CRAN Package Check Results for Package ROI

Last updated on 2017-07-26 01:56:37.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.2-6 1.52 221.61 223.13 OK
r-devel-linux-x86_64-debian-gcc 0.2-6 1.52 228.15 229.67 OK
r-devel-linux-x86_64-fedora-clang 0.2-6 78.12 NOTE
r-devel-linux-x86_64-fedora-gcc 0.2-6 80.17 NOTE
r-devel-windows-ix86+x86_64 0.2-6 49.00 303.00 352.00 NOTE
r-patched-linux-x86_64 0.2-6 1.57 250.65 252.22 OK
r-patched-solaris-x86 0.2-6 434.60 ERROR
r-release-linux-x86_64 0.2-6 1.65 240.74 242.39 OK
r-release-windows-ix86+x86_64 0.2-6 39.00 446.00 485.00 NOTE
r-release-osx-x86_64 0.2-6 NOTE
r-oldrel-windows-ix86+x86_64 0.2-6 45.00 384.00 429.00 NOTE
r-oldrel-osx-x86_64 0.2-6 NOTE

Check Details

Version: 0.2-6
Check: package dependencies
Result: NOTE
    Package which this enhances but not available for checking: ‘ROI.plugin.cplex’
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64

Version: 0.2-6
Check: package dependencies
Result: NOTE
    Package suggested but not available for checking: ‘ROI.plugin.symphony’
    
    Package which this enhances but not available for checking: ‘ROI.plugin.cplex’
Flavors: r-patched-solaris-x86, r-oldrel-osx-x86_64

Version: 0.2-6
Check: tests
Result: ERROR
     Running ‘ROI.R’ [30s/45s]
    Running the tests in ‘tests/ROI.R’ failed.
    Complete output:
     > library(ROI)
     ROI.plugin.scs: R Optimization Infrastructure
     Registered solver plugins: nlminb, alabama, ecos, glpk, ipop, lpsolve, nloptr, optimx, quadprog, scs.
     Default solver: auto.
     > library(slam)
     > suppressPackageStartupMessages( require("ROI") )
     > suppressPackageStartupMessages( require("ROI.plugin.alabama") )
     > suppressPackageStartupMessages( require("ROI.plugin.ecos") )
     > suppressPackageStartupMessages( require("ROI.plugin.glpk") )
     > suppressPackageStartupMessages( require("ROI.plugin.ipop") )
     > suppressPackageStartupMessages( require("ROI.plugin.lpsolve") )
     > suppressPackageStartupMessages( require("ROI.plugin.nloptr") )
     > suppressPackageStartupMessages( require("ROI.plugin.optimx") )
     > suppressPackageStartupMessages( require("ROI.plugin.scs") )
     > suppressPackageStartupMessages( require("ROI.plugin.symphony") )
     Warning message:
     In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
     there is no package called 'ROI.plugin.symphony'
     > suppressPackageStartupMessages( require("ROI.plugin.quadprog") )
     >
     >
     > ## ---------------------------
     > ## Objective
     > ## ---------------------------
     > test.L_objective <- function() {
     + v <- 1:3
     + m <- matrix(v, 1)
     + slam <- as.simple_triplet_matrix(m)
     + nam <- LETTERS[v]
     + L_objective(v)
     + L_objective(v, nam)
     + L_objective(m)
     + L_objective(m, nam)
     + L_objective(slam)
     + L_objective(slam, nam)
     + }
     >
     > test.Q_objective <- function() {
     + Lv <- 1:3
     + Lm <- matrix(Lv, 1)
     + Lslam <- as.simple_triplet_matrix(Lm)
     + Qm <- diag(length(Lv))
     + Qslam <- as.simple_triplet_matrix(Qm)
     + nam <- LETTERS[Lv]
     + Q_objective(Qm, Lv)
     + Q_objective(Qm, Lm)
