Package ‘dotwhisker’

June 28, 2017

Type Package

Title Dot-and-Whisker Plots of Regression Results

Version 0.3.0

Date 2017-06-28

Maintainer Yue Hu <yue-hu-1@uiowa.edu>

Description Quick and easy dot-and-whisker plots of regression results.
Encoding UTF-8

BugReports https://github.com/fsolt/dotwhisker/issues
Depends R (>=3.2.0), ggplot2, gridExtra, gtable

Imports grid, stats, broom, plyr, dplyr, stringr, ggstance
Suggests mfx, ordinal, tibble, knitr, rmarkdown

License MIT + file LICENSE

LazyData TRUE

VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation no

Author Frederick Solt [aut],
Yue Hu [aut, cre],
Oliver Keyes [ctb],
Ben Bolker [ctb],
Stefan Miiller [ctb]

Repository CRAN
Date/Publication 2017-06-28 03:50:23 UTC

R topics documented:

https://github.com/fsolt/dotwhisker/issues

2 add_brackets

relabel_predictors e e 6
relabel_y_axis e e 7
SECTEL_WEAPOI . .« « & v v v v v e e e e e e e e e e e e e e e e e 7
small_multiple 9
Index 12
add_brackets Add Labelled Brackets to Group Predictors in a Dot-and-Whisker Plot
Description

add_brackets draws brackets along the y-axis beyond the plotting area of a dot-and-whisker plot
generated by dwplot, useful for labelling groups of predictors

Usage

add_brackets(p, brackets, face = "italic")

Arguments
p A dot-and-whisker plot generated by dwplot.
brackets A list of brackets; each element of the list should be a character vector consisting
of (1) alabel for the bracket, (2) the name of the topmost variable to be enclosed
by the bracket, and (3) the name of the bottommost variable to be enclosed by
the bracket.
face A typeface for the bracket labels; options are "plain", "bold", "italic", "oblique",
and "bold.italic".
Value

The function returns a gtable object, which are viewed with grid. arrange.

To save, use ggsave.

Examples

library(broom)
library(dplyr)
data(mtcars)
ml <- Im(mpg ~ wt + cyl + disp, data = mtcars)
m1_df <- broom::tidy(m1) %>% # create data.frame of regression results
relabel_predictors(c("(Intercept)” = "Intercept”,
wt = "Weight”,
cyl = "Cylinder”,
disp = "Displacement”))#'
p <- dwplot(mi_df, include_intercept = TRUE) +
theme_bw() + xlab("Coefficient”) + ylab("") +
geom_vline(xintercept = @, colour = "grey50", linetype = 2) +
theme(legend.position="none")

by_2sd 3

two_brackets <- list(c("Engine”, "Cylinder"”, "Displacement”),
c("Not Engine”, "Intercept”, "Weight"))

g <- p %>% add_brackets(two_brackets)

grid.arrange(g) # to display

to save (not run)
#tggsave(file = "plot.pdf", g)

by_2sd Rescale regression results by multiplying by 2 standard deviations

Description

by_2sd rescales regression results to facilitate making dot-and-whisker plots using dwplot.

Usage
by_2sd(df, dataset)

Arguments
df A data.frame including the variables term (names of independent variables),
estimate (corresponding coefficient estimates), std. error (corresponding stan-
dard errors), and optionally model (when multiple models are desired on a single
plot) such as generated those by tidy.
dataset The data analyzed in the models whose results are recorded in df
Details

by_2sd multiplies the results from regression models saved as tidy data frames for predictors that
are not binary by twice the standard deviation of these variables in the dataset analyzed. Standard-
izing in this way yields coefficients that are directly comparable to those for untransformed binary
predictors (Gelman 2008) and so facilitates plotting using dwplot. Note that the current version of
by_2sd does not subtract the mean (in contrast to Gelman’s (2008) formula). However, all estimates
and standard errors of the independent variables are the same as if the mean was subtracted. The
only difference to Gelman (2008) is that for all variables in the model the intercept is shifted by the
coefficient times the mean of the variable.

An alternative available in some circumstances is to pass a model object to standardize before
passing the results to tidy and then on to dwplot. The advantage of by_2sd is that it takes as its
input is a tidy data.frame and so is not restricted to only those model objects that standardize
accepts.

