Last updated on 2017-07-26 01:56:37.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.2-6 | 1.52 | 221.61 | 223.13 | OK | |
r-devel-linux-x86_64-debian-gcc | 0.2-6 | 1.52 | 228.15 | 229.67 | OK | |
r-devel-linux-x86_64-fedora-clang | 0.2-6 | 78.12 | NOTE | |||
r-devel-linux-x86_64-fedora-gcc | 0.2-6 | 80.17 | NOTE | |||
r-devel-windows-ix86+x86_64 | 0.2-6 | 49.00 | 303.00 | 352.00 | NOTE | |
r-patched-linux-x86_64 | 0.2-6 | 1.57 | 250.65 | 252.22 | OK | |
r-patched-solaris-x86 | 0.2-6 | 434.60 | ERROR | |||
r-release-linux-x86_64 | 0.2-6 | 1.65 | 240.74 | 242.39 | OK | |
r-release-windows-ix86+x86_64 | 0.2-6 | 39.00 | 446.00 | 485.00 | NOTE | |
r-release-osx-x86_64 | 0.2-6 | NOTE | ||||
r-oldrel-windows-ix86+x86_64 | 0.2-6 | 45.00 | 384.00 | 429.00 | NOTE | |
r-oldrel-osx-x86_64 | 0.2-6 | NOTE |
Version: 0.2-6
Check: package dependencies
Result: NOTE
Package which this enhances but not available for checking: ‘ROI.plugin.cplex’
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64
Version: 0.2-6
Check: package dependencies
Result: NOTE
Package suggested but not available for checking: ‘ROI.plugin.symphony’
Package which this enhances but not available for checking: ‘ROI.plugin.cplex’
Flavors: r-patched-solaris-x86, r-oldrel-osx-x86_64
Version: 0.2-6
Check: tests
Result: ERROR
Running ‘ROI.R’ [30s/45s]
Running the tests in ‘tests/ROI.R’ failed.
Complete output:
> library(ROI)
ROI.plugin.scs: R Optimization Infrastructure
Registered solver plugins: nlminb, alabama, ecos, glpk, ipop, lpsolve, nloptr, optimx, quadprog, scs.
Default solver: auto.
> library(slam)
> suppressPackageStartupMessages( require("ROI") )
> suppressPackageStartupMessages( require("ROI.plugin.alabama") )
> suppressPackageStartupMessages( require("ROI.plugin.ecos") )
> suppressPackageStartupMessages( require("ROI.plugin.glpk") )
> suppressPackageStartupMessages( require("ROI.plugin.ipop") )
> suppressPackageStartupMessages( require("ROI.plugin.lpsolve") )
> suppressPackageStartupMessages( require("ROI.plugin.nloptr") )
> suppressPackageStartupMessages( require("ROI.plugin.optimx") )
> suppressPackageStartupMessages( require("ROI.plugin.scs") )
> suppressPackageStartupMessages( require("ROI.plugin.symphony") )
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'ROI.plugin.symphony'
> suppressPackageStartupMessages( require("ROI.plugin.quadprog") )
>
>
> ## ---------------------------
> ## Objective
> ## ---------------------------
> test.L_objective <- function() {
+ v <- 1:3
+ m <- matrix(v, 1)
+ slam <- as.simple_triplet_matrix(m)
+ nam <- LETTERS[v]
+ L_objective(v)
+ L_objective(v, nam)
+ L_objective(m)
