
Package ‘parallelML’
June 26, 2015

Type Package

Title A Parallel-Voting Algorithm for many Classifiers

Version 1.2

Date 2015-06-26

Author Wannes Rosiers (InfoFarm)

Maintainer Wannes Rosiers <wannes.rosiers@infofarm.be>

Description By sampling your data, running the provided classifier on these samples in paral-
lel on your own machine and letting your models vote on a prediction, we return much faster pre-
dictions than the regular machine learning algorithm and possibly even more accurate predictions.

License GPL-2

Depends R (>= 2.14.0)

Imports parallel (>= 3.1.1), foreach (>= 1.2.0), doParallel (>= 1.0.8)

URL www.infofarm.be

NeedsCompilation no

Repository CRAN

Date/Publication 2015-06-26 14:02:47

R topics documented:
parallelML-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
caller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
convertAverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
getArgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
getCall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
get_args . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
parallelML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
predictML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
registerCores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
testData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
trainData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
trainSample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1



2 parallelML-package

Index 19

parallelML-package Parallel-Voting version of machine learning algorithms

Description

By sampling your data, running the machine learning algorithm on these samples in parallel on your
own machine and letting your models vote on a prediction, we return much faster predictions than
the regular machine learning algorithm and possibly even more accurate predictions.

Details

Package: parallelML
Type: Package
Version: 1.0
Date: 2015-09-06
License: GPL-2

This package consists of two main functions: parallelML A function which allows you to create
multiple machine learning models: one for each core you provide. It returns a list of machine
learning models. predictML: A function which creates predictions for all models you created.
When combine is "vote", it returns the class most models agree upon, otherwise it gives a list of
predictions of all models

Author(s)

Wannes Rosiers

Maintainer: Wannes Rosiers <wannes.rosiers@infofarm.be>

See Also

This package can be regarded as a parallel extension of machine learning algorithms, therefor check
the package of the machine learning algorithm you want to use.

Examples

## Not run:
# Load the library which provides svm
library(e1071)

# Create your data
data(iris)

# Create a model
parSvmModel <- parallelML("svm(formula = Species ~ ., data = iris)",

"e1071",samplingSize = 0.8)



caller 3

# Get prediction
parSvmPred <- predictML("predict(parSvmModel,newdata=iris)",

"e1071","vote")

# Check the quality
table(parSvmPred,iris$Species)

## End(Not run)

caller Convert arguments of a function to a list

Description

It strips the function call of a function and returns a named list of only the used arguments

Usage

caller(...)

Arguments

... All arguments you would pass to another function.

Value

A named list of all arguments

Author(s)

Wannes Rosiers

Examples

caller(formula = Species ~ ., data = iris)



4 convertAverage

convertAverage Take averages over a list of data.frames

Description

Given a list of similar data.frames (same schema and dimension) or vectors (same length), create a
single data.frame or vector with same dimension or length consisting of averages over the list.

Usage

convertAverage(data)

Arguments

data A list of equally-sized data.frames or vectors

Value

A single data.frame or vector containing averages over the list.

Author(s)

Wannes Rosiers

Examples

# Create a list of data.frames
frame1 <- data.frame(a=1:10,b=2:11)
frame2 <- data.frame(a=11:20,b=3:12)
frameList <- list(frame1,frame2)

# Take the respective averages
convertAverage(frameList)

# Create a list of vectors
vector1 <- 1:10
vector2 <- 11:20
vectorList <- list(vector1,vector2)

# Take the respective averages
convertAverage(vectorList)



getArgs 5

getArgs Get all arguments of a machine learning call

Description

Converts a machine learning call to a named list of all its arguments.

Usage

getArgs(MLCall)

Arguments

MLCall Your call to a machine learning algorithm. All arguments in this call should be
named.

Value

A named list of all arguments present in your machine learning call

Author(s)

Wannes Rosiers

Examples

## Not run:
library(e1071)
MLCall <- "svm(formula = Species ~ ., data = iris)"
getArgs(MLCall)

## End(Not run)

getCall Convert string to function call

Description

Convert string to function call, where you can acces easily all entries

Usage

getCall(MLCall)

Arguments

MLCall Your call to a machine learning algorithm. All arguments in this call should be
named.



