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1 Introduction

1.1 What is this document for?

This document describes some methods for the meta–analysis of p–values
(significance values) and their implementation in the package metap. It also
contains some commentary on the performance of the various algorithms
under a small number of different scenrios with some hints on the choice of
method.

The problem of meta–analysis of p–values is of course not completely uncon-
nected with the more general issue of simultaneous statistical inference.

1.2 Why and when to meta–analyse significance values

The canonical way to meta–analyse a number of primary studies is to com-
bine estimates of effect sizes from each of them. There are a large number of
packages for this purpose available from CRAN and described in the task
view http://CRAN.R-project.org/view=MetaAnalysis. However some-
times the only available information may be p–values especially when some
of the primary studies were published a long time ago or were published in
sources which were less rigorous about insisting on effect sizes. The methods
outlined here are designed for this eventuality. The situation may also arise
that some of the studies can be combined in a conventional meta–analysis
using effect sizes but there are many others which cannot and in that case
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the conventional meta–analysis of the subset of studies which do have effect
sizes may usefully be supplemented by an overall analysis of the p–values.

Just for the avoidance of doubt I should point out that if each study has
produced a proportion and the goal is to synthesise them to a common es-
timate or analyse the differences between them then the standard methods
are appropriate not the ones outlined here. The p–values in this document
are significance levels.

1.3 Notation

The k studies give rise to p–values, pi, i = 1, . . . , k. These are assumed to
be independent We shall also need the ordered p–values: p[1] ≤ p[2], . . . ,≤
p[k] and weights wi, i = 1, . . . , k. Logarithms are natural. A function for
combining p–values is denoted g.

The methods are referred to by the name of the function in metap. Table 1
shows other descriptions of each method.

Function name Description(s)

logitp Logistic
meanp

maximump

minimump Tippett’s method
sumlog Fisher’s method Chi square (2 df)
sump Edgington’s method Uniform
sumz Stouffer’s method Normal
votep

wilkinsonp Wilkinson’s method

Table 1: Methods considered in this document

2 Theoretical results

There have been various attempts to clarify the problem and to discuss op-
timality of the various methods. A detailed account was provided by Lipták
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(1958) although the readers is cautioned that this requires a certain famil-
iarity with the methods of probability theory.

Birnbaum (1954) considered the property of admissibility. A method is ad-
missible if when it rejects H0 for a set of pi it will also reject H0 for P ∗

i where
p∗i ≤ pi for all i. He considered that Fisher’s and Tippett’s method were
admissible. See also Owen (2009).

He also points out the problem is poorly specified. This may account for
the number of methods available and their differing behaviour. The null
hypothesis H0 is well defined, that all pi have a uniform distribution on the
unit interval. There are two classes of alternative hypothesis

• HA: all pi have the same (unknown) non–uniform, non–increasing den-
sity,

• HB: at least one pi has an (unknown) non–uniform, non–increasing
density.

If all the tests being combined come from what are basically replicates then
HA is appropriate whereas if they are of different kinds of test or different
conditions then HB is appropriate. Note that Birnbaum specifically consid-
ers the possibility that the tests being combined may be very different for
instance some tests of means, some of variances, and so on.

3 Preparation for meta–analysis of p–values

3.1 Preliminaries

I assume you have installed R and metap. You then need to load the package.

> library(metap)

3.2 Directionality

It is usual to have a directional hypothesis, for instance that treatment is
better than control. For the methods described here a necessary preliminary
is to ensure that all the p–values refer to the same directional hypothesis. If
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the value from the primary study is two–sided it needs to be converted. This
is not simply a matter of halving the quoted p–value as values in the opposite
direction need to be reversed. A convenience function two2one is provided
for this.

> pvals <- c(0.1, 0.1, 0.9, 0.9, 0.9, 0.9)

> istwo <- c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE)

> toinvert <- c(FALSE, TRUE, FALSE, FALSE, TRUE, TRUE)

> two2one(pvals, two = istwo, invert = toinvert)

[1] 0.05 0.90 0.45 0.90 0.55 0.10

Note in particular the way in which 0.9 is converted under the different
scenarios.