     + Q_objective(Qm, Lslam)
     + Q_objective(Qslam, Lv)
     + Q_objective(Qslam, Lm)
     + Q_objective(Qslam, Lslam)
     + Q_objective(Qm, Lv, nam)
     + Q_objective(Qm, Lm, nam)
     + Q_objective(Qm, Lslam, nam)
     + Q_objective(Qslam, Lv, nam)
     + Q_objective(Qslam, Lm, nam)
     + Q_objective(Qslam, Lslam, nam)
     + }
     >
     > test.F_objective <- function() {
     + F <- F_objective(sum, 3)
     + }
     >
     > ## ---------------------------
     > ## Constraints
     > ## ---------------------------
     > test.NO_constraint <- function() {
     + NO_constraint(3)
     + }
     >
     > test.L_constraint <- function() {
     + L_constraint(matrix(1:3, 1), "==", 2, names=LETTERS[1:3])
     + }
     >
     > test.Q_constraint <- function() {
     + ## Q_constraint()
     + }
     >
     > test.C_constraint <- function() {
     + ## C_constraint
     + }
     >
     >
     > ## ---------------------------
     > ## Types
     > ## ---------------------------
     >
     >
     > ## ---------------------------
     > ## Bounds
     > ## ---------------------------
     >
     > ## ---------------------------
     > ## R-Methods
     > ## ---------------------------
     > ## rbind
     >
     > ## c
     > test.combine_L_constraints <- function() {
     + dim_1 <- sample(1:10, 2)
     + dim_2 <- c(sample(1:10, 1), dim_1[2])
     +
     + mat_1 <- matrix(sample(1:100, prod(dim_1)), ncol=dim_1[2])
     + dir_1 <- sample(c("==", "<=", ">="), dim_1[1], replace=TRUE)
     + rhs_1 <- sample(1:100, dim_1[1])
     +
     + mat_2 <- matrix(sample(1:100, prod(dim_2)), ncol=dim_2[2])
     + dir_2 <- sample(c("==", "<=", ">="), dim_2[1], replace=TRUE)
     + rhs_2 <- sample(1:100, dim_2[1])
     +
     + lc_1 <- L_constraint(L = mat_1, dir = dir_1, rhs = rhs_1)
     + lc_2 <- L_constraint(L = mat_2, dir = dir_2, rhs = rhs_2)
     +
     + lc_3 <- rbind(lc_1, lc_2)
     + stopifnot( ((nrow(lc_1) + nrow(lc_2)) == nrow(lc_3)) )
     + }
     >
     > test.combine_F_constraints <- function() {
     + fc1 <- F_constraint(F=function(x) x[1] + x[2]^2, ">=", 0,
     + J=function(x) c(1, 2*x[2]))
     + fc2 <- F_constraint(F=function(x) x[1]^2 + x[2], ">=", 0,
     + J=function(x) c(2*x[1], x[2]))
     + c(fc1, fc2)
     + }
     >
     > ## as
     >
     > ## is
     >
     > ## G
     >
     > ## J
     >
     > ## variable.names
     >
     > ## ---------------------------
     > ## Optimization Problems
     > ## ---------------------------
     >
     > ## LP
     > ## ==
     > test.LP <- function() {
     + mat <- matrix(c(3, 4, 2,
     + 2, 1, 2,
     + 1, 3, 2), nrow=3, byrow=TRUE)
     + x <- OP(objective = c(2, 4, 3),
     + constraints = L_constraint(L = mat,
     + dir = c("<=", "<=", "<="),
     + rhs = c(60, 40, 80)),
     + maximum = TRUE)
     +
     + if ( "glpk" %in% ROI_applicable_solvers(x) ) {
     + sol <- ROI_solve(x)
     + stopifnot( equal(sol$solution, c(0, 20/3, 50/3), tol=1e-4) )
     + stopifnot( equal(sol$objval, 230/3, tol=1e-4) )
     + }
     + }
     >
     > ## QP
     > ## ==
     > test.QP <- function() {
     + ## QP - Example - 1
     + ##
