||||||||||||||||||||||
1999 | 38.9 | 0.0 | 41.5 | 0.0 | 39.7 | 0.0 | 0.8 | 41.9 | 0.0 | 0.4 | 37.3 | 0.0 | -1.6 | 40.1 | 0.0 | -1.4 | 37.2 | 0.0 | -1.7 | 39.3 | 0.0 | -2.2 | |||||||
2000 | 39.0 | 0.1 | 41.6 | 0.1 | 40.0 | 0.3 | 1.0 | 42.2 | 0.3 | 0.6 | 37.4 | 0.1 | -1.6 | 40.1 | 0.0 | -1.5 | 37.5 | 0.3 | -1.5 | 39.4 | 0.1 | -2.2 | |||||||
2001 | 39.2 | 0.3 | 41.7 | 0.2 | 40.2 | 0.5 | 1.0 | 42.5 | 0.6 | 0.8 | 37.5 | 0.2 | -1.7 | 40.1 | 0.0 | -1.6 | 37.6 | 0.4 | -1.6 | 39.6 | 0.3 | -2.1 | |||||||
2002 | 39.3 | 0.4 | 41.8 | 0.3 | 40.5 | 0.8 | 1.2 | 42.8 | 0.9 | 1.0 | 37.6 | 0.3 | -1.7 | 40.2 | 0.1 | -1.6 | 37.8 | 0.6 | -1.5 | 39.7 | 0.4 | -2.1 | |||||||
2003 | 39.4 | 0.5 | 41.9 | 0.4 | 40.7 | 1.0 | 1.3 | 43.0 | 1.1 | 1.1 | 37.7 | 0.4 | -1.7 | 40.2 | 0.1 | -1.7 | 38.0 | 0.8 | -1.4 | 39.8 | 0.5 | -2.1 | |||||||
Second period | |||||||||||||||||||||||||||||
2004 | 39.6 | 0.7 | 42.0 | 0.5 | 40.9 | 1.2 | 1.3 | 43.1 | 1.2 | 1.1 | 37.8 | 0.5 | -1.8 | 40.3 | 0.2 | -1.7 | 38.1 | 0.9 | -1.5 | 40.0 | 0.7 | -2.0 | |||||||
2005 | 39.7 | 0.8 | 42.0 | 0.5 | 41.1 | 1.4 | 1.4 | 43.4 | 1.5 | 1.4 | 37.9 | 0.6 | -1.8 | 40.3 | 0.2 | -1.7 | 38.3 | 1.1 | -1.4 | 40.1 | 0.8 | -1.9 | |||||||
2006 | 39.8 | 0.9 | 42.1 | 0.6 | 41.3 | 1.6 | 1.5 | 43.5 | 1.6 | 1.4 | 37.9 | 0.6 | -1.9 | 40.2 | 0.1 | -1.9 | 38.5 | 1.3 | -1.3 | 40.4 | 1.1 | -1.7 | |||||||
2007 | 39.8 | 0.9 | 42.1 | 0.6 | 41.5 | 1.8 | 1.7 | 43.8 | 1.9 | 1.7 | 37.8 | 0.5 | -2.0 | 40.1 | 0.0 | -2.0 | 38.6 | 1.4 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
2008 | 39.9 | 1.0 | 42.1 | 0.6 | 41.7 | 2.0 | 1.8 | 44.0 | 2.1 | 1.9 | 37.8 | 0.5 | -2.1 | 40.1 | 0.0 | -2.0 | 38.7 | 1.5 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
Third period | |||||||||||||||||||||||||||||
2009 | 39.9 | 1.0 | 42.1 | 0.6 | 41.9 | 2.2 | 2.0 | 44.2 | 2.3 | 2.1 | 37.8 | 0.5 | -2.1 | 40.0 | -0.1 | -2.1 | 38.8 | 1.6 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2010 | 40.0 | 1.1 | 42.1 | 0.6 | 42.1 | 2.4 | 2.1 | 44.4 | 2.5 | 2.3 | 37.8 | 0.5 | -2.2 | 40.0 | -0.1 | -2.1 | 38.9 | 1.7 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2011 | 40.1 | 1.2 | 42.2 | 0.7 | 42.3 | 2.6 | 2.2 | 44.5 | 2.6 | 2.3 | 37.9 | 0.6 | -2.2 | 39.9 | -0.2 | -2.3 | 39.0 | 1.8 | -1.1 | 40.7 | 1.4 | -1.5 | |||||||
2012 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.6 | 2.7 | 2.4 | 37.9 | 0.6 | -2.3 | 39.9 | -0.2 | -2.3 | 39.1 | 1.9 | -1.1 | 40.8 | 1.5 | -1.4 | |||||||
2013 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.7 | 2.8 | 2.5 | 38.0 | 0.7 | -2.2 | 39.9 | -0.2 | -2.3 | 39.2 | 2.0 | -1.0 | 40.9 | 1.6 | -1.3 | |||||||
Δint correspnds to the change since start Δstd corresponds to the change compared to national average |
In order to increase the readability we may want to separate the Sweden columns from the county columns, one way is to use the align option with a |. Note that in 1.0 the function continues with the same alignment until the end, i.e. you no longer need count to have the exact right number of columns in your alignment argument.