+ L_objective(m, nam)
+ L_objective(slam)
+ L_objective(slam, nam)
+ }
>
> test.Q_objective <- function() {
+ Lv <- 1:3
+ Lm <- matrix(Lv, 1)
+ Lslam <- as.simple_triplet_matrix(Lm)
+ Qm <- diag(length(Lv))
+ Qslam <- as.simple_triplet_matrix(Qm)
+ nam <- LETTERS[Lv]
+ Q_objective(Qm, Lv)
+ Q_objective(Qm, Lm)
+ Q_objective(Qm, Lslam)
+ Q_objective(Qslam, Lv)
+ Q_objective(Qslam, Lm)
+ Q_objective(Qslam, Lslam)
+ Q_objective(Qm, Lv, nam)
+ Q_objective(Qm, Lm, nam)
+ Q_objective(Qm, Lslam, nam)
+ Q_objective(Qslam, Lv, nam)
+ Q_objective(Qslam, Lm, nam)
+ Q_objective(Qslam, Lslam, nam)
+ }
>
> test.F_objective <- function() {
+ F <- F_objective(sum, 3)
+ }
>
> ## ---------------------------
> ## Constraints
> ## ---------------------------
> test.NO_constraint <- function() {
+ NO_constraint(3)
+ }
>
> test.L_constraint <- function() {
+ L_constraint(matrix(1:3, 1), "==", 2, names=LETTERS[1:3])
+ }
>
> test.Q_constraint <- function() {
+ ## Q_constraint()
+ }
>
> test.C_constraint <- function() {
+ ## C_constraint
+ }
>
>
> ## ---------------------------
> ## Types
> ## ---------------------------
>
>
> ## ---------------------------
> ## Bounds
> ## ---------------------------
>
> ## ---------------------------
> ## R-Methods
> ## ---------------------------
> ## rbind
>
> ## c
> test.combine_L_constraints <- function() {
+ dim_1 <- sample(1:10, 2)
+ dim_2 <- c(sample(1:10, 1), dim_1[2])
+
+ mat_1 <- matrix(sample(1:100, prod(dim_1)), ncol=dim_1[2])
+ dir_1 <- sample(c("==", "<=", ">="), dim_1[1], replace=TRUE)
+ rhs_1 <- sample(1:100, dim_1[1])
+
+ mat_2 <- matrix(sample(1:100, prod(dim_2)), ncol=dim_2[2])
+ dir_2 <- sample(c("==", "<=", ">="), dim_2[1], replace=TRUE)
+ rhs_2 <- sample(1:100, dim_2[1])
+
+ lc_1 <- L_constraint(L = mat_1, dir = dir_1, rhs = rhs_1)
+ lc_2 <- L_constraint(L = mat_2, dir = dir_2, rhs = rhs_2)
+
+ lc_3 <- rbind(lc_1, lc_2)
+ stopifnot( ((nrow(lc_1) + nrow(lc_2)) == nrow(lc_3)) )
+ }
>
> test.combine_F_constraints <- function() {
+ fc1 <- F_constraint(F=function(x) x[1] + x[2]^2, ">=", 0,
+ J=function(x) c(1, 2*x[2]))
+ fc2 <- F_constraint(F=function(x) x[1]^2 + x[2], ">=", 0,
+ J=function(x) c(2*x[1], x[2]))
+ c(fc1, fc2)
+ }
>
> ## as
>
> ## is
>
> ## G
>
> ## J
>
> ## variable.names
>
> ## ---------------------------
> ## Optimization Problems
> ## ---------------------------
>
> ## LP
> ## ==
> test.LP <- function() {
+ mat <- matrix(c(3, 4, 2,
+ 2, 1, 2,
+ 1, 3, 2), nrow=3, byrow=TRUE)
+ x <- OP(objective = c(2, 4, 3),
+ constraints = L_constraint(L = mat,
+ dir = c("<=", "<=", "<="),
+ rhs = c(60, 40, 80)),
+ maximum = TRUE)
+