Value

A tidy data.frame

References

Gelman, Andrew.

dwplot

2008. "Scaling Regression Inputs by Dividing by Two Standard Deviations."

Statistics in Medicine, 27:2865-2873.

See Also

standardize

Examples

library(broom)
library(dplyr)

data(mtcars)

ml <- Im(mpg ~ wt + cyl + disp, data = mtcars)
mi_df <- tidy(m1) %>% by_2sd(mtcars) # create data.frame of rescaled regression results

dwplot

Dot-and-Whisker Plots of Regression Results

Description

dwplot is a function for quickly and easily generating dot-and-whisker plots of regression models
saved in tidy data frames.

Usage
dwplot(x, alpha = 0.05, dodge_size = 0.4, order_vars = NULL,
show_intercept = FALSE, model_name = "model”, dot_args = list(size =
0.3), ...)
Arguments
X Either a tidy data.frame (see ’Details’), a model object to be tidied with tidy,

alpha

dodge_size

order_vars

show_intercept

or a list of such model objects.

A number setting the criterion of the confidence intervals. The default value is
.05, corresponding to 95-percent confidence intervals.

A number (typically between 0 and 0.3) indicating how much vertical separa-
tion should be between different models’ coefficients when multiple models are
graphed in a single plot. Lower values tend to look better when the number of
independent variables is small, while a higher value may be helpful when many
models appear on the same plot.

A vector of variable names that specifies the order in which the variables are to
appear along the y-axis of the plot.

A logical constant indicating whether the coefficient of the intercept term should
be plotted.

dwplot 5

model_name The name of a variable that distinguishes separate models within a tidy data.frame.

dot_args A list of arguments specifying the appearance of the dots representing mean
estimates. For supported arguments, see geom_pointrangeh.

Extra arguments to pass to tidy.

Details

dwplot visualizes regression results saved in tidy data.frames by, e.g., tidy as dot-and-whisker
plots generated by ggplot.

Tidy data.frames to be plotted should include the variables term (names of predictors), estimate
(corresponding estimates of coefficients or other quantities of interest), std.error (correspond-
ing standard errors), and optionally model (when multiple models are desired on a single plot; a
different name for this last variable may be specified using the model_name argument). In place
of std.error one may substitute conf. low (the lower bounds of the confidence intervals of each
estimate) and conf . high (the corresponding upper bounds).

For convenience, dwplot also accepts as input those model objects that can be tidied by tidy, or a
list of such model objects.

Because the function takes a data.frame as input, it is easily employed for a wide range of models,
including those not supported by tidy. And because the output is a ggplot object, it can easily
be further customized with any additional arguments and layers supported by ggplot2. Together,
these two features make dwplot extremely flexible.

Value

The function returns a ggplot object.

References

Kastellec, Jonathan P. and Leoni, Eduardo L. 2007. "Using Graphs Instead of Tables in Political
Science." Perspectives on Politics, 5(4):755-771.

Examples

library(broom)
library(dplyr)
Plot regression coefficients from a single model object
data(mtcars)
ml <- Im(mpg ~ wt + cyl + disp, data = mtcars)
dwplot(ml) +
xlab("Coefficient”) + ylab("") +
geom_vline(xintercept = @, colour = "grey50", linetype = 2) +
theme(legend.position="none")
Plot regression coefficients from multiple models on the fly
m2 <- update(ml, . ~ . - disp)
dwplot(list(full = m1, nodisp = m2))
Change the appearance of dots and whiskers
dwplot(ml, dot_args = list(size = 3, pch = 21, fill = "white"))
Plot regression coefficients from multiple models in a tidy data.frame
by_trans <- mtcars %>% group_by(am) %>%

6 relabel_predictors

do(tidy(Im(mpg ~ wt + cyl + disp, data = .))) %>% rename(model=am)
dwplot(by_trans) +
theme_bw() + xlab("Coefficient”) + ylab("") +
geom_vline(xintercept = @, colour = "grey60", linetype = 2) +
ggtitle("Predicting Gas Mileage, OLS Estimates”) +
theme(plot.title = element_text(face = "bold"),
legend. justification=c(@, @), legend.position=c(0, 0),
legend.background = element_rect(colour="grey80"),
legend.title.align = .5) +
scale_colour_grey(start = .4, end = .8,
name = "Transmission”,
breaks = c(0, 1),
labels = c("Automatic”, "Manual”))

relabel_predictors Relabel the Predictors in a Tidy Data Frame of Regression Results

Description

relabel_predictors is a convenience function for relabeling the predictors in a tidy data.frame to
be passed to dwplot

Usage

relabel_predictors(x, replace = NULL)

Arguments
X Either a plot generated by dwplot or a tidy data.frame to be passed to dwplot
replace A named character vector, with new values as values, and old values as names
Value

The function returns a tidy data.frame.