htmlTable(txtRound(mx, 1),
align="rrrr|r",
cgroup = cgroup,
n.cgroup = n.cgroup,
rgroup = c("First period",
"Second period",
"Third period"),
n.rgroup = rep(5, 3),
tfoot = txtMergeLines("Δ<sub>int</sub> correspnds to the change since start",
"Δ<sub>std</sub> corresponds to the change compared to national average"))
Sweden | Norrbotten county | Stockholm county | Uppsala county | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | ||||||||||||||||||||||
Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | ||||||||
First period | |||||||||||||||||||||||||||||
1999 | 38.9 | 0.0 | 41.5 | 0.0 | 39.7 | 0.0 | 0.8 | 41.9 | 0.0 | 0.4 | 37.3 | 0.0 | -1.6 | 40.1 | 0.0 | -1.4 | 37.2 | 0.0 | -1.7 | 39.3 | 0.0 | -2.2 | |||||||
2000 | 39.0 | 0.1 | 41.6 | 0.1 | 40.0 | 0.3 | 1.0 | 42.2 | 0.3 | 0.6 | 37.4 | 0.1 | -1.6 | 40.1 | 0.0 | -1.5 | 37.5 | 0.3 | -1.5 | 39.4 | 0.1 | -2.2 | |||||||
2001 | 39.2 | 0.3 | 41.7 | 0.2 | 40.2 | 0.5 | 1.0 | 42.5 | 0.6 | 0.8 | 37.5 | 0.2 | -1.7 | 40.1 | 0.0 | -1.6 | 37.6 | 0.4 | -1.6 | 39.6 | 0.3 | -2.1 | |||||||
2002 | 39.3 | 0.4 | 41.8 | 0.3 | 40.5 | 0.8 | 1.2 | 42.8 | 0.9 | 1.0 | 37.6 | 0.3 | -1.7 | 40.2 | 0.1 | -1.6 | 37.8 | 0.6 | -1.5 | 39.7 | 0.4 | -2.1 | |||||||
2003 | 39.4 | 0.5 | 41.9 | 0.4 | 40.7 | 1.0 | 1.3 | 43.0 | 1.1 | 1.1 | 37.7 | 0.4 | -1.7 | 40.2 | 0.1 | -1.7 | 38.0 | 0.8 | -1.4 | 39.8 | 0.5 | -2.1 | |||||||
Second period | |||||||||||||||||||||||||||||
2004 | 39.6 | 0.7 | 42.0 | 0.5 | 40.9 | 1.2 | 1.3 | 43.1 | 1.2 | 1.1 | 37.8 | 0.5 | -1.8 | 40.3 | 0.2 | -1.7 | 38.1 | 0.9 | -1.5 | 40.0 | 0.7 | -2.0 | |||||||
2005 | 39.7 | 0.8 | 42.0 | 0.5 | 41.1 | 1.4 | 1.4 | 43.4 | 1.5 | 1.4 | 37.9 | 0.6 | -1.8 | 40.3 | 0.2 | -1.7 | 38.3 | 1.1 | -1.4 | 40.1 | 0.8 | -1.9 | |||||||
2006 | 39.8 | 0.9 | 42.1 | 0.6 | 41.3 | 1.6 | 1.5 | 43.5 | 1.6 | 1.4 | 37.9 | 0.6 | -1.9 | 40.2 | 0.1 | -1.9 | 38.5 | 1.3 | -1.3 | 40.4 | 1.1 | -1.7 | |||||||
2007 | 39.8 | 0.9 | 42.1 | 0.6 | 41.5 | 1.8 | 1.7 | 43.8 | 1.9 | 1.7 | 37.8 | 0.5 | -2.0 | 40.1 | 0.0 | -2.0 | 38.6 | 1.4 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
2008 | 39.9 | 1.0 | 42.1 | 0.6 | 41.7 | 2.0 | 1.8 | 44.0 | 2.1 | 1.9 | 37.8 | 0.5 | -2.1 | 40.1 | 0.0 | -2.0 | 38.7 | 1.5 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