+ if ( "glpk" %in% ROI_applicable_solvers(x) ) {
+ sol <- ROI_solve(x)
+ stopifnot( equal(sol$solution, c(0, 20/3, 50/3), tol=1e-4) )
+ stopifnot( equal(sol$objval, 230/3, tol=1e-4) )
+ }
+ }
>
> ## QP
> ## ==
> test.QP <- function() {
+ ## QP - Example - 1
+ ##
+ ## from the quadprog package
+ ## (c) S original by Berwin A. Turlach R port by Andreas Weingessel
+ ## GPL-3
+ ##
+ ## min: -(0 5 0) %*% x + 1/2 x^T x
+ ## under the constraints: A^T x >= b
+ ## with b = (-8,2,0)^T
+ ## and (-4 2 0)
+ ## A = (-3 1 -2)
+ ## ( 0 0 1)
+ ## we can use solve.QP as follows:
+ ##
+ ## library(quadprog)
+ ## D <- diag(1, 3)
+ ## d <- c(0, 5, 0)
+ ## A <- cbind(c(-4, -3, 0),
+ ## c( 2, 1, 0),
+ ## c( 0, -2, 1))
+ ## b <- c(-8, 2, 0)
+ ##
+ ## sol <- solve.QP(D, d, A, bvec=b)
+ ## deparse(sol$solution)
+ ## deparse(sol$value)
+ A <- cbind(c(-4, -3, 0),
+ c( 2, 1, 0),
+ c( 0, -2, 1))
+ x <- OP(Q_objective(diag(3), L = c(0, -5, 0)),
+ L_constraint(L = t(A),
+ dir = rep(">=", 3),
+ rhs = c(-8, 2, 0)))
+
+ if ( "quadprog" %in% ROI_applicable_solvers(x) ) {
+ sol <- ROI_solve(x)
+ solution <- c(0.476190476190476, 1.04761904761905, 2.0952380952381)
+ stopifnot( equal(sol$solution, solution) )
+ stopifnot( equal(sol$objval, -2.38095238095238) )
+ }
+ }
>
> ## CP
> ## ==
>
> ## SOCP
> test.SOCP_1 <- function() {
+ obj <- c(1, 1, 1)
+ A <- rbind(c(1, 0, 0))
+ b <- c(sqrt(2))
+ G <- diag(x=-1, 3)
+ h <- rep(0, 3)
+
+ bound <- V_bound(li = 1:3, lb = rep(-Inf, 3))
+
+ lc <- C_constraint(L = rbind(A, G),
+ cones = c(K_zero(1), K_soc(3)),
+ rhs = c(b, h))
+ x <- OP(objective = obj, constraints = lc, types = rep("C", 3),
+ bounds = bound, maximum = FALSE)
+
+ if ( length(ROI_applicable_solvers(x)) ) {
+ sol <- ROI_solve(x)
+ stopifnot( equal(sum(abs(sol$solution - c(sqrt(2), -1, -1))), 0) )
+ stopifnot( equal(sol$objval, (sqrt(2) - 2)) )
+ }
+ }
>
> test.SOCP_2 <- function() {
+ obj <- c(0, -2, -2, 0, -2, -2)
+ A <- rbind(c(1, 0, 0, 0, 0, 0),
+ c(0, 0, 0, 1, 0, 0))
+ b <- c(sqrt(2), sqrt(2))
+ G <- diag(x=-1, 6)
+ h <- rep(0, 6)
+
+ lc <- C_constraint(L = rbind(A, G),
+ cones = c(K_zero(2), K_soc(c(3, 3))),
+ rhs = c(b, h))
+ x <- OP(objective = obj, constraints = lc)
+
+ if ( length(ROI_applicable_solvers(x)) ) {
+ sol <- ROI_solve(x)
+ z <- c(sqrt(2), 1, 1, sqrt(2), 1, 1)
+ stopifnot( equal(sum(abs(sol$solution - z)), 0) )
+ }
+ }
>
> ## EXPP
> test.EXPP_1 <- function() {
+ obj <- c(1, 1, 1)
+ A <- rbind(c(1, 0, 0),
+ c(0, 1, 0))
+ b <- c(1, 2)
+ G <- -diag(3)
+ h <- rep(0, 3)
+
+ lc <- C_constraint(L = rbind(A, G),
+ cones = c(K_zero(2), K_expp(1)),
+ rhs = c(b, h))
+ x <- OP(objective = obj, constraints = lc)
+
