
Package ‘dynr’
June 17, 2017

Date 2017-06-16

Title Dynamic Modeling in R

Author Lu Ou [aut],
Michael D. Hunter [aut, cre],
Sy-Miin Chow [aut]

Maintainer Michael D. Hunter <mhunter.ou@gmail.com>

Depends R (>= 3.0.0), methods, ggplot2

Imports MASS, Matrix, numDeriv, xtable, latex2exp, grid, reshape2,
plyr, mice, magrittr

Suggests testthat, roxygen2 (>= 3.1)

Description Intensive longitudinal data have become increasingly prevalent in
various scientific disciplines. Many such data sets are noisy, multivariate,
and multi-subject in nature. The change functions may also be continuous, or
continuous but interspersed with periods of discontinuities (i.e., showing
regime switches). The package 'dynr' (Dynamic Modeling in R) is an R package
that implements a set of computationally efficient algorithms for handling a
broad class of linear and nonlinear discrete- and continuous-time models with
regime-switching properties under the constraint of linear Gaussian measurement
functions. The discrete-time models can generally take on the form of a state-
space or difference equation model. The continuous-time models are generally
expressed as a set of ordinary or stochastic differential equations. All
estimation and computations are performed in C, but users are provided with the
option to specify the model of interest via a set of simple and easy-to-learn
model specification functions in R. Model fitting can be performed using single-
subject time series data or multiple-subject longitudinal data.

SystemRequirements GNU make

NeedsCompilation yes

License Apache License (== 2.0)

LazyLoad yes

LazyData yes

Collate 'dynrData.R' 'dynrRecipe.R' 'dynrModelInternal.R'
'dynrModel.R' 'dynrCook.R' 'dynrPlot.R' 'dynrFuncAddress.R'
'dynrMi.R' 'dynrVersion.R' 'dataDoc.R'

1

2 R topics documented:

RdMacros Rdpack

Biarch true

Version 0.1.11-2

RoxygenNote 5.0.1

Repository CRAN

Date/Publication 2017-06-17 00:05:54 UTC

R topics documented:
dynr-package . 3
coef.dynrModel . 7
confint.dynrCook . 8
diag,character-method . 9
dynr.cook . 9
dynr.data . 11
dynr.ggplot . 12
dynr.ldl . 14
dynr.mi . 14
dynr.model . 15
dynr.plotFreq . 16
dynrCook-class . 17
dynrDynamics-class . 17
dynrInitial-class . 17
dynrMeasurement-class . 17
dynrModel-class . 18
dynrNoise-class . 18
dynrRecipe-class . 18
dynrRegimes-class . 19
dynrTrans-class . 19
EMG . 19
EMGsim . 20
internalModelPrep . 21
LogisticSetPointSDE . 22
logLik.dynrCook . 23
names,dynrCook-method . 24
names,dynrModel-method . 24
nobs.dynrCook . 25
nobs.dynrModel . 25
NonlinearDFAsim . 26
Oscillator . 27
plot.dynrCook . 28
plotFormula . 29
PPsim . 30
prep.formulaDynamics . 30
prep.initial . 32
prep.loadings . 35

dynr-package 3

prep.matrixDynamics . 37
prep.measurement . 38
prep.noise . 39
prep.regimes . 41
prep.tfun . 43
printex . 44
RSPPsim . 45
summary.dynrCook . 46
vcov.dynrCook . 47

Index 48

dynr-package Dynamic Modeling in R

Description

Intensive longitudinal data have become increasingly prevalent in various scientific disciplines.
Many such data sets are noisy, multivariate, and multi-subject in nature. The change functions may
also be continuous, or continuous but interspersed with periods of discontinuities (i.e., showing
regime switches). The package ’dynr’ (Dynamic Modeling in R) is an R package that implements
a set of computationally efficient algorithms for handling a broad class of linear and nonlinear
discrete- and continuous-time models with regime-switching properties under the constraint of lin-
ear Gaussian measurement functions. The discrete-time models can generally take on the form of a
state- space or difference equation model. The continuous-time models are generally expressed as a
set of ordinary or stochastic differential equations. All estimation and computations are performed
in C, but users are provided with the option to specify the model of interest via a set of simple
and easy-to-learn model specification functions in R. Model fitting can be performed using single-
subject time series data or multiple-subject longitudinal data.