Third period | |||||||||||||||||||||||||||||
2009 | 39.9 | 1.0 | 42.1 | 0.6 | 41.9 | 2.2 | 2.0 | 44.2 | 2.3 | 2.1 | 37.8 | 0.5 | -2.1 | 40.0 | -0.1 | -2.1 | 38.8 | 1.6 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2010 | 40.0 | 1.1 | 42.1 | 0.6 | 42.1 | 2.4 | 2.1 | 44.4 | 2.5 | 2.3 | 37.8 | 0.5 | -2.2 | 40.0 | -0.1 | -2.1 | 38.9 | 1.7 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2011 | 40.1 | 1.2 | 42.2 | 0.7 | 42.3 | 2.6 | 2.2 | 44.5 | 2.6 | 2.3 | 37.9 | 0.6 | -2.2 | 39.9 | -0.2 | -2.3 | 39.0 | 1.8 | -1.1 | 40.7 | 1.4 | -1.5 | |||||||
2012 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.6 | 2.7 | 2.4 | 37.9 | 0.6 | -2.3 | 39.9 | -0.2 | -2.3 | 39.1 | 1.9 | -1.1 | 40.8 | 1.5 | -1.4 | |||||||
2013 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.7 | 2.8 | 2.5 | 38.0 | 0.7 | -2.2 | 39.9 | -0.2 | -2.3 | 39.2 | 2.0 | -1.0 | 40.9 | 1.6 | -1.3 | |||||||
Δint correspnds to the change since start Δstd corresponds to the change compared to national average |
If we still feel that we want more separation it is always possible to add colors.
htmlTable(txtRound(mx, 1),
col.columns = c(rep("#E6E6F0", 4),
rep("none", ncol(mx) - 4)),
align="rrrr|r",
cgroup = cgroup,
n.cgroup = n.cgroup,
rgroup = c("First period",
"Second period",
"Third period"),
n.rgroup = rep(5, 3),
tfoot = txtMergeLines("Δ<sub>int</sub> correspnds to the change since start",
"Δ<sub>std</sub> corresponds to the change compared to national average"))
Sweden | Norrbotten county | Stockholm county | Uppsala county | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | ||||||||||||||||||||||
Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | ||||||||
First period | |||||||||||||||||||||||||||||
1999 | 38.9 | 0.0 | 41.5 | 0.0 | 39.7 | 0.0 | 0.8 | 41.9 | 0.0 | 0.4 | 37.3 | 0.0 | -1.6 | 40.1 | 0.0 | -1.4 | 37.2 | 0.0 | -1.7 | 39.3 | 0.0 | -2.2 | |||||||
2000 | 39.0 | 0.1 | 41.6 | 0.1 | 40.0 | 0.3 | 1.0 | 42.2 | 0.3 | 0.6 | 37.4 | 0.1 | -1.6 | 40.1 | 0.0 | -1.5 | 37.5 | 0.3 | -1.5 | 39.4 | 0.1 | -2.2 | |||||||
2001 | 39.2 | 0.3 | 41.7 | 0.2 | 40.2 | 0.5 | 1.0 | 42.5 | 0.6 | 0.8 | 37.5 | 0.2 | -1.7 | 40.1 | 0.0 | -1.6 | 37.6 | 0.4 | -1.6 | 39.6 | 0.3 | -2.1 | |||||||