+ if ( length(ROI_applicable_solvers(x)) ) {
+ sol <- ROI_solve(x)
+ stopifnot( equal(sol$solution , c(1, 2, 2*exp(1/2))) )
+ }
+ }
>
> test.EXPP_2 <- function() {
+ obj <- c(1, 1, 1)
+ A <- rbind(c(0, 1, 0),
+ c(0, 0, 1))
+ b <- c(2, 2*exp(1/2))
+ G <- diag(x=-1, 3)
+ h <- rep(0, 3)
+
+ lc <- C_constraint(L = rbind(A, G),
+ cones = c(K_zero(2), K_expp(1)),
+ rhs = c(b, h))
+ x <- OP(objective = obj, constraints = lc, maximum = TRUE)
+
+ if ( length(ROI_applicable_solvers(x)) ) {
+ sol <- ROI_solve(x)
+ stopifnot( equal(sol$solution , c(1, 2, 2*exp(1/2))) )
+ }
+ }
>
> test.EXPP_3 <- function() {
+ obj <- c(1, 1, 1)
+ A <- rbind(c(0, 1, 0),
+ c(0, 0, 1))
+ b <- c(1, exp(1))
+ G <- diag(x=-1, 3)
+ h <- rep(0, 3)
+
+ lc <- C_constraint(L = rbind(A, G),
+ cones = c(K_zero(2), K_expp(1)),
+ rhs = c(b, h))
+ x <- OP(objective = obj, constraints = lc,
+ types = rep("C", 3), maximum = TRUE)
+
+ if ( length(ROI_applicable_solvers(x)) ) {
+ sol <- ROI_solve(x)
+ stopifnot( equal(sol$solution , c(1, 1, exp(1))) )
+ }
+ }
>
> ## EXPD
> test.EXPD_1 <- function() {
+ x <- OP(c(1, 1, 1))
+ A <- rbind(c(1, 0, 0),
+ c(0, 1, 0))
+ b <- c(-1, 1)
+ G <- diag(x=-1, 3)
+ h <- rep(0, 3)
+ constraints(x) <- C_constraint(L = rbind(A, G),
+ cones = c(K_zero(2), K_expd(1)),
+ rhs = c(b, h))
+ bounds(x) <- V_bound(li=1:3, lb=rep(-Inf, 3))
+
+ if ( length(ROI_applicable_solvers(x)) ) {
+ sol <- ROI_solve(x)
+ stopifnot( equal(sol$solution , c(-1, 1, exp(-2))) )
+ }
+ }
>
> ## POWP
> test.POWP_1 <- function() {
+ obj <- c(1, 1, 1)
+ A <- rbind(c(1, 0, 0),
+ c(0, 1, 0))
+ b <- c(4, 4)
+ G <- diag(x=-1, 3)
+ h <- rep(0, 3)
+
+ cc <- C_constraint(L = rbind(A, G),
+ cones = c(K_zero(2), K_powp(0.5)),
+ rhs = c(b, h))
+ x <- OP(objective = obj, constraints = cc,
+ types = rep("C", 3), maximum = TRUE)
+
+ if ( length(ROI_applicable_solvers(x)) ) {
+ sol <- ROI_solve(x)
+ stopifnot( equal(sol$solution, c(4, 4, 4)) )
+ stopifnot( equal(sol$objval, 12) )
+ }
+ }
>
> ## POWD
> test.POWD_1 <- function() {
+ obj <- c(1, 1, 1)
+ A <- rbind(c(1, 0, 0),
+ c(0, 1, 0))
+ b <- c(2, 2)
+ G <- diag(x=-1, 3)
+ h <- rep(0, 3)
+
+ lc <- C_constraint(L = rbind(A, G),
+ cones = c(K_zero(2), K_powd(0.5)),
+ rhs = c(b, h))
+ x <- OP(objective = obj, constraints = lc,
+ types = rep("C", 3), maximum = TRUE)
+
+ if ( length(ROI_applicable_solvers(x)) ) {
+ sol <- ROI_solve(x)
+ stopifnot( equal(sol$solution, c(2, 2, 4)) )
+ }
+ }
>
> ## SDP
> test.SDP_1 <- function() {
+ ## The following example is from the cvxopt documentation and released under GPL-3
+ ## (c) 2016-2016 Florian Schwendinger
+ ## (c) 2012-2015 M. Andersen and L. Vandenberghe.