3.3 Plotting

> print(validity)

[1] 0.015223 0.005117 0.224837 0.000669 0.004063 0.549106 0.052925 0.024674

[9] 0.004618 0.287803 0.738475 0.009563 0.071971 0.000003 0.001040 0.031221

[17] 0.005274 0.098791 0.067441 0.250210

It would be a wise precaution to examine the p–values graphically or oth-
erwise before subjecting them to further analysis. A function schweder is
provided for this purpose. This plots the ordered p–values, p[i], against i. Al-
though the original motivation for the plot is Schweder and Spjøtvoll (1982)
the function uses a different choice of axes due to Benjamini and Hochberg
(2000). We will use an example dataset on the validity of student ratings
quoted in Becker (1994). Figure 1 shows the plot from schweder.

schweder also offers the possibility of drawing one of a number of straight
line summaries. The three possible straight line summaries are shown in
Figure 2 and are:

• the lowest slope line of Benjaimin and Hochberg which is drawn by
default as solid,

• a least squares line drawn passing through the point k+ 1, 1 and using
a specified fraction of the points which is drawn by default as dotted,
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> par(pin = c(3, 3))

> schweder(validity)
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Figure 1: Simple example of plot using schweder
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> par(pin = c(3, 3))

> schweder(validity, drawline = c("bh", "ls", "ab"),

+ ls.control = list(frac = 0.5), ab.control = list(a = 0, b = 0.01))
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Figure 2: Example of plot with lines added

• a line with user specified intercept and slope which is drawn by default
as dashed.

3.4 Reporting problems in the primary studies

Another issue is what to do with studies which have simply reported on
whether a conventional level of significance like 0.05 was achieved or not. If
the exact associated p cannot be derived from the statistics quoted in the
primary source then the value of the level achieved, in this case 0.05, can
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be used although this may be conservative. Studies which simply report not
significant could be included as having p = 1 (or p = 0.5 if it is known that
the direction was right) although this is very conservative.

4 The methods

4.1 Comparison scenarios

To provide a standard of comparison we shall use the following two situations.
Some authors have also used the case of exactly two pi.

4.1.1 What if all pi = p?

Perhaps surprisingly there are substantial differences here as we shall see
when we look at each method. We describe how the returned value varies
with pi and k.

4.1.2 Cancellation

When the collection of primary studies contains a number of values significant
in both directions for example four studies having p–values 0.001, 0.001,
0.999, 0.999 the methods can give very different results. If the intention of
the synthesis is to examine a directional hypothesis one would want a method
where these cancelled out. We shall use those four values as our example.

4.2 Methods using transformation of the p–values

One class of methods relies on transforming the p–values and then combining
them.
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Figure 3: Behaviour of the methods for k values of p = pi
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4.2.1 The method of summation of logs, Fisher’s method

The method relies on the fact that
k∑

i=1

−2 log pi (1)

is a chi-squared with 2k df. This works because −2 log pi is a χ2
2 and the sum

of χ2 is itself a χ2 with degrees of freedom equal to the sum of the degrees of
freedom of the individual χ2. Of course the sum of the log of the pi is also
the log of the product of the pi. Fisher’s method is provided in sumlog.

When all the pi = p this method returns a value which decreases with k
when p < 0.32, increases with k when p > 0.37, and in between increases
with k and then decreases. Some detailed algebra provided in a post to
stats.stackexchange.com by Christoph Hanck suggests that the breakpoint is
e−1 = 0.3679 so that where the pi are less than that then for a sufficiently
large k the result will be significant and not if above that. Over the range
of k we are plotting this bound is not yet closely approached. Hanck’s plot
suggests that k must be several hundred for this to happen.

This method does not cancel significant values in both direction and returns
a significant result for our example.