6 get_args

Value

A function Call of class "call"

Author(s)

Wannes Rosiers

Examples

## Not run:
library(e1071)
MLCall <- "svm(formula = Species ~ ., data = iris)"
functionCall <- getCall(MLCall)
functionCall$formula

## End(Not run)

get_args Get all arguments of a call

Description

This function can only be called within another function, it then returns a named list of all arguments
in the super-function.

Usage

get_args()

Value

A named list of all arguments in the super-function.

Author(s)

Wannes Rosiers



iris 7

iris Edgar Anderson’s Iris Data

Description

This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for 50 flowers from each
of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

Usage

iris

Format

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length, Sepal.Width,
Petal.Length, Petal.Width, and Species. iris3 gives the same data arranged as a 3-dimensional array
of size 50 by 4 by 3, as represented by S-PLUS. The first dimension gives the case number within
the species subsample, the second the measurements with names Sepal L., Sepal W., Petal L., and
Petal W., and the third the species.

Source

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7, Part II, 179–188. The data were collected by Anderson, Edgar (1935). The irises of the Gaspe
Peninsula, Bulletin of the American Iris Society, 59, 2–5.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (has iris3 as iris.)

Examples

dni3 <- dimnames(iris3)
ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol = 4,

dimnames = list(NULL, sub(" L.",".Length",
sub(" W.",".Width", dni3[[2]])))),

Species = gl(3, 50, labels = sub("S", "s", sub("V", "v", dni3[[3]]))))
all.equal(ii, iris) # TRUE



8 parallelML

parallelML Parallel-Voting version of machine learning algorithms

Description

By sampling your data, running the machine learning algorithm on these samples in parallel on your
own machine and letting your models vote on a prediction, we return much faster predictions than
the regular machine learning algorithm and possibly even more accurate predictions.

Usage

## Default S3 method:
parallelML(MLCall, MLPackage,
samplingSize = 0.2,numberCores = detectCores(),
underSample = FALSE, underSampleTarget = NULL,
sampleMethod = "bagging")

Arguments

MLCall Your call to a machine learning algorithm. All arguments in this call should be
named and the package only allows formula calls. Hence the call should look
like "machineLearningAlgorithm(formula = ..., data = ..., ...)".

MLPackage A character string of the package which provides your machine learning algo-
rithm. This is needed since all cores should load the package.

samplingSize Size of your data you will take in each sample.

numberCores Number of cores of your machine you want to use. Is set equal to the number of
samples you take.

underSample Logical wether you want to take an undersample on your desired target.
underSampleTarget

When you set underSample to TRUE, underSampleTarget takes your target you
want to keep in every sample. e.g. If you have 5 elements of category1 and
100 elements of category2 and your sampleSize is 0.2, then every sample will
contain 25 elements, namely the 5 of category1 and 20 of category2.

sampleMethod String which decides wether you sample on your observations (bagging) or on
your variables (random).

Value

A list containing of numberCores machine learning models.

Note

Although it can cope with numeric probability predictions, this package is designed for classifica-
tion labeling.



parallelML 9

Author(s)

Wannes Rosiers

See Also

This package can be regarded as a parallel extension of machine learning algorithms, therefor check
the package of the machine learning algorithm you want to use.

Examples

## Not run:
# Load the library which provides svm
library(e1071)

# Create your data
data(iris)

# Create a model
parSvmModel <- parallelML("svm(formula = Species ~ ., data = iris)",

"e1071",samplingSize = 0.8)

# Get prediction
parSvmPred <- predictML("predict(parSvmModel,newdata=iris)",

"e1071","vote")

# Check the quality
table(parSvmPred,iris$Species)

## End(Not run)
## Not run:
# Load the library which provides rpart
library(rpart)

# Create your data
data("magicData")

# Create a model
parTreeModel <- parallelML("rpart(formula = V11 ~ ., data = trainData[,-1])",

"rpart",samplingSize = 0.8)