+ ## CVXOPT is free software; you can redistribute it and/or modify it under the terms of the
+ ## GNU General Public License as published by the Free Software Foundation;
+ ## either version 3 of the License, or (at your option) any later version.
+
+ ## SDP - Example - 1
+ ## for the example definition see ROI.plugin.scs inst/doc
+ ## or http://cvxopt.org/userguide/coneprog.html
+ obj <- c(1, -1, 1)
+ A1 <- matrix(c(-7, -11, -11, 3), 2)
+ A2 <- matrix(c( 7, -18, -18, 8), 2)
+ A3 <- matrix(c(-2, -8, -8, 1), 2)
+ a <- matrix(c(33, -9, -9, 26), 2)
+ B1 <- matrix(c(-21, -11, 0, -11, 10, 8, 0, 8, 5), 3)
+ B2 <- matrix(c( 0, 10, 16, 10, -10, -10, 16, -10, 3), 3)
+ B3 <- matrix(c( -5, 2, -17, 2, -6, 8, -17, 8, 6), 3)
+ b <- matrix(c( 14, 9, 40, 9, 91, 10, 40, 10,15), 3)
+
+ ## PSD matrices have to be vectorized
+ G1 <- vech(A1, A2, A3)
+ h1 <- vech(a)
+ G2 <- vech(B1, B2, B3)
+ h2 <- vech(b)
+ h <- c(h1, h2)
+ bounds <- V_bound(li=1:3, lb=rep(-Inf, 3))
+
+ x <- OP(objective = obj,
+ constraints = C_constraint(L = rbind(G1, G2),
+ cones = K_psd(c(3, 6)),
+ rhs = h),
+ types = rep("C", length(obj)),
+ bounds = bounds,
+ maximum = FALSE)
+
+ if ( length(ROI_applicable_solvers(x)) ) {
+ sol <- ROI_solve(x)
+ ## NOTE: The solutions I compare with are from cvxopt where I used the default settings,
+ ## therefore it is possible that scs just provides a solution with a smaler eps
+ known_sol <- c(-0.367666090041563, 1.89832827158511, -0.887550426343585)
+ stopifnot(isTRUE(c(obj %*% solution(sol)) <= c(obj %*% known_sol)))
+
+ ## solution from cvxopt
+ ## [-3.68e-01 1.90e+00 -8.88e-01]
+ ## or c(-0.367666090041563, 1.89832827158511, -0.887550426343585)
+ stopifnot(isTRUE(sum(abs(solution(sol) - known_sol)) < 1e-3))
+
+ ## [ 3.96e-03 -4.34e-03]
+ ## [-4.34e-03 4.75e-03]
+ ## c(0.00396107103000518, -0.00433836779348354, -0.00433836779348354, 0.00475162592559036)
+ sol_psd_1 <- c( 0.00396107103000518, -0.00433836779348354,
+ -0.00433836779348354, 0.00475162592559036)
+
+ opt_sol_psd_1 <- as.numeric(as.matrix(solution(sol, "psd")[[1]]))
+ stopifnot(isTRUE(sum(abs(opt_sol_psd_1 - sol_psd_1)) < 1e-5))
+
+ ## [ 5.58e-02 -2.41e-03 2.42e-02]
+ ## [-2.41e-03 1.04e-04 -1.05e-03]
+ ## [ 2.42e-02 -1.05e-03 1.05e-02]
+ ## c(0.0558011514407859, -0.00240909203896524, 0.0242146296992217, -0.00240909203896524,
+ ## 0.000104021271556218, -0.00104543254168053, 0.0242146296992217, -0.00104543254168053,
+ ## 0.0105078600239678)
+ sol_psd_2 <- c( 0.0558011514407859, -0.00240909203896524, 0.0242146296992217,
+ -0.00240909203896524, 0.000104021271556218, -0.00104543254168053,
+ 0.0242146296992217, -0.00104543254168053, 0.0105078600239678)
+ opt_sol_psd_2 <- as.numeric(as.matrix(solution(sol, "psd")[[2]]))