Examples

library(broom)
library(dplyr)

data(mtcars)
ml <- Im(mpg ~ wt + cyl + disp, data = mtcars)
m1_df <- broom::tidy(m1) %>%
relabel_predictors(c(”(Intercept)” = "Intercept”,
wt = "Weight”,
cyl = "Cylinder”,
disp = "Displacement”))
dwplot(m1_df)

relabel y_axis 7

dwplot(m1, show_intercept = TRUE) %>%
relabel_predictors(c(”"(Intercept)” = "Intercept”,
wt = "Weight”,
cyl = "Cylinder”,
disp = "Displacement”))

relabel_y_axis Relabel the Y-Axis of a Dot-Whisker Plot

Description
relabel_y_axis DEPRECATED. A convenience function for relabeling the predictors on the y-
axis of a dot-whisker plot created by dwplot. It is deprecated; use relabel_predictors instead.
Usage

relabel_y_axis(x)

Arguments

X A vector of labels for predictors, listed from top to bottom

See Also

relabel_predictors to relabel predictors on the y-axis of a dot-whisker plot or in a tidy data.frame

secret_weapon Generate a 'Secret Weapon’ Plot of Regression Results from Multiple
Models

Description

secret_weapon is a function for plotting regression results of multiple models as a ’secret weapon’
plot

Usage

secret_weapon(x, var = NULL, alpha = 0.05, dot_args = NULL,
whisker_args = NULL)

Arguments

X

var

alpha

dot_args

whisker_args

Details

secret_weapon

Either a tidy data.frame including results from multiple models (see ’Details’)
or a list of model objects that can be tidied with tidy

The predictor whose results are to be shown in the ’secret weapon’ plot

A number setting the criterion of the confidence intervals. The default value is
.05, corresponding to 95-percent confidence intervals.

A list of arguments specifying the appearance of the dots representing mean
estimates. For supported arguments, see geom_point.

A list of arguments specifying the appearance of the whiskers representing con-
fidence intervals. For supported arguments, see geom_segment.

Andrew Gelman has coined the term "the secret weapon" for dot-and-whisker plots that compare the
estimated coefficients for a single predictor across many models or datasets. secret_weapon takes
a tidy data.frame of regression results or a list of model objects and generates a dot-and-whisker
plot of the results of a single variable across the multiple models.

Tidy data.frames to be plotted should include the variables term (names of predictors), estimate
(corresponding estimates of coefficients or other quantities of interest), std.error (corresponding
standard errors), and model (identifying the corresponding model). In place of std.error one may
substitute 1b (the lower bounds of the confidence intervals of each estimate) and ub (the correspond-

ing upper bounds).

Alternately, secret_weapon accepts as input a list of model objects that can be tidied by tidy.

Value

The function returns a ggplot object.

Examples

library(broom)
library(dplyr)

Estimate models across many samples, put results in a tidy data.frame
by_clarity <- diamonds %>% group_by(clarity) %>%

do(broom: :tidy(Im(price ~ carat + cut + color, data = .))) %>%
ungroup %>% rename(model=clarity)

Generate a 'secret weapon' plot of the results of diamond size
secret_weapon(by_clarity, "carat")

http://andrewgelman.com/2005/03/07/the_secret_weap/

small_multiple 9

small_multiple Generate a "Small Multiple’ Plot of Regression Results

Description
small_multiple is a function for plotting regression results of multiple models as a ’small multi-
ple’ plot

Usage

small_multiple(x, dodge_size = 0.4, alpha = 0.05, show_intercept = FALSE,
dot_args = list(size = 0.3))