     + ## from the quadprog package
     + ## (c) S original by Berwin A. Turlach R port by Andreas Weingessel
     + ## GPL-3
     + ##
     + ## min: -(0 5 0) %*% x + 1/2 x^T x
     + ## under the constraints: A^T x >= b
     + ## with b = (-8,2,0)^T
     + ## and (-4 2 0)
     + ## A = (-3 1 -2)
     + ## ( 0 0 1)
     + ## we can use solve.QP as follows:
     + ##
     + ## library(quadprog)
     + ## D <- diag(1, 3)
     + ## d <- c(0, 5, 0)
     + ## A <- cbind(c(-4, -3, 0),
     + ## c( 2, 1, 0),
     + ## c( 0, -2, 1))
     + ## b <- c(-8, 2, 0)
     + ##
     + ## sol <- solve.QP(D, d, A, bvec=b)
     + ## deparse(sol$solution)
     + ## deparse(sol$value)
     + A <- cbind(c(-4, -3, 0),
     + c( 2, 1, 0),
     + c( 0, -2, 1))
     + x <- OP(Q_objective(diag(3), L = c(0, -5, 0)),
     + L_constraint(L = t(A),
     + dir = rep(">=", 3),
     + rhs = c(-8, 2, 0)))
     +
     + if ( "quadprog" %in% ROI_applicable_solvers(x) ) {
     + sol <- ROI_solve(x)
     + solution <- c(0.476190476190476, 1.04761904761905, 2.0952380952381)
     + stopifnot( equal(sol$solution, solution) )
     + stopifnot( equal(sol$objval, -2.38095238095238) )
     + }
     + }
     >
     > ## CP
     > ## ==
     >
     > ## SOCP
     > test.SOCP_1 <- function() {
     + obj <- c(1, 1, 1)
     + A <- rbind(c(1, 0, 0))
     + b <- c(sqrt(2))
     + G <- diag(x=-1, 3)
     + h <- rep(0, 3)
     +
     + bound <- V_bound(li = 1:3, lb = rep(-Inf, 3))
     +
     + lc <- C_constraint(L = rbind(A, G),
     + cones = c(K_zero(1), K_soc(3)),
     + rhs = c(b, h))
     + x <- OP(objective = obj, constraints = lc, types = rep("C", 3),
     + bounds = bound, maximum = FALSE)
     +
     + if ( length(ROI_applicable_solvers(x)) ) {
     + sol <- ROI_solve(x)
     + stopifnot( equal(sum(abs(sol$solution - c(sqrt(2), -1, -1))), 0) )
     + stopifnot( equal(sol$objval, (sqrt(2) - 2)) )
     + }
     + }
     >
     > test.SOCP_2 <- function() {
     + obj <- c(0, -2, -2, 0, -2, -2)
     + A <- rbind(c(1, 0, 0, 0, 0, 0),
     + c(0, 0, 0, 1, 0, 0))
     + b <- c(sqrt(2), sqrt(2))
     + G <- diag(x=-1, 6)
     + h <- rep(0, 6)
     +
     + lc <- C_constraint(L = rbind(A, G),
     + cones = c(K_zero(2), K_soc(c(3, 3))),
     + rhs = c(b, h))
     + x <- OP(objective = obj, constraints = lc)
     +
     + if ( length(ROI_applicable_solvers(x)) ) {
     + sol <- ROI_solve(x)
     + z <- c(sqrt(2), 1, 1, sqrt(2), 1, 1)
     + stopifnot( equal(sum(abs(sol$solution - z)), 0) )
     + }
     + }
     >
     > ## EXPP
     > test.EXPP_1 <- function() {
     + obj <- c(1, 1, 1)
     + A <- rbind(c(1, 0, 0),
     + c(0, 1, 0))
     + b <- c(1, 2)
     + G <- -diag(3)
     + h <- rep(0, 3)
     +
     + lc <- C_constraint(L = rbind(A, G),
     + cones = c(K_zero(2), K_expp(1)),
     + rhs = c(b, h))
     + x <- OP(objective = obj, constraints = lc)
     +
     + if ( length(ROI_applicable_solvers(x)) ) {
     + sol <- ROI_solve(x)
     + stopifnot( equal(sol$solution , c(1, 2, 2*exp(1/2))) )
     + }
     + }
     >
     > test.EXPP_2 <- function() {
     + obj <- c(1, 1, 1)
     + A <- rbind(c(0, 1, 0),
     + c(0, 0, 1))
     + b <- c(2, 2*exp(1/2))