> pvals <- c(0.001, 0.001, 0.999, 0.999)

> sumlog(pvals)

chisq = 27.63502 with df = 8 p = 0.0005488615

It would of course be possible to generalise this to use transformation to χ2

with any other number of degrees of freedom rather than 2. Lancaster (1961)
suggests that this is highly correlated with sumlog.

4.2.2 The method of summation of z values, Stouffer’s method

Defined as ∑k
i=1 z(pi)√

k
(2)

is a standard normal deviate where z is the quantile function of the normal
distribution.
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The method of summation of z values is provided in sumz. It returns a value
for our pi = p example which decreases with k when p below 0.5 and increases
above.

This method does cancel significant values in both directions.

> sumz(pvals)

sumz = 0 p = 0.5

A weighted version is available ∑k
i=1wiz(pi)√∑k

i=1w
2
i

(3)

where wi are the weights.

By default the weights are equal. In the absence of effect sizes (in which
case a method for combining effect sizes would be more appropriate anyway)
best results are believed to be obtained with weights proportional to the
square root of the sample sizes (Zaykin, 2011) following Lipták (1958). At
the moment weighting is only provided in sumz as this is the only method
for which a published example is accessible.

4.2.3 The method of summation of logits

Defined as

−
∑k

i=1 log p
1−p

C
(4)

is distributed as Student’s t with 5k + 4 df where

C =

√
kπ2(5k + 2)

3(5k + 4)
(5)

This method is provided in logitp. The constant was arrived at by equating
skewness and kurtosis with that of the t–distribution (Loughin, 2004).

This method returns a value for our pi = p example which decreases with k
when p below 0.5 and increases above.

This method does cancel significant values in both directions.
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> logitp(pvals)

t = 5.114524e-16 with df = 24 p = 0.5

4.2.4 Examples for sumlog, sumz, and logitp

Using the same example dataset which we have already plotted

> sumlog(validity)

chisq = 159.82 with df = 40 p = 2.989819e-16

> sumz(validity)

sumz = 8.186994 p = 1.339156e-16

> logitp(validity)

t = 9.521107 with df = 104 p = 3.954051e-16

As can be seen these are in quite good agreement.

4.3 Methods using untransformed p–values

4.3.1 The method of minimum p and Wilkinson’s method

The minimum p method is usually described in terms of a rejection at the
α∗ level of the null hypothesis

p[1] < 1− (1− α∗)
1
k (6)

The minimum p method is a special case of Wilkinson’s method which uses
p[r] where 1 ≤ r ≤ k (Wilkinson, 1951). Wilkinson’s method is provided
in wilkinsonp and a convenience function minimump with its own print

method is provided for the minimum p method. It is also possible to use
the method for the maximum p (that is r = k) and a convenience function
maximump is provided for that purpose.

These methods return a value for our pi = p example which always increases
with k which is true for minimump and which always decreases with k which
is true for maximump
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The minimum p method does not cancel significant values in both direction
and returns a significant result for our example but the maximum p does
cancel.

> minimump(pvals)

p = 0.003994004 using minimum p

> maximump(pvals)

p = 0.996006 using maximum p

4.3.2 The method of summation of p–values, Edgington’s method

Define

S =
k∑

i=1

pi (7)

then this method is defined as

(S)k

k!
−
(
k − 1

1

)
(S − 1)k

k!
+

(
k − 2

2

)
(S − 2)k

k!
− . . . (8)

where there are k studies and the series continues until the term in in the
numerator (S − i) becomes negative (Edgington, 1972a). This method is
provided in sump.

This method returns a value for our pi = p example which decreases with k
when p below 0.5 and increases above.

This method does cancel significant values in both directions.

> sump(pvals)

psum = 0.5

Some authors use a simpler version, for instance Rosenthal (1978) in the text
although compare his Table 4.

(
∑
p)k

k!
(9)
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where there are k studies but this can be very conservative when
∑
p > 1

There seems no particular need to use this method but it is returned by sump

as the value of conservativep for use in checking published values.

Note also that there can be numerical problems for extreme values of S and
in that case recourse might be made to sumz or logitp which have similar
properties.