# Get prediction
parTrainTreePred <- predictML("predict(parTreeModel,newdata=trainData[,-1],type='class')",

"rpart","vote")
parTestTreePred <- predictML("predict(parTreeModel,newdata=testData[,-1],type='class')",

"rpart","vote")

# Check the quality
table(parTrainTreePred,trainData$V11)
table(parTestTreePred,testData$V11)

## End(Not run)
## Not run:



10 predictML

# Load the library which provides svm
library(e1071)

# Create your data
data(iris)
subdata <- iris[1:60,]

# Create a model
parsvmmodel <- parallelML("svm(formula = Species ~ ., data = subdata)",

"e1071",samplingSize = 0.8,
underSample = TRUE, underSampleTarget = "versicolor")

# Get prediction
parsvmpred <- predictML("predict(parsvmmodel,newdata=subdata)",

"e1071","vote")

# Check the quality
table(parsvmpred,subdata$Species)

## End(Not run)
## Not run:
# Load the library which provides svm
library(e1071)

# Create your data
data(iris)

# Create a model
parsvmmodel <- parallelML("svm(formula = Species ~ ., data = iris)",

"e1071",samplingSize = 0.6,
sampleMethod = "random")

# Get prediction
parsvmpred <- predictML("predict(parsvmmodel,newdata=iris)",

"e1071","vote")

# Check the quality
table(parsvmpred,iris$Species)

## End(Not run)

predictML Parallel-Voting prediction of multiple machine learning models

Description

By sampling your data, running the machine learning algorithm on these samples in parallel on your
own machine and letting your models vote on a prediction, we return much faster predictions than
the regular machine learning algorithm and possibly even more accurate predictions.



predictML 11

Usage

predictML(predictCall, MLPackage, combine = "raw")

Arguments

predictCall Your call to a predict function. The object however should be an element of
class parallelML.

MLPackage A character string of the package which provides your machine learning algo-
rithm. This is needed since all cores should load the package.

combine A character string: "raw" when you want to return a list of predictions, "vote"
when you want to return the class upon which most models agree and "avg"
when you want to return the average of numeric predictions (probabilities).

Value

Either a list of vectors of predictions for each model or a vector of class upon which most models
agree.

Note

Although it can cope with numeric probability predictions, this package is designed for classifica-
tion labeling.

Author(s)

Wannes Rosiers

See Also

This package can be regarded as a parallel extension of machine learning algorithms, therefor check
the package of the machine learning algorithm you want to use.

Examples

## Not run:
# Load the library which provides svm
library(e1071)

# Create your data
data(iris)

# Create a model
parSvmModel <- parallelML("svm(formula = Species ~ ., data = iris)",

"e1071",samplingSize = 0.8)

# Get prediction
parSvmPred <- predictML("predict(parSvmModel,newdata=iris)",

"e1071","vote")

# Check the quality



12 registerCores

table(parSvmPred,iris$Species)

## End(Not run)
## Not run:
# Load the library which provides rpart
library(rpart)

# Create your data
data("magicData")

# Create a model
parTreeModel <- parallelML("rpart(formula = V11 ~ ., data = trainData[,-1])",

"rpart",samplingSize = 0.8)

# Get prediction
parTrainTreePred <- predictML("predict(parTreeModel,newdata=trainData[,-1],type='class')",

"rpart","vote")
parTestTreePred <- predictML("predict(parTreeModel,newdata=testData[,-1],type='class')",

"rpart","vote")

# Check the quality
table(parTrainTreePred,trainData$V11)
table(parTestTreePred,testData$V11)

## End(Not run)
## Not run:
# Load the library which provides svm
library(e1071)

# Create your data
data(iris)
data("magicData")

# Get nummeric predicitions of Support Vector Machine
parsvmmodel <- parallelML("svm(formula = Species ~ ., data = iris,probability=TRUE)",