2002 | 39.3 | 0.4 | 41.8 | 0.3 | 40.5 | 0.8 | 1.2 | 42.8 | 0.9 | 1.0 | 37.6 | 0.3 | -1.7 | 40.2 | 0.1 | -1.6 | 37.8 | 0.6 | -1.5 | 39.7 | 0.4 | -2.1 | |||||||
2003 | 39.4 | 0.5 | 41.9 | 0.4 | 40.7 | 1.0 | 1.3 | 43.0 | 1.1 | 1.1 | 37.7 | 0.4 | -1.7 | 40.2 | 0.1 | -1.7 | 38.0 | 0.8 | -1.4 | 39.8 | 0.5 | -2.1 | |||||||
Second period | |||||||||||||||||||||||||||||
2004 | 39.6 | 0.7 | 42.0 | 0.5 | 40.9 | 1.2 | 1.3 | 43.1 | 1.2 | 1.1 | 37.8 | 0.5 | -1.8 | 40.3 | 0.2 | -1.7 | 38.1 | 0.9 | -1.5 | 40.0 | 0.7 | -2.0 | |||||||
2005 | 39.7 | 0.8 | 42.0 | 0.5 | 41.1 | 1.4 | 1.4 | 43.4 | 1.5 | 1.4 | 37.9 | 0.6 | -1.8 | 40.3 | 0.2 | -1.7 | 38.3 | 1.1 | -1.4 | 40.1 | 0.8 | -1.9 | |||||||
2006 | 39.8 | 0.9 | 42.1 | 0.6 | 41.3 | 1.6 | 1.5 | 43.5 | 1.6 | 1.4 | 37.9 | 0.6 | -1.9 | 40.2 | 0.1 | -1.9 | 38.5 | 1.3 | -1.3 | 40.4 | 1.1 | -1.7 | |||||||
2007 | 39.8 | 0.9 | 42.1 | 0.6 | 41.5 | 1.8 | 1.7 | 43.8 | 1.9 | 1.7 | 37.8 | 0.5 | -2.0 | 40.1 | 0.0 | -2.0 | 38.6 | 1.4 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
2008 | 39.9 | 1.0 | 42.1 | 0.6 | 41.7 | 2.0 | 1.8 | 44.0 | 2.1 | 1.9 | 37.8 | 0.5 | -2.1 | 40.1 | 0.0 | -2.0 | 38.7 | 1.5 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
Third period | |||||||||||||||||||||||||||||
2009 | 39.9 | 1.0 | 42.1 | 0.6 | 41.9 | 2.2 | 2.0 | 44.2 | 2.3 | 2.1 | 37.8 | 0.5 | -2.1 | 40.0 | -0.1 | -2.1 | 38.8 | 1.6 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2010 | 40.0 | 1.1 | 42.1 | 0.6 | 42.1 | 2.4 | 2.1 | 44.4 | 2.5 | 2.3 | 37.8 | 0.5 | -2.2 | 40.0 | -0.1 | -2.1 | 38.9 | 1.7 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2011 | 40.1 | 1.2 | 42.2 | 0.7 | 42.3 | 2.6 | 2.2 | 44.5 | 2.6 | 2.3 | 37.9 | 0.6 | -2.2 | 39.9 | -0.2 | -2.3 | 39.0 | 1.8 | -1.1 | 40.7 | 1.4 | -1.5 | |||||||
2012 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.6 | 2.7 | 2.4 | 37.9 | 0.6 | -2.3 | 39.9 | -0.2 | -2.3 | 39.1 | 1.9 | -1.1 | 40.8 | 1.5 | -1.4 | |||||||
2013 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.7 | 2.8 | 2.5 | 38.0 | 0.7 | -2.2 | 39.9 | -0.2 | -2.3 | 39.2 | 2.0 | -1.0 | 40.9 | 1.6 | -1.3 | |||||||
Δint correspnds to the change since start Δstd corresponds to the change compared to national average |
If we add a color to the row group and restrict the rgroup spanner we may even have a more visual aid.