+ stopifnot(isTRUE(sum(abs(opt_sol_psd_2 - sol_psd_2)) < 1e-5))
+ }
+ }
>
> ## NLP
> ## ===
> test.NLP_1 <- function() {
+ f <- function(x) {
+ return( 100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2 )
+ }
+
+ f.gradient <- function(x) {
+ return( c( -400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
+ 200 * (x[2] - x[1] * x[1])) )
+ }
+
+ x <- OP( objective = F_objective(f, n=2L, G=f.gradient),
+ bounds = V_bound(li=1:2, ui=1:2, lb=c(-3, -3), ub=c(3, 3)) )
+
+ if ( length(ROI_applicable_solvers(x)) ) {
+ nlp <- ROI_solve(x, start=c(-2, 2.4))
+ stopifnot( equal(nlp$objval, 0) )
+ stopifnot( equal(solution(nlp), c(1, 1)) )
+ }
+ }
>
> test.NLP_2 <- function() {
+ f <- function(x) {
+ return( 100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2 )
+ }
+
+ f.gradient <- function(x) {
+ return( c( -400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
+ 200 * (x[2] - x[1] * x[1])) )
+ }
+
+ x <- OP( objective = F_objective(f, n=2L, G=f.gradient),
+ constraints = c(F_constraint(F=function(x) x[1] + x[2]^2, ">=", 0,
+ J=function(x) c(1, 2*x[2])),
+ F_constraint(F=function(x) x[1]^2 + x[2], ">=", 0,
+ J=function(x) c(2*x[1], x[2]))),
+ bounds = V_bound(li=1:2, ui=1:2, lb=c(-2, -Inf), ub=c(0.5, 1)) )
+
+ solver <- setdiff(ROI_applicable_solvers(x), "nlminb")
+ if ( length(solver) ) {
+ nlp <- ROI_solve(x, solver = solver[1L], start = c(-2, 1))
+ stopifnot( equal(nlp$objval, 1/4) )
+ stopifnot( equal(solution(nlp), c(1/2, 1/4)) )
+ }
+ }
>
>
> ## ---------------------------
> ## test
> ## ---------------------------
> file = Sys.getenv("ROI_TEST_LOG_FILE")
> ROI_TEST_ERRORS <- 0L
> rt <- function(expr, silent = FALSE) {
+ err <- try(expr, silent = silent)
+ if ( inherits(err, "try-error") )
+ ROI_TEST_ERRORS <<- ROI_TEST_ERRORS + 1L
+ err
+ }
>
> cat("# Constructors\n", file=file)
# Constructors
> cat("## Objective\n", file=file)
## Objective
> cat("### L_objective\n", file=file)
### L_objective
> rt( test.L_objective() )
A linear objective of length 3.
>
> cat("### Q_objective\n", file=file)
### Q_objective
> rt( test.Q_objective() )
A quadratic objective of length 3.
>
> cat("### F_objective\n", file=file)
### F_objective
> rt( test.F_objective() )
A general objective function of length 3.
>
> cat("## Constraints\n", file=file)
## Constraints
>
> cat("## Types\n", file=file)
## Types
>
> cat("## Bounds\n", file=file)
## Bounds
>
> cat("# R-Methods\n", file=file)
# R-Methods
>
> cat("## Combine\n", file=file)
## Combine
> cat("## Combine L_constraints\n", file=file)
## Combine L_constraints
> rt( test.combine_L_constraints() )
NULL
>
> ##
> ## deactivate numeric errors since they are tested in
> ## the plugins anyhow.