"e1071",samplingSize = 0.8,
underSample = TRUE, underSampleTarget = "versicolor")

parsvmpred <- predictML("predict(parsvmmodel,newdata=iris,probability=TRUE)",
"e1071","avg")

# Get numeric predictions of a generalized linear model
parglmmodel <- parallelML("glm(formula = V11 ~ ., data = trainData[,-1],

family = binomial(link='logit'))","stats",samplingSize = 0.8)

parglmpred <- predictML("predict(parglmmodel,newdata=trainData[,-1],type='response')",
"stats","avg")

## End(Not run)

registerCores registerCores



testData 13

Description

The registerCores function is used to register the multicore parallel backend via either the doMC or
doSNOW package.

Usage

registerCores(numberCores)

Arguments

numberCores The number of cores to use for parallel execution. If not specified, the number
of cores is set to the number of cores of your machine.

Details

The multicore functionality, originally written by Simon Urbanek and subsumed in the parallel
package in R 2.14.0, provides functions for parallel execution of R code on machines with multiple
cores or processors, using the system fork call to spawn copies of the current process. The multi-
core functionality, and therefore registerCores, should not be used in a GUI environment, because
multiple processes then share the same GUI.

Author(s)

Wannes Rosiers

testData MagicGamma test data

Description

The data are MC generated (see below) to simulate registration of high energy gamma particles in
a ground-based atmospheric Cherenkov gamma telescope using the imaging technique. Cherenkov
gamma telescope observes high energy gamma rays, taking advantage of the radiation emitted by
charged particles produced inside the electromagnetic showers initiated by the gammas, and devel-
oping in the atmosphere. This Cherenkov radiation (of visible to UV wavelengths) leaks through
the atmosphere and gets recorded in the detector, allowing reconstruction of the shower parameters.
The available information consists of pulses left by the incoming Cherenkov photons on the photo-
multiplier tubes, arranged in a plane, the camera. Depending on the energy of the primary gamma, a
total of few hundreds to some 10000 Cherenkov photons get collected, in patterns (called the shower
image), allowing to discriminate statistically those caused by primary gammas (signal) from the im-
ages of hadronic showers initiated by cosmic rays in the upper atmosphere (background).

Typically, the image of a shower after some pre-processing is an elongated cluster. Its long axis is
oriented towards the camera center if the shower axis is parallel to the telescope’s optical axis, i.e. if
the telescope axis is directed towards a point source. A principal component analysis is performed
in the camera plane, which results in a correlation axis and defines an ellipse. If the depositions
were distributed as a bivariate Gaussian, this would be an equidensity ellipse. The characteristic
parameters of this ellipse (often called Hillas parameters) are among the image parameters that can



14 testData

be used for discrimination. The energy depositions are typically asymmetric along the major axis,
and this asymmetry can also be used in discrimination. There are, in addition, further discriminating
characteristics, like the extent of the cluster in the image plane, or the total sum of depositions.

The data set was generated by a Monte Carlo program, Corsika, described in: D. Heck et al.,
CORSIKA, A Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe
FZKA 6019 (1998). [Web Link]

The program was run with parameters allowing to observe events with energies down to below 50
GeV.

Usage

testData

Format

1. fLength: continuous # major axis of ellipse [mm] 2. fWidth: continuous # minor axis of ellipse
[mm] 3. fSize: continuous # 10-log of sum of content of all pixels [in #phot] 4. fConc: continuous
# ratio of sum of two highest pixels over fSize [ratio] 5. fConc1: continuous # ratio of highest
pixel over fSize [ratio] 6. fAsym: continuous # distance from highest pixel to center, projected onto
major axis [mm] 7. fM3Long: continuous # 3rd root of third moment along major axis [mm] 8.
fM3Trans: continuous # 3rd root of third moment along minor axis [mm] 9. fAlpha: continuous
# angle of major axis with vector to origin [deg] 10. fDist: continuous # distance from origin to
center of ellipse [mm] 11. class: g,h # gamma (signal), hadron (background)

g = gamma (signal): 12332 h = hadron (background): 6688

For technical reasons, the number of h events is underestimated. In the real data, the h class repre-
sents the majority of the events.