htmlTable(txtRound(mx, 1),
col.rgroup = c("none", "#FFFFCC"),
col.columns = c(rep("#EFEFF0", 4),
rep("none", ncol(mx) - 4)),
align="rrrr|r",
cgroup = cgroup,
n.cgroup = n.cgroup,
# I use the - the no breaking space as I don't want to have a
# row break in the row group. This adds a little space in the table
# when used together with the cspan.rgroup=1.
rgroup = c("1st period",
"2nd period",
"3rd period"),
n.rgroup = rep(5, 3),
tfoot = txtMergeLines("Δ<sub>int</sub> correspnds to the change since start",
"Δ<sub>std</sub> corresponds to the change compared to national average"),
cspan.rgroup = 1)
Sweden | Norrbotten county | Stockholm county | Uppsala county | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | ||||||||||||||||||||||
Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | ||||||||
1st period | |||||||||||||||||||||||||||||
1999 | 38.9 | 0.0 | 41.5 | 0.0 | 39.7 | 0.0 | 0.8 | 41.9 | 0.0 | 0.4 | 37.3 | 0.0 | -1.6 | 40.1 | 0.0 | -1.4 | 37.2 | 0.0 | -1.7 | 39.3 | 0.0 | -2.2 | |||||||
2000 | 39.0 | 0.1 | 41.6 | 0.1 | 40.0 | 0.3 | 1.0 | 42.2 | 0.3 | 0.6 | 37.4 | 0.1 | -1.6 | 40.1 | 0.0 | -1.5 | 37.5 | 0.3 | -1.5 | 39.4 | 0.1 | -2.2 | |||||||
2001 | 39.2 | 0.3 | 41.7 | 0.2 | 40.2 | 0.5 | 1.0 | 42.5 | 0.6 | 0.8 | 37.5 | 0.2 | -1.7 | 40.1 | 0.0 | -1.6 | 37.6 | 0.4 | -1.6 | 39.6 | 0.3 | -2.1 | |||||||
2002 | 39.3 | 0.4 | 41.8 | 0.3 | 40.5 | 0.8 | 1.2 | 42.8 | 0.9 | 1.0 | 37.6 | 0.3 | -1.7 | 40.2 | 0.1 | -1.6 | 37.8 | 0.6 | -1.5 | 39.7 | 0.4 | -2.1 | |||||||
2003 | 39.4 | 0.5 | 41.9 | 0.4 | 40.7 | 1.0 | 1.3 | 43.0 | 1.1 | 1.1 | 37.7 | 0.4 | -1.7 | 40.2 | 0.1 | -1.7 | 38.0 | 0.8 | -1.4 | 39.8 | 0.5 | -2.1 | |||||||
2nd period | |||||||||||||||||||||||||||||
2004 | 39.6 | 0.7 | 42.0 | 0.5 | 40.9 | 1.2 | 1.3 | 43.1 | 1.2 | 1.1 | 37.8 | 0.5 | -1.8 | 40.3 | 0.2 | -1.7 | 38.1 | 0.9 | -1.5 | 40.0 | 0.7 | -2.0 | |||||||
2005 | 39.7 | 0.8 | 42.0 | 0.5 | 41.1 | 1.4 | 1.4 | 43.4 | 1.5 | 1.4 | 37.9 | 0.6 | -1.8 | 40.3 | 0.2 | -1.7 | 38.3 | 1.1 | -1.4 | 40.1 | 0.8 | -1.9 | |||||||
2006 | 39.8 | 0.9 | 42.1 | 0.6 | 41.3 | 1.6 | 1.5 | 43.5 | 1.6 | 1.4 | 37.9 | 0.6 | -1.9 | 40.2 | 0.1 | -1.9 | 38.5 | 1.3 | -1.3 | 40.4 | 1.1 | -1.7 | |||||||
2007 | 39.8 | 0.9 | 42.1 | 0.6 | 41.5 | 1.8 | 1.7 | 43.8 | 1.9 | 1.7 | 37.8 | 0.5 | -2.0 | 40.1 | 0.0 | -2.0 | 38.6 | 1.4 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
2008 | 39.9 | 1.0 | 42.1 | 0.6 | 41.7 | 2.0 | 1.8 | 44.0 | 2.1 | 1.9 | 37.8 | 0.5 | -2.1 | 40.1 | 0.0 | -2.0 | 38.7 | 1.5 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
3rd period | |||||||||||||||||||||||||||||
