Create an “acset” data-structure. An acset is a list that at a minimum contains four data-structures:
As part of this package a dataset with allele counts from human are provided, called “marinov”. The dataset is a list containing the four required data-structures to create an “acset”.
##Extract data-structures from the marinov list
library('scphaser')
invisible(marinov)
featdata = marinov[['featdata']]
refcount = marinov[['refcount']]
altcount = marinov[['altcount']]
phenodata = marinov[['phenodata']]
Create an “acset” data-structure
acset = new_acset(featdata, refcount, altcount, phenodata)
Print the elements of the acset data-structure and the dimensions of these, illustrating the number of variants and cells.
lapply(acset, dim)
## $featdata
## [1] 2809 14
##
## $phenodata
## [1] 28 1
##
## $refcount
## [1] 2809 28
##
## $altcount
## [1] 2809 28
Print the number of genes
length(unique(acset$featdata$feat))
## [1] 987
Features with less than “nminvar” variants are removed
nminvar = 2
acset = filter_feat_nminvar(acset, nminvar)
Print the element dimensions after filtering out genes with less than 2 variants
lapply(acset, dim)
## $featdata
## [1] 2673 14
##
## $phenodata
## [1] 28 1
##
## $refcount
## [1] 2673 28
##
## $altcount
## [1] 2673 28
##
## $args
## NULL
Transcribed genotypes are called as 2 or 0 if there at least “min_acount” reads and the fold-change >= 3 or <= 1/3, where fold-change = alternative allele count / reference allele count. For entries that do not meet the criteria, such as when bi-allelic expression close to a 50/50 expression ratio between the alleles, the genotype is set to 1.
min_acount = 3
fc = 3
acset = call_gt(acset, min_acount, fc)
Print the elements after calling genotypes. Note that a new element called “gt” was created, containing the called genotypes.
lapply(acset, dim)
## $featdata
## [1] 2673 14
##
## $phenodata
## [1] 28 1
##
## $refcount
## [1] 2673 28
##
## $altcount
## [1] 2673 28
##
## $args
## NULL
##
## $gt
## [1] 2673 28
##
## $gt_compl
## [1] 2673 28
Randomize original counts. The randomized dataset will be used below.
acset_rnd = racset(acset, type = 'gt')
Filter variants on having at least “nmincells” cells with monoallelic calls in at least “nminvar” variants within a feature. After variant filtering, filter features on having at least “nminvar” variants.
nmincells = 5
nminvar = 2
acset = filter_acset(acset, nmincells, nminvar)
Number of variants after filtering
nrow(acset$featdata)
## [1] 1226
Number of features after filtering
length(unique(acset$featdata$feat))
## [1] 431
There are three phasing arguments that can be provided to the phasing function, each with two possible values. Below we call it using genotypes, exhaustive clustering and without weighing and also illustrate calling using the other possible values (first commented lines).
##acset = phase(acset, input = 'ac', weigh = FALSE, method = 'exhaust')
##acset = phase(acset, input = 'ac', weigh = FALSE, method = 'pam')
##acset = phase(acset, input = 'ac', weigh = TRUE, method = 'exhaust')
##acset = phase(acset, input = 'ac', weigh = TRUE, method = 'pam')
##acset = phase(acset, input = 'gt', weigh = TRUE, method = 'exhaust')
##acset = phase(acset, input = 'gt', weigh = TRUE, method = 'pam')
##acset = phase(acset, input = 'gt', weigh = FALSE, method = 'pam')
acset = phase(acset, input = 'gt', weigh = FALSE, method = 'exhaust', verbosity = 0)
As an overview of the elements in the acset datastructure we print the dimension of each element
lapply(acset, dim)
## $featdata
## [1] 1226 14
##
## $phenodata
## [1] 28 1
##
## $refcount
## [1] 1226 28
##
## $altcount
## [1] 1226 28
##
## $args
## NULL
##
## $gt
## [1] 1226 28
##
## $gt_compl
## [1] 1226 28
##
## $varflip
## NULL
##
## $score
## NULL
##
## $phasedfeat
## [1] 1226 6
##
## $gt_phased
## [1] 1226 28
The haplotype output is contained in an element that was added by the phasing function and is named “phasedfeat”
head(acset[['phasedfeat']])
## feat var ref alt hapA hapB
## rs11549082 AACS rs11549082 C T T C
## rs11058046 AACS rs11058046 C T C T
## rs1065071 ABCF2 rs1065071 T C T C
## rs6464133 ABCF2 rs6464133 A G A G
## rs2292899 ACSL1 rs2292899 A G G A
## rs1056896 ACSL1 rs1056896 T C T C
The variants that have been swapped compared to the input reference and alternative alleles are contained in “varflip”. The number of swapped variants is the length of this vector.
length(acset[['varflip']])
## [1] 197
To assess the success of the phasing one can calculate the degree of variability remaining if all cells with haplotype 2 are set to haplotype 1. As a rough measure of this we here calculate the variability as the number of cells that differ from the inferred haplotype for every gene with two variants. The differing number of cells per gene we here denote inconcordance.
##get gt concordance before and after phasing
acset = set_gt_conc(acset)
Inconcordance before phasing
table(acset$gt_conc$notconc$feat2ncell)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12
## 142 26 5 2 4 24 11 7 5 3 5 3 4
Inconcordance after phasing
table(acset$gt_phased_conc$notconc$feat2ncell)
##
## 0 1 2 3
## 199 35 6 1
Filtering
nmincells = 3
nminvar = 2
acset_rnd = filter_acset(acset_rnd, nmincells, nminvar)
Dimensions after filtering
lapply(acset_rnd, dim)
## $featdata
## [1] 2496 14
##
## $phenodata
## [1] 28 1
##
## $refcount
## [1] 2496 28
##
## $altcount
## [1] 2496 28
##
## $args
## NULL
##
## $gt
## [1] 2496 28
##
## $gt_compl
## [1] 2496 28
Number of genes after filtering
length(unique(acset_rnd$featdata$feat))
## [1] 808
Phasing
acset_rnd = phase(acset_rnd, input = 'gt', weigh = FALSE, method = 'exhaust', verbosity = 0)
Get genotype matrix concordance before and after phasing
acset_rnd = set_gt_conc(acset_rnd)
Inconcordance before phasing
table(acset_rnd$gt_conc$notconc$feat2ncell)
##
## 0 1 2 3 4 5 6 7 8 9
## 30 101 126 95 41 25 18 6 3 2
Inconcordance after phasing
table(acset_rnd$gt_phased_conc$notconc$feat2ncell)
##
## 0 1 2 3 4 5 6 9
## 65 170 110 45 32 12 12 1
The removal of variability from the cell distribution after phasing indicates successful phasing. The right subfigure show that phasing cannot be done if the genotype matrix is scrambled, since the transcribed genotype of each cell then do not anylonger correspond to one of two underlying haplotype states.
plot_conc(acset)
plot_conc(acset_rnd)