Arguments

X Either a tidy data.frame including results from multiple models (see 'Details’)
or a list of model objects that can be tidied with tidy

dodge_size A number (typically between 0 and 0.3; the default is .06) indicating how much
horizontal separation should appear between different submodels’ coefficients
when multiple submodels are graphed in a single plot. Lower values tend to
look better when the number of models is small, while a higher value may be
helpful when many submodels appear on the same plot.

alpha A number setting the criterion of the confidence intervals. The default value is

.05, corresponding to 95-percent confidence intervals.

show_intercept A logical constant indicating whether the coefficient of the intercept term should
be plotted

dot_args A list of arguments specifying the appearance of the dots representing mean
estimates. For supported arguments, see geom_pointrangeh.

Details

Kastellec and Leoni (2007) small_multiple takes a tidy data.frame of regression results or a list
of model objects and generates a dot-and-whisker plot of the results of a single variable across the
multiple models.

Tidy data.frames to be plotted should include the variables term (names of predictors), estimate
(corresponding estimates of coefficients or other quantities of interest), std.error (corresponding
standard errors), and model (identifying the corresponding model). In place of std.error one may
substitute 1b (the lower bounds of the confidence intervals of each estimate) and ub (the correspond-
ing upper bounds).

Alternately, small_multiple accepts as input a list of model objects that can be tidied by tidy.

Optionally, more than one set of results can be clustered to facilitate comparison within each model;
one example of when this may be desirable is to compare results across samples. In that case, the
data.frame should also include a variable submodel identifying the submodel of the results.

10 small_multiple

Value

The function returns a ggplot object.

Examples

library(broom)
library(dplyr)

Generate a tidy data.frame of regression results from six models

m <- list()

ordered_vars <- c("wt"”, "cyl"”, "disp”, "hp", "gear",

m[[1]] <- Im(mpg ~ wt, data = mtcars)

m123456_df <- m[[1]] %>% tidy %>% by_2sd(mtcars) %>%
mutate(model = "Model 1")

"

amn)

for (i in 2:6) {

m[[i]] <- update(m[[i-1]], paste(”. ~ . +", ordered_vars[i]))

m123456_df <- rbind(m123456_df, m[[i]] %>% tidy %>% by_2sd(mtcars) %>%
mutate(model = paste(”"Model”, i)))

Generate a 'small multiple' plot
small_multiple(m123456_df)

Using submodels to compare results across different samples

Generate a tidy data.frame of regression results from five models on
the mtcars data subset by transmission type (am)

ordered_vars <- c("wt"”, "cyl"”, "disp”, "hp", "gear")

mod <- "mpg ~ wt”

by_trans <- mtcars %>% group_by(am) %>% # group data by transmission

do(tidy(Im(mod, data = .))) %>% # run model on each group
rename (submodel = am) %>% # make submodel variable
mutate(model = "Model 1") %>% # make model variable
ungroup ()

for (i in 2:5) {
mod <- paste(mod, "+", ordered_vars[i])
by_trans <- rbind(by_trans, mtcars %>% group_by(am) %>%
do(tidy(lm(mod, data = .))) %>%
rename (submodel = am) %>%
mutate(model = paste(”Model”, i)) %>%
ungroup())
3

small_multiple(by_trans) +
theme_bw() + ylab("Coefficient Estimate”) +
geom_hline(yintercept = @, colour = "grey60", linetype = 2) +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
legend.position=c(@, @), legend.justification=c(0, @),
legend.title = element_text(size=9),

small_multiple

legend.background = element_rect(color="gray%9e0"),
legend.margin = unit(-3, "pt"),
legend.key.size = unit(10, "pt")) +
scale_colour_hue(name = "Transmission”,
breaks = c(0, 1),
labels = c("Automatic”, "Manual”))

11

Index

add_brackets, 2
by_2sd, 3
dwplot, 3,4,6, 7

geom_point, 8
geom_pointrangeh, 5, 9
geom_segment, 8
ggplot, 5

ggsave, 2
grid.arrange, 2

relabel_predictors, 6, 7
relabel_y_axis, 7

secret_weapon, 7
small_multiple, 9
standardize, 3, 4

tidy, 3-5,8, 9

12

	add_brackets
	by_2sd
	dwplot
	relabel_predictors
	relabel_y_axis
	secret_weapon
	small_multiple
	Index