2009 | 39.9 | 1.0 | 42.1 | 0.6 | 41.9 | 2.2 | 2.0 | 44.2 | 2.3 | 2.1 | 37.8 | 0.5 | -2.1 | 40.0 | -0.1 | -2.1 | 38.8 | 1.6 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2010 | 40.0 | 1.1 | 42.1 | 0.6 | 42.1 | 2.4 | 2.1 | 44.4 | 2.5 | 2.3 | 37.8 | 0.5 | -2.2 | 40.0 | -0.1 | -2.1 | 38.9 | 1.7 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2011 | 40.1 | 1.2 | 42.2 | 0.7 | 42.3 | 2.6 | 2.2 | 44.5 | 2.6 | 2.3 | 37.9 | 0.6 | -2.2 | 39.9 | -0.2 | -2.3 | 39.0 | 1.8 | -1.1 | 40.7 | 1.4 | -1.5 | |||||||
2012 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.6 | 2.7 | 2.4 | 37.9 | 0.6 | -2.3 | 39.9 | -0.2 | -2.3 | 39.1 | 1.9 | -1.1 | 40.8 | 1.5 | -1.4 | |||||||
2013 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.7 | 2.8 | 2.5 | 38.0 | 0.7 | -2.2 | 39.9 | -0.2 | -2.3 | 39.2 | 2.0 | -1.0 | 40.9 | 1.6 | -1.3 | |||||||
Δint correspnds to the change since start Δstd corresponds to the change compared to national average |
If you want to further add to the visual hints you can use specific HTML-code and insert it into the cells. Here we will color the Δstd according to color.
cols_2_clr <- grep("Δ<sub>std</sub>", colnames(mx))
# We need a copy as the formatting causes the matrix to loos
# its numerical property
out_mx <- txtRound(mx, 1)
min_delta <- min(mx[,cols_2_clr])
span_delta <- max(mx[,cols_2_clr]) - min(mx[,cols_2_clr])
for (col in cols_2_clr){
out_mx[, col] <- mapply(function(val, strength)
paste0("<span style='font-weight: 900; color: ",
colorRampPalette(c("#009900", "#000000", "#990033"))(101)[strength],
"'>",
val, "</span>"),
val = out_mx[,col],
strength = round((mx[,col] - min_delta)/span_delta*100 + 1),
USE.NAMES = FALSE)
}
htmlTable(out_mx,
caption = "Average age in Sweden counties over a period of
15 years. The Norbotten county is typically known
for having a negative migration pattern compared to
Stockholm, while Uppsala has a proportionally large
population of students.",
pos.rowlabel = "bottom",
rowlabel="Year",
col.rgroup = c("none", "#FFFFCC"),
col.columns = c(rep("#EFEFF0", 4),
rep("none", ncol(mx) - 4)),
align="rrrr|r",
cgroup = cgroup,
n.cgroup = n.cgroup,
rgroup = c("1st period",
"2nd period",
"3rd period"),
n.rgroup = rep(5, 3),
tfoot = txtMergeLines("Δ<sub>int</sub> correspnds to the change since start",
"Δ<sub>std</sub> corresponds to the change compared to national average"),
cspan.rgroup = 1)
Average age in Sweden counties over a period of 15 years. The Norbotten county is typically known for having a negative migration pattern compared to Stockholm, while Uppsala has a proportionally large population of students. | |||||||||||||||||||||||||||||
Sweden | Norrbotten county | Stockholm county | Uppsala county | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | ||||||||||||||||||||||
Year | Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | |||||||
1st period | |||||||||||||||||||||||||||||
1999 | 38.9 | 0.0 | 41.5 | 0.0 | 39.7 | 0.0 | 0.8 | 41.9 | 0.0 | 0.4 | 37.3 | 0.0 | -1.6 | 40.1 | 0.0 | -1.4 | 37.2 | 0.0 | -1.7 | 39.3 | 0.0 | -2.2 | |||||||