4.3.3 The mean p method

This is defined as
z = (0.5− p̄)

√
12k

p̄ =

∑k
i=1 pi
k

(10)

which is a standard normal (Edgington, 1972b) and where . Although this
method is attributed to Edgington when the phrase Edgington’s method is
used it refers to the method of summation of p–values described above in
Section 4.3.2.

This method returns a value for our pi = p example which decreases with k
when p below 0.5 and increases above.

This method does cancel significant values in both directions.

> meanp(pvals)

z = 0 p = 0.5

4.3.4 Examples for minimump, maximump, sump, and meanp

> minimump(validity)

p = 5.999829e-05 using minimum p

> maximump(validity)

p = 0.002326569 using maximum p

> sump(validity)

psum = 2.356122e-11
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> meanp(validity)

z = 5.853608 p = 2.405102e-09

Agreement here is not so good especially for the maximump method.

4.4 Other methods

4.4.1 The method of vote–counting

A simple way of looking at the problem is vote counting. Strictly speaking
this is not a method which combines p–values in the same sense as the other
method. If most of the studies have produced results in favour of the alterna-
tive hypothesis irrespective of whether any of them is individually significant
then that might be regarded as evidence for that alternative. The numbers
for and against may be compared with what would be expected under the
null using the binomial distribution. A variation on this would allow for a
neutral zone of studies which are considered neither for nor against. For in-
stance one might only count studies which have reached some conventional
level of statistical significance in the two different directions.

This method returns a value for our pi = p example which is 1 above 0.5 and
otherwise invariant with p but decreases with k.

This method does cancel significant values in both directions.

> votep(pvals)

p = 0.6875

4.5 Examples of votep

> votep(validity)

p = 0.0002012253
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5 Loughin’s recommendations

In his simulation study Loughin (2004) carried out extensive comparisons.
He bases his recommendations on criteria of structure and the arrangement
of evidence against H0.

Under structure he considers three cases with the following recommendations:
emphasis on small p–values (sumlog and minimump), emphasis on large p–
values (maximump and sump), and equal emphasis (logitp and sumz).

Under arrangement of evidence he considers where this is concentrated. His
recommendations are summarised in Table 2.

Equal in all tests k < 10 sump, maximump
Any k sumz, logitp

Some in all tests k < 10 sump, maximump
Any k sumz, logitp

In majority of tests sumz, logitp
In minority of tests Moderate or strong evidence sumlog

Any power sumz, logitp
In one test only Strong total evidence minimup

Moderate total evidence sumlog

Weak total evidence sumz, logitp

Table 2: Loughin’s recommendations for method choice

6 Other considerations

6.1 Directionality

When the collection of primary studies contains a number of values significant
in both directions we have seen that the methods can give very different
results. If the intention of the synthesis is to examine a directional hypothesis
one would want a method where these cancelled out. Clearly the choice
should be made on scientific grounds not on the baiss of the outcome.
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6.2 Extractor functions

The standard print and plot methods are provided.

6.3 Legal values for pi

Valid for
p = 0 p = 1 Notes

logitp N N
meanp Y Y Requires at least four studies
sumlog N Y
sump Y Y
sumz Y Y
votep Y Y
wilkinson Y Y

Table 3: Restrictions on values of pi

Not all methods work with p = 0 or p = 1. See Table 3 for details. If these
values occur in your dataset and you do not wish the functions to take their
routine action of excluding that study then you need to decide what to do. If
you believe that injudicious rounding is to blame you might wish to replace
zero values by the least upper bound of the values which would still round to
zero to the given number of decimal places. So you might replace 0.00 with
0.005, 0.000 with 0.0005 and so on. Similar action can be taken for values
given as unity.

6.4 Reading

An annotated bibliography is provided by Cousins (2008)

7 Feedback

I aim to include any method for which there exists a published example
against which I can test the code. I welcome feedback about such sources
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and any other comments about either the documentation or the code.
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