The simple classification accuracy is not meaningful for this data, since classifying a background
event as signal is worse than classifying a signal event as background. For comparison of different
classifiers an ROC curve has to be used. The relevant points on this curve are those, where the
probability of accepting a background event as signal is below one of the following thresholds:
0.01, 0.02, 0.05, 0.1, 0.2 depending on the required quality of the sample of the accepted events for
different experiments.

Source

Bock, R.K., Chilingarian, A., Gaug, M., Hakl, F., Hengstebeck, T., Jirina, M., Klaschka, J., Kotrc,
E., Savicky, P., Towers, S., Vaicilius, A., Wittek W. (2004). Methods for multidimensional event
classification: a case study using images from a Cherenkov gamma-ray telescope. Nucl.Instr.Meth.
A, 516, pp. 511-528.

P. Savicky, E. Kotrc. Experimental Study of Leaf Confidences for Random Forest. Proceedings
of COMPSTAT 2004, In: Computational Statistics. (Ed.: Antoch J.) - Heidelberg, Physica Verlag
2004, pp. 1767-1774.

J. Dvorak, P. Savicky. Softening Splits in Decision Trees Using Simulated Annealing. Proceedings
of ICANNGA 2007, Warsaw, (Ed.: Beliczynski et. al), Part I, LNCS 4431, pp. 721-729.



trainData 15

References

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and Computer Science.

trainData MagicGamma training data

Description

The data are MC generated (see below) to simulate registration of high energy gamma particles in
a ground-based atmospheric Cherenkov gamma telescope using the imaging technique. Cherenkov
gamma telescope observes high energy gamma rays, taking advantage of the radiation emitted by
charged particles produced inside the electromagnetic showers initiated by the gammas, and devel-
oping in the atmosphere. This Cherenkov radiation (of visible to UV wavelengths) leaks through
the atmosphere and gets recorded in the detector, allowing reconstruction of the shower parameters.
The available information consists of pulses left by the incoming Cherenkov photons on the photo-
multiplier tubes, arranged in a plane, the camera. Depending on the energy of the primary gamma, a
total of few hundreds to some 10000 Cherenkov photons get collected, in patterns (called the shower
image), allowing to discriminate statistically those caused by primary gammas (signal) from the im-
ages of hadronic showers initiated by cosmic rays in the upper atmosphere (background).

Typically, the image of a shower after some pre-processing is an elongated cluster. Its long axis is
oriented towards the camera center if the shower axis is parallel to the telescope’s optical axis, i.e. if
the telescope axis is directed towards a point source. A principal component analysis is performed
in the camera plane, which results in a correlation axis and defines an ellipse. If the depositions
were distributed as a bivariate Gaussian, this would be an equidensity ellipse. The characteristic
parameters of this ellipse (often called Hillas parameters) are among the image parameters that can
be used for discrimination. The energy depositions are typically asymmetric along the major axis,
and this asymmetry can also be used in discrimination. There are, in addition, further discriminating
characteristics, like the extent of the cluster in the image plane, or the total sum of depositions.

The data set was generated by a Monte Carlo program, Corsika, described in: D. Heck et al.,
CORSIKA, A Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe
FZKA 6019 (1998). [Web Link]

The program was run with parameters allowing to observe events with energies down to below 50
GeV.

Usage

trainData

Format

1. fLength: continuous # major axis of ellipse [mm] 2. fWidth: continuous # minor axis of ellipse
[mm] 3. fSize: continuous # 10-log of sum of content of all pixels [in #phot] 4. fConc: continuous
# ratio of sum of two highest pixels over fSize [ratio] 5. fConc1: continuous # ratio of highest
pixel over fSize [ratio] 6. fAsym: continuous # distance from highest pixel to center, projected onto
major axis [mm] 7. fM3Long: continuous # 3rd root of third moment along major axis [mm] 8.