     + G <- diag(x=-1, 3)
     + h <- rep(0, 3)
     +
     + lc <- C_constraint(L = rbind(A, G),
     + cones = c(K_zero(2), K_expp(1)),
     + rhs = c(b, h))
     + x <- OP(objective = obj, constraints = lc, maximum = TRUE)
     +
     + if ( length(ROI_applicable_solvers(x)) ) {
     + sol <- ROI_solve(x)
     + stopifnot( equal(sol$solution , c(1, 2, 2*exp(1/2))) )
     + }
     + }
     >
     > test.EXPP_3 <- function() {
     + obj <- c(1, 1, 1)
     + A <- rbind(c(0, 1, 0),
     + c(0, 0, 1))
     + b <- c(1, exp(1))
     + G <- diag(x=-1, 3)
     + h <- rep(0, 3)
     +
     + lc <- C_constraint(L = rbind(A, G),
     + cones = c(K_zero(2), K_expp(1)),
     + rhs = c(b, h))
     + x <- OP(objective = obj, constraints = lc,
     + types = rep("C", 3), maximum = TRUE)
     +
     + if ( length(ROI_applicable_solvers(x)) ) {
     + sol <- ROI_solve(x)
     + stopifnot( equal(sol$solution , c(1, 1, exp(1))) )
     + }
     + }
     >
     > ## EXPD
     > test.EXPD_1 <- function() {
     + x <- OP(c(1, 1, 1))
     + A <- rbind(c(1, 0, 0),
     + c(0, 1, 0))
     + b <- c(-1, 1)
     + G <- diag(x=-1, 3)
     + h <- rep(0, 3)
     + constraints(x) <- C_constraint(L = rbind(A, G),
     + cones = c(K_zero(2), K_expd(1)),
     + rhs = c(b, h))
     + bounds(x) <- V_bound(li=1:3, lb=rep(-Inf, 3))
     +
     + if ( length(ROI_applicable_solvers(x)) ) {
     + sol <- ROI_solve(x)
     + stopifnot( equal(sol$solution , c(-1, 1, exp(-2))) )
     + }
     + }
     >
     > ## POWP
     > test.POWP_1 <- function() {
     + obj <- c(1, 1, 1)
     + A <- rbind(c(1, 0, 0),
     + c(0, 1, 0))
     + b <- c(4, 4)
     + G <- diag(x=-1, 3)
     + h <- rep(0, 3)
     +
     + cc <- C_constraint(L = rbind(A, G),
     + cones = c(K_zero(2), K_powp(0.5)),
     + rhs = c(b, h))
     + x <- OP(objective = obj, constraints = cc,
     + types = rep("C", 3), maximum = TRUE)
     +
     + if ( length(ROI_applicable_solvers(x)) ) {
     + sol <- ROI_solve(x)
     + stopifnot( equal(sol$solution, c(4, 4, 4)) )
     + stopifnot( equal(sol$objval, 12) )
     + }
     + }
     >
     > ## POWD
     > test.POWD_1 <- function() {
     + obj <- c(1, 1, 1)
     + A <- rbind(c(1, 0, 0),
     + c(0, 1, 0))
     + b <- c(2, 2)
     + G <- diag(x=-1, 3)
     + h <- rep(0, 3)
     +
     + lc <- C_constraint(L = rbind(A, G),
     + cones = c(K_zero(2), K_powd(0.5)),
     + rhs = c(b, h))
     + x <- OP(objective = obj, constraints = lc,
     + types = rep("C", 3), maximum = TRUE)
     +
     + if ( length(ROI_applicable_solvers(x)) ) {
     + sol <- ROI_solve(x)
     + stopifnot( equal(sol$solution, c(2, 2, 4)) )
     + }
     + }
     >
     > ## SDP
     > test.SDP_1 <- function() {
     + ## The following example is from the cvxopt documentation and released under GPL-3
     + ## (c) 2016-2016 Florian Schwendinger
     + ## (c) 2012-2015 M. Andersen and L. Vandenberghe.
     + ## CVXOPT is free software; you can redistribute it and/or modify it under the terms of the
     + ## GNU General Public License as published by the Free Software Foundation;
     + ## either version 3 of the License, or (at your option) any later version.