> ROI_API_ERRORS <- ROI_TEST_ERRORS
>
> cat("# Optimization Problems\n", file=file)
# Optimization Problems
> cat("## LP\n", file=file)
## LP
> rt( test.LP() )
NULL
>
> cat("## QP\n", file=file)
## QP
> rt( test.QP() )
NULL
>
> cat("## SOCP\n", file=file)
## SOCP
> rt( test.SOCP_1() )
NULL
> rt( test.SOCP_2() )
NULL
>
> cat("## EXPP\n", file=file)
## EXPP
> rt( test.EXPP_1() )
NULL
> rt( test.EXPP_2() )
NULL
> rt( test.EXPP_3() )
NULL
>
> cat("## EXPD\n", file=file)
## EXPD
> rt( test.EXPD_1() )
NULL
>
> cat("## POWP\n", file=file)
## POWP
> rt( test.POWP_1() )
NULL
>
> cat("## POWD\n", file=file)
## POWD
> rt( test.POWD_1() )
NULL
>
> cat("## SDP\n", file=file)
## SDP
> rt( test.SDP_1() )
*** caught segfault ***
address 0, cause 'memory not mapped'
Traceback:
1: (function (A, b, obj, cone, control = list(max_iters = 2500L, normalize = TRUE, verbose = FALSE, cg_rate = 2, scale = 5, rho_x = 0.001, alpha = 1.5, eps = 1e-06)) { if (class(A) == "simple_triplet_matrix") { A <- sparseMatrix(i = A$i, j = A$j, x = A$v, dims = c(A$nrow, A$ncol)) } else { A <- as(A, "dgCMatrix") } data <- list(m = dim(A)[1], n = dim(A)[2], Ax = A@x, Ai = A@i, Ap = A@p, b = b, c = obj) ret <- .Call("scsr", data, cone, control, PACKAGE = "scs") return(ret)})(A = list(i = c(1L, 2L, 3L, 4L, 5L, 7L, 8L, 9L, 1L, 2L, 3L, 5L, 6L, 7L, 8L, 9L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L), j = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), v = c(-7, -15.556349186104, 3, -21, -15.556349186104, 10, 11.3137084989848, 5, 7, -25.4558441227157, 8, 14.142135623731, 22.6274169979695, -10, -14.142135623731, 3, -2, -11.3137084989848, 1, -5, 2.82842712474619, -24.0416305603426, -6, 11.3137084989848, 6), nrow = 9L, ncol = 3L, dimnames = NULL), b = c(33, -12.7279220613579, 26, 14, 12.7279220613579, 56.5685424949238, 91, 14.142135623731, 15), obj = c(1, -1, 1), cone = list( f = 0L, l = 0L, s = 2:3), control = list(verbose = FALSE, eps = 1e-06))
2: eval(solver_call)
3: eval(solver_call)
4: SOLVE(x, cntrl)
5: ROI_solve(x)
6: test.SDP_1()
7: doTryCatch(return(expr), name, parentenv, handler)
8: tryCatchOne(expr, names, parentenv, handlers[[1L]])
9: tryCatchList(expr, classes, parentenv, handlers)
10: tryCatch(expr, error = function(e) { call <- conditionCall(e) if (!is.null(call)) { if (identical(call[[1L]], quote(doTryCatch))) call <- sys.call(-4L) dcall <- deparse(call)[1L] prefix <- paste("Error in", dcall, ": ") LONG <- 75L msg <- conditionMessage(e) sm <- strsplit(msg, "\n")[[1L]] w <- 14L + nchar(dcall, type = "w") + nchar(sm[1L], type = "w") if (is.na(w)) w <- 14L + nchar(dcall, type = "b") + nchar(sm[1L], type = "b") if (w > LONG) prefix <- paste0(prefix, "\n ") } else prefix <- "Error : " msg <- paste0(prefix, conditionMessage(e), "\n") .Internal(seterrmessage(msg[1L])) if (!silent && identical(getOption("show.error.messages"), TRUE)) { cat(msg, file = outFile) .Internal(printDeferredWarnings()) } invisible(structure(msg, class = "try-error", condition = e))})
11: try(expr, silent = silent)
12: rt(test.SDP_1())
An irrecoverable exception occurred. R is aborting now ...
Flavor: r-patched-solaris-x86
Version: 0.2-6
Check: package dependencies
Result: NOTE
Packages suggested but not available for checking:
‘ROI.plugin.glpk’ ‘ROI.plugin.symphony’
Package which this enhances but not available for checking: ‘ROI.plugin.cplex’
Flavor: r-release-osx-x86_64