16 trainSample

fM3Trans: continuous # 3rd root of third moment along minor axis [mm] 9. fAlpha: continuous
# angle of major axis with vector to origin [deg] 10. fDist: continuous # distance from origin to
center of ellipse [mm] 11. class: g,h # gamma (signal), hadron (background)

g = gamma (signal): 12332 h = hadron (background): 6688

For technical reasons, the number of h events is underestimated. In the real data, the h class repre-
sents the majority of the events.

The simple classification accuracy is not meaningful for this data, since classifying a background
event as signal is worse than classifying a signal event as background. For comparison of different
classifiers an ROC curve has to be used. The relevant points on this curve are those, where the
probability of accepting a background event as signal is below one of the following thresholds:
0.01, 0.02, 0.05, 0.1, 0.2 depending on the required quality of the sample of the accepted events for
different experiments.

Source

Bock, R.K., Chilingarian, A., Gaug, M., Hakl, F., Hengstebeck, T., Jirina, M., Klaschka, J., Kotrc,
E., Savicky, P., Towers, S., Vaicilius, A., Wittek W. (2004). Methods for multidimensional event
classification: a case study using images from a Cherenkov gamma-ray telescope. Nucl.Instr.Meth.
A, 516, pp. 511-528.

P. Savicky, E. Kotrc. Experimental Study of Leaf Confidences for Random Forest. Proceedings
of COMPSTAT 2004, In: Computational Statistics. (Ed.: Antoch J.) - Heidelberg, Physica Verlag
2004, pp. 1767-1774.

J. Dvorak, P. Savicky. Softening Splits in Decision Trees Using Simulated Annealing. Proceedings
of ICANNGA 2007, Warsaw, (Ed.: Beliczynski et. al), Part I, LNCS 4431, pp. 721-729.

References

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and Computer Science.

trainSample Sample data in parallel

Description

Sample data or data and output in parallel: each core provides one sample of your desired size.

Usage

trainSample(data, numberCores = detectCores(), samplingSize = 0.2,
underSample = FALSE, toPredict = NULL, underSampleTarget = NULL,
sampleMethod = "bagging")



trainSample 17

Arguments

data A data frame, or structure convertable to a data frame, which you want to sample
upon.

numberCores In this setting equal to number of different training samples you are creating:
one for each core you are using.

samplingSize Size of your training sample in percentage.

underSample Logical wether you want to take an undersample on your desired target.

toPredict The column of your dataset you want to predict
underSampleTarget

When you set underSample to TRUE, underSampleTarget takes your target you
want to keep in every sample. e.g. If you have 5 elements of category1 and
100 elements of category2 and your sampleSize is 0.2, then every sample will
contain 25 elements, namely the 5 of category1 and 20 of category2.

sampleMethod String which decides wether you sample on your observations (bagging) or on
your variables (random).

Value

You get a list of length numberCores. Each core has created one item of your list, namely a data
frame containing a a samplingSize size sample of data.

Author(s)

Wannes Rosiers

See Also

Under the hood this function uses foreach, and sample

Examples

## Not run:
# Create your data
x <- data.frame(1:10,10:1)

# Sampling on observations
trainSample(x,numberCores=2,samplingSize = 0.5)

#Create your data
data(iris)

# Sampling on variables
trainSample(iris,numberCores=2,samplingSize = 0.6,

toPredict = "Species", sampleMethod = "random")

# Create your data
data(iris)
data <- iris[1:110,]



18 trainSample

# Sampling
trainSamples <- trainSample(data,2,0.2,TRUE,"Species","virginica")

## End(Not run)



Index

∗Topic package
parallelML-package, 2

caller, 3
convertAverage, 4

foreach, 17

get_args, 6
getArgs, 5
getCall, 5

iris, 7

parallelML, 2, 8
parallelML-package, 2
predictML, 2, 10
print.parallelML (parallelML), 8

registerCores, 12

sample, 17
summary.parallelML (parallelML), 8

testData, 13
trainData, 15
trainSample, 16

19


	parallelML-package
	caller
	convertAverage
	getArgs
	getCall
	get_args
	iris
	parallelML
	predictML
	registerCores
	testData
	trainData
	trainSample
	Index