     +
     + ## SDP - Example - 1
     + ## for the example definition see ROI.plugin.scs inst/doc
     + ## or http://cvxopt.org/userguide/coneprog.html
     + obj <- c(1, -1, 1)
     + A1 <- matrix(c(-7, -11, -11, 3), 2)
     + A2 <- matrix(c( 7, -18, -18, 8), 2)
     + A3 <- matrix(c(-2, -8, -8, 1), 2)
     + a <- matrix(c(33, -9, -9, 26), 2)
     + B1 <- matrix(c(-21, -11, 0, -11, 10, 8, 0, 8, 5), 3)
     + B2 <- matrix(c( 0, 10, 16, 10, -10, -10, 16, -10, 3), 3)
     + B3 <- matrix(c( -5, 2, -17, 2, -6, 8, -17, 8, 6), 3)
     + b <- matrix(c( 14, 9, 40, 9, 91, 10, 40, 10,15), 3)
     +
     + ## PSD matrices have to be vectorized
     + G1 <- vech(A1, A2, A3)
     + h1 <- vech(a)
     + G2 <- vech(B1, B2, B3)
     + h2 <- vech(b)
     + h <- c(h1, h2)
     + bounds <- V_bound(li=1:3, lb=rep(-Inf, 3))
     +
     + x <- OP(objective = obj,
     + constraints = C_constraint(L = rbind(G1, G2),
     + cones = K_psd(c(3, 6)),
     + rhs = h),
     + types = rep("C", length(obj)),
     + bounds = bounds,
     + maximum = FALSE)
     +
     + if ( length(ROI_applicable_solvers(x)) ) {
     + sol <- ROI_solve(x)
     + ## NOTE: The solutions I compare with are from cvxopt where I used the default settings,
     + ## therefore it is possible that scs just provides a solution with a smaler eps
     + known_sol <- c(-0.367666090041563, 1.89832827158511, -0.887550426343585)
     + stopifnot(isTRUE(c(obj %*% solution(sol)) <= c(obj %*% known_sol)))
     +
     + ## solution from cvxopt
     + ## [-3.68e-01 1.90e+00 -8.88e-01]
     + ## or c(-0.367666090041563, 1.89832827158511, -0.887550426343585)
     + stopifnot(isTRUE(sum(abs(solution(sol) - known_sol)) < 1e-3))
     +
     + ## [ 3.96e-03 -4.34e-03]
     + ## [-4.34e-03 4.75e-03]
     + ## c(0.00396107103000518, -0.00433836779348354, -0.00433836779348354, 0.00475162592559036)
     + sol_psd_1 <- c( 0.00396107103000518, -0.00433836779348354,
     + -0.00433836779348354, 0.00475162592559036)
     +
     + opt_sol_psd_1 <- as.numeric(as.matrix(solution(sol, "psd")[[1]]))
     + stopifnot(isTRUE(sum(abs(opt_sol_psd_1 - sol_psd_1)) < 1e-5))
     +
     + ## [ 5.58e-02 -2.41e-03 2.42e-02]
     + ## [-2.41e-03 1.04e-04 -1.05e-03]
     + ## [ 2.42e-02 -1.05e-03 1.05e-02]
     + ## c(0.0558011514407859, -0.00240909203896524, 0.0242146296992217, -0.00240909203896524,
     + ## 0.000104021271556218, -0.00104543254168053, 0.0242146296992217, -0.00104543254168053,
     + ## 0.0105078600239678)
     + sol_psd_2 <- c( 0.0558011514407859, -0.00240909203896524, 0.0242146296992217,
     + -0.00240909203896524, 0.000104021271556218, -0.00104543254168053,
     + 0.0242146296992217, -0.00104543254168053, 0.0105078600239678)
     + opt_sol_psd_2 <- as.numeric(as.matrix(solution(sol, "psd")[[2]]))
     + stopifnot(isTRUE(sum(abs(opt_sol_psd_2 - sol_psd_2)) < 1e-5))
     + }
     + }
     >
     > ## NLP
     > ## ===
     > test.NLP_1 <- function() {
     + f <- function(x) {