2000 | 39.0 | 0.1 | 41.6 | 0.1 | 40.0 | 0.3 | 1.0 | 42.2 | 0.3 | 0.6 | 37.4 | 0.1 | -1.6 | 40.1 | 0.0 | -1.5 | 37.5 | 0.3 | -1.5 | 39.4 | 0.1 | -2.2 | |||||||
2001 | 39.2 | 0.3 | 41.7 | 0.2 | 40.2 | 0.5 | 1.0 | 42.5 | 0.6 | 0.8 | 37.5 | 0.2 | -1.7 | 40.1 | 0.0 | -1.6 | 37.6 | 0.4 | -1.6 | 39.6 | 0.3 | -2.1 | |||||||
2002 | 39.3 | 0.4 | 41.8 | 0.3 | 40.5 | 0.8 | 1.2 | 42.8 | 0.9 | 1.0 | 37.6 | 0.3 | -1.7 | 40.2 | 0.1 | -1.6 | 37.8 | 0.6 | -1.5 | 39.7 | 0.4 | -2.1 | |||||||
2003 | 39.4 | 0.5 | 41.9 | 0.4 | 40.7 | 1.0 | 1.3 | 43.0 | 1.1 | 1.1 | 37.7 | 0.4 | -1.7 | 40.2 | 0.1 | -1.7 | 38.0 | 0.8 | -1.4 | 39.8 | 0.5 | -2.1 | |||||||
2nd period | |||||||||||||||||||||||||||||
2004 | 39.6 | 0.7 | 42.0 | 0.5 | 40.9 | 1.2 | 1.3 | 43.1 | 1.2 | 1.1 | 37.8 | 0.5 | -1.8 | 40.3 | 0.2 | -1.7 | 38.1 | 0.9 | -1.5 | 40.0 | 0.7 | -2.0 | |||||||
2005 | 39.7 | 0.8 | 42.0 | 0.5 | 41.1 | 1.4 | 1.4 | 43.4 | 1.5 | 1.4 | 37.9 | 0.6 | -1.8 | 40.3 | 0.2 | -1.7 | 38.3 | 1.1 | -1.4 | 40.1 | 0.8 | -1.9 | |||||||
2006 | 39.8 | 0.9 | 42.1 | 0.6 | 41.3 | 1.6 | 1.5 | 43.5 | 1.6 | 1.4 | 37.9 | 0.6 | -1.9 | 40.2 | 0.1 | -1.9 | 38.5 | 1.3 | -1.3 | 40.4 | 1.1 | -1.7 | |||||||
2007 | 39.8 | 0.9 | 42.1 | 0.6 | 41.5 | 1.8 | 1.7 | 43.8 | 1.9 | 1.7 | 37.8 | 0.5 | -2.0 | 40.1 | 0.0 | -2.0 | 38.6 | 1.4 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
2008 | 39.9 | 1.0 | 42.1 | 0.6 | 41.7 | 2.0 | 1.8 | 44.0 | 2.1 | 1.9 | 37.8 | 0.5 | -2.1 | 40.1 | 0.0 | -2.0 | 38.7 | 1.5 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
3rd period | |||||||||||||||||||||||||||||
2009 | 39.9 | 1.0 | 42.1 | 0.6 | 41.9 | 2.2 | 2.0 | 44.2 | 2.3 | 2.1 | 37.8 | 0.5 | -2.1 | 40.0 | -0.1 | -2.1 | 38.8 | 1.6 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2010 | 40.0 | 1.1 | 42.1 | 0.6 | 42.1 | 2.4 | 2.1 | 44.4 | 2.5 | 2.3 | 37.8 | 0.5 | -2.2 | 40.0 | -0.1 | -2.1 | 38.9 | 1.7 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2011 | 40.1 | 1.2 | 42.2 | 0.7 | 42.3 | 2.6 | 2.2 | 44.5 | 2.6 | 2.3 | 37.9 | 0.6 | -2.2 | 39.9 | -0.2 | -2.3 | 39.0 | 1.8 | -1.1 | 40.7 | 1.4 | -1.5 | |||||||
2012 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.6 | 2.7 | 2.4 | 37.9 | 0.6 | -2.3 | 39.9 | -0.2 | -2.3 | 39.1 | 1.9 | -1.1 | 40.8 | 1.5 | -1.4 | |||||||
2013 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.7 | 2.8 | 2.5 | 38.0 | 0.7 | -2.2 | 39.9 | -0.2 | -2.3 | 39.2 | 2.0 | -1.0 | 40.9 | 1.6 | -1.3 | |||||||
Δint correspnds to the change since start Δstd corresponds to the change compared to national average |
Although a graph most likely does the visualization task better, tables are good at conveying detailed information. It is in my mind without doubt easier in the latest version to find the pattern in the data.