     + return( 100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2 )
     + }
     +
     + f.gradient <- function(x) {
     + return( c( -400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
     + 200 * (x[2] - x[1] * x[1])) )
     + }
     +
     + x <- OP( objective = F_objective(f, n=2L, G=f.gradient),
     + bounds = V_bound(li=1:2, ui=1:2, lb=c(-3, -3), ub=c(3, 3)) )
     +
     + if ( length(ROI_applicable_solvers(x)) ) {
     + nlp <- ROI_solve(x, start=c(-2, 2.4))
     + stopifnot( equal(nlp$objval, 0) )
     + stopifnot( equal(solution(nlp), c(1, 1)) )
     + }
     + }
     >
     > test.NLP_2 <- function() {
     + f <- function(x) {
     + return( 100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2 )
     + }
     +
     + f.gradient <- function(x) {
     + return( c( -400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
     + 200 * (x[2] - x[1] * x[1])) )
     + }
     +
     + x <- OP( objective = F_objective(f, n=2L, G=f.gradient),
     + constraints = c(F_constraint(F=function(x) x[1] + x[2]^2, ">=", 0,
     + J=function(x) c(1, 2*x[2])),
     + F_constraint(F=function(x) x[1]^2 + x[2], ">=", 0,
     + J=function(x) c(2*x[1], x[2]))),
     + bounds = V_bound(li=1:2, ui=1:2, lb=c(-2, -Inf), ub=c(0.5, 1)) )
     +
     + solver <- setdiff(ROI_applicable_solvers(x), "nlminb")
     + if ( length(solver) ) {
     + nlp <- ROI_solve(x, solver = solver[1L], start = c(-2, 1))
     + stopifnot( equal(nlp$objval, 1/4) )
     + stopifnot( equal(solution(nlp), c(1/2, 1/4)) )
     + }
     + }
     >
     >
     > ## ---------------------------
     > ## test
     > ## ---------------------------
     > file = Sys.getenv("ROI_TEST_LOG_FILE")
     > ROI_TEST_ERRORS <- 0L
     > rt <- function(expr, silent = FALSE) {
     + err <- try(expr, silent = silent)
     + if ( inherits(err, "try-error") )
     + ROI_TEST_ERRORS <<- ROI_TEST_ERRORS + 1L
     + err
     + }
     >
     > cat("# Constructors\n", file=file)
     # Constructors
     > cat("## Objective\n", file=file)
     ## Objective
     > cat("### L_objective\n", file=file)
     ### L_objective
     > rt( test.L_objective() )
     A linear objective of length 3.
     >
     > cat("### Q_objective\n", file=file)
     ### Q_objective
     > rt( test.Q_objective() )
     A quadratic objective of length 3.
     >
     > cat("### F_objective\n", file=file)
     ### F_objective
     > rt( test.F_objective() )
     A general objective function of length 3.
     >
     > cat("## Constraints\n", file=file)
     ## Constraints
     >
     > cat("## Types\n", file=file)
     ## Types
     >
     > cat("## Bounds\n", file=file)
     ## Bounds
     >
     > cat("# R-Methods\n", file=file)
     # R-Methods
     >
     > cat("## Combine\n", file=file)
     ## Combine
     > cat("## Combine L_constraints\n", file=file)
     ## Combine L_constraints
     > rt( test.combine_L_constraints() )
     NULL
     >
     > ##
     > ## deactivate numeric errors since they are tested in
     > ## the plugins anyhow.
     > ROI_API_ERRORS <- ROI_TEST_ERRORS
     >
     > cat("# Optimization Problems\n", file=file)
     # Optimization Problems
     > cat("## LP\n", file=file)
     ## LP
     > rt( test.LP() )
     NULL
     >
     > cat("## QP\n", file=file)
     ## QP
     > rt( test.QP() )
     NULL
     >
     > cat("## SOCP\n", file=file)
     ## SOCP
     > rt( test.SOCP_1() )
     NULL
     > rt( test.SOCP_2() )
     NULL
     >
     > cat("## EXPP\n", file=file)
     ## EXPP
     > rt( test.EXPP_1() )
     NULL
     > rt( test.EXPP_2() )
     NULL
     > rt( test.EXPP_3() )
     NULL
     >
     > cat("## EXPD\n", file=file)
     ## EXPD
     > rt( test.EXPD_1() )
     NULL
     >
     > cat("## POWP\n", file=file)
     ## POWP
     > rt( test.POWP_1() )
     NULL
     >
     > cat("## POWD\n", file=file)
     ## POWD
     > rt( test.POWD_1() )
     NULL
     >
     > cat("## SDP\n", file=file)
     ## SDP
     > rt( test.SDP_1() )
    
     *** caught segfault ***
     address 0, cause 'memory not mapped'
    
     Traceback:
     1: (function (A, b, obj, cone, control = list(max_iters = 2500L, normalize = TRUE, verbose = FALSE, cg_rate = 2, scale = 5, rho_x = 0.001, alpha = 1.5, eps = 1e-06)) { if (class(A) == "simple_triplet_matrix") { A <- sparseMatrix(i = A$i, j = A$j, x = A$v, dims = c(A$nrow, A$ncol)) } else { A <- as(A, "dgCMatrix") } data <- list(m = dim(A)[1], n = dim(A)[2], Ax = A@x, Ai = A@i, Ap = A@p, b = b, c = obj) ret <- .Call("scsr", data, cone, control, PACKAGE = "scs") return(ret)})(A = list(i = c(1L, 2L, 3L, 4L, 5L, 7L, 8L, 9L, 1L, 2L, 3L, 5L, 6L, 7L, 8L, 9L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L), j = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), v = c(-7, -15.556349186104, 3, -21, -15.556349186104, 10, 11.3137084989848, 5, 7, -25.4558441227157, 8, 14.142135623731, 22.6274169979695, -10, -14.142135623731, 3, -2, -11.3137084989848, 1, -5, 2.82842712474619, -24.0416305603426, -6, 11.3137084989848, 6), nrow = 9L, ncol = 3L, dimnames = NULL), b = c(33, -12.7279220613579, 26, 14, 12.7279220613579, 56.5685424949238, 91, 14.142135623731, 15), obj = c(1, -1, 1), cone = list( f = 0L, l = 0L, s = 2:3), control = list(verbose = FALSE, eps = 1e-06))
     2: eval(solver_call)
     3: eval(solver_call)
     4: SOLVE(x, cntrl)
     5: ROI_solve(x)
     6: test.SDP_1()
     7: doTryCatch(return(expr), name, parentenv, handler)
     8: tryCatchOne(expr, names, parentenv, handlers[[1L]])
     9: tryCatchList(expr, classes, parentenv, handlers)
     10: tryCatch(expr, error = function(e) { call <- conditionCall(e) if (!is.null(call)) { if (identical(call[[1L]], quote(doTryCatch))) call <- sys.call(-4L) dcall <- deparse(call)[1L] prefix <- paste("Error in", dcall, ": ") LONG <- 75L msg <- conditionMessage(e) sm <- strsplit(msg, "\n")[[1L]] w <- 14L + nchar(dcall, type = "w") + nchar(sm[1L], type = "w") if (is.na(w)) w <- 14L + nchar(dcall, type = "b") + nchar(sm[1L], type = "b") if (w > LONG) prefix <- paste0(prefix, "\n ") } else prefix <- "Error : " msg <- paste0(prefix, conditionMessage(e), "\n") .Internal(seterrmessage(msg[1L])) if (!silent && identical(getOption("show.error.messages"), TRUE)) { cat(msg, file = outFile) .Internal(printDeferredWarnings()) } invisible(structure(msg, class = "try-error", condition = e))})
     11: try(expr, silent = silent)
     12: rt(test.SDP_1())
     An irrecoverable exception occurred. R is aborting now ...
Flavor: r-patched-solaris-x86

Version: 0.2-6
Check: package dependencies
Result: NOTE
    Packages suggested but not available for checking:
     ‘ROI.plugin.glpk’ ‘ROI.plugin.symphony’
    
    Package which this enhances but not available for checking: ‘ROI.plugin.cplex’
Flavor: r-release-osx-x86_64