Lastly I would like to thank Stephen Few, ThinkUI, ACAPS, and LabWrite for inspiration.
ztable
-packageA promising and interesting alternative package is the ztable
package. The package can also export to LaTeX and if you need this functionality it may be a good choice. The grouping for columns is currently (version 0.1.5) not working entirely as expected and the html-code does not fully validate, but the package is under active development and will hopefully soon be a fully functional alternative.
library(ztable)
options(ztable.type="html")
zt <- ztable(out_mx,
caption = "Average age in Sweden counties over a period of
15 years. The Norbotten county is typically known
for having a negative migration pattern compared to
Stockholm, while Uppsala has a proportionally large
population of students.",
zebra.type = 1,
zebra = "peach",
align=paste(rep("r", ncol(out_mx) + 1), collapse = ""))
# zt <- addcgroup(zt,
# cgroup = cgroup,
# n.cgroup = n.cgroup)
# Causes an error:
# Error in if (result <= length(vlines)) { :
zt <- addrgroup(zt,
rgroup = c("1st period",
"2nd period",
"3rd period"),
n.rgroup = rep(5, 3))
print(zt)
Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1st period | ||||||||||||||||||||||
2nd period | ||||||||||||||||||||||
3rd period | ||||||||||||||||||||||
xtable
-packageThe xtable
is a solution that delivers both HTML and LaTeX. The syntax is very similar to kable
:
output <-
matrix(sprintf("Content %s", LETTERS[1:4]),
ncol=2, byrow=TRUE)
colnames(output) <-
c("1st header", "2nd header")
rownames(output) <-
c("1st row", "2nd row")
library(xtable)
print(xtable(output,
caption="A test table",
align = c("l", "c", "r")),
type="html")
1st header | 2nd header | |
---|---|---|
1st row | Content A | Content B |
2nd row | Content C | Content D |
The downside with the function is that you need to change output depending on your target and there is not that much advantage compared to kable
.
A markdown table is fairly straight forward and are simple to manually create. Just write the plain text below:
1st Header | 2nd Header ----------- | ------------- Content A | Content B Content C | Content D
And you will end up with this beauty:
1st Header | 2nd Header |
---|---|
Content A | Content B |
Content C | Content D |
knitr::kable
functionNow this is not the R way, we want to use a function that does this. The knitr comes with a table function well suited for this, kable:
library(knitr)
kable(output,
caption="A test table",
align = c("c", "r"))
1st header | 2nd header | |
---|---|---|
1st row | Content A | Content B |
2nd row | Content C | Content D |
The advantage with the kable
function is that it outputs true markdown tables and these can through the pandoc system be converted to any document format. Some of the downsides are:
pander::pandoc.table
functionAnother option is to use the pander function that can help with text-formatting inside a markdown-compatible table (Thanks Gergely Daróczi for the tip). Here’s a simple example:
library(pander)
pandoc.table(output, emphasize.rows = 1, emphasize.strong.cols = 2)
1st header | 2nd header | |
---|---|---|
1st row | Content A | Content B |
2nd row | Content C | Content D |
There are a few more text alternatives available when designing tables. I included these from the manual for completeness.
| Right | Left | Default | Center | |------:|:-----|---------|:------:| | 12 | 12 | 12 | 12 | | 123 | 123 | 123 | 123 | | 1 | 1 | 1 | 1 | : Demonstration of pipe table syntax.
Right | Left | Default | Center |
---|---|---|---|
12 | 12 | 12 | 12 |
123 | 123 | 123 | 123 |
1 | 1 | 1 | 1 |
: Sample grid table. +---------------+---------------+--------------------+ | Fruit | Price | Advantages | +===============+===============+====================+ | Bananas | $1.34 | - built-in wrapper | | | | - bright color | +---------------+---------------+--------------------+ | Oranges | $2.10 | - cures scurvy | | | | - tasty | +---------------+---------------+--------------------+
Fruit | Price | Advantages |
---|---|---|
Bananas |
$1.34 |
|
Oranges |
$2.10 |
|