Details

The DESCRIPTION file:

Package: dynr
Date: 2017-06-16
Title: Dynamic Modeling in R
Authors@R: c(person("Lu", "Ou", role="aut", email="lzo114@psu.edu"), person(c("Michael", "D."), "Hunter", role=c("aut", "cre"), email="mhunter.ou@gmail.com"), person("Sy-Miin", "Chow", role="aut"))
Author: Lu Ou [aut], Michael D. Hunter [aut, cre], Sy-Miin Chow [aut]
Maintainer: Michael D. Hunter <mhunter.ou@gmail.com>
Depends: R (>= 3.0.0), methods, ggplot2
Imports: MASS, Matrix, numDeriv, xtable, latex2exp, grid, reshape2, plyr, mice, magrittr
Suggests: testthat, roxygen2 (>= 3.1)
Description: Intensive longitudinal data have become increasingly prevalent in various scientific disciplines. Many such data sets are noisy, multivariate, and multi-subject in nature. The change functions may also be continuous, or continuous but interspersed with periods of discontinuities (i.e., showing regime switches). The package ’dynr’ (Dynamic Modeling in R) is an R package that implements a set of computationally efficient algorithms for handling a broad class of linear and nonlinear discrete- and continuous-time models with regime-switching properties under the constraint of linear Gaussian measurement functions. The discrete-time models can generally take on the form of a state- space or difference equation model. The continuous-time models are generally expressed as a set of ordinary or stochastic differential equations. All estimation and computations are performed in C, but users are provided with the option to specify the model of interest via a set of simple and easy-to-learn model specification functions in R. Model fitting can be performed using single- subject time series data or multiple-subject longitudinal data.
SystemRequirements: GNU make
NeedsCompilation: yes
License: Apache License (== 2.0)
LazyLoad: yes

4 dynr-package

LazyData: yes
Collate: ’dynrData.R’ ’dynrRecipe.R’ ’dynrModelInternal.R’ ’dynrModel.R’ ’dynrCook.R’ ’dynrPlot.R’ ’dynrFuncAddress.R’ ’dynrMi.R’ ’dynrVersion.R’ ’dataDoc.R’
RdMacros: Rdpack
Biarch: true
Version: 0.1.11-2
RoxygenNote: 5.0.1

Index of help topics:

EMG Single-subject time series of facial
electromyography data

EMGsim Simulated single-subject time series to capture
features of facial electromyography data

LogisticSetPointSDE Simulated time series data for a stochastic
linear damped oscillator model with logistic
time-varying setpoints

NonlinearDFAsim Simulated multi-subject time series based on a
dynamic factor analysis model with nonlinear
relations at the latent level

Oscillator Simulated time series data a damped linear
oscillator

PPsim Simulated time series data for multiple
eco-systems based on a predator-and-prey model

RSPPsim Simulated time series data for multiple
eco-systems based on a regime-switching
predator-and-prey model

coef.dynrModel Extract fitted parameters from a dynrCook
Object

confint.dynrCook Confidence Intervals for Model Parameters
diag,character-method Create a diagonal matrix from a character

vector
dynr-package Dynamic Modeling in R
dynr.cook Cook a dynr model to estimate its free

parameters
dynr.data Create a list of data for parameter estimation

(cooking dynr) using 'dynr.cook'
dynr.ggplot The ggplot of the smoothed state estimates and

the most likely regimes
dynr.ldl LDL Decomposition for Matrices
dynr.mi Multiple Imputation of dynrModel objects
dynr.model Create a dynrModel object for parameter

estimation (cooking dynr) using 'dynr.cook'
dynr.plotFreq Plot of the estimated frequencies of the

regimes across all individuals and time points
based on their smoothed regime probabilities

dynrCook-class The dynrCook Class
dynrDynamics-class The dynrDynamics Class

dynr-package 5

dynrInitial-class The dynrInitial Class
dynrMeasurement-class The dynrMeasurement Class
dynrModel-class The dynrModel Class
dynrNoise-class The dynrNoise Class
dynrRecipe-class The dynrRecipe Class
dynrRegimes-class The dynrRegimes Class
dynrTrans-class The dynrTrans Class
internalModelPrep Do internal model preparation for dynr
logLik.dynrCook Extract the log likelihood from a dynrCook

Object
names,dynrCook-method Extract the free parameter names of a dynrCook

object
names,dynrModel-method

Extract the free parameter names of a dynrModel
object

nobs.dynrCook Extract the number of observations for a
dynrCook object

nobs.dynrModel Extract the number of observations for a
dynrModel object

plot.dynrCook Plot method for dynrCook objects
plotFormula Plot the formula from a model
prep.formulaDynamics Recipe function for specifying dynamic

functions using formulas
prep.initial Recipe function for preparing the initial

conditions for the model.
prep.loadings Recipe function to quickly create factor

loadings
prep.matrixDynamics Recipe function for creating Linear Dynamcis

using matrices
prep.measurement Prepare the measurement recipe
prep.noise Recipe function for specifying the measurement

error and process noise covariance structures
prep.regimes Recipe function for creating regime switching

(Markov transition) functions
prep.tfun Create a dynrTrans object to handle the

transformations and inverse transformations of
model paramters

printex The printex Method
summary.dynrCook Get the summary of a dynrCook object
vcov.dynrCook Extract the Variance-Covariance Matrix of a

dynrCook object

Because the dynr package compiles C code in response to user input, more setup is required for the
dynr package than for many others. We acknowledge that this additional setup can be bothersome,
but we believe the ease of use for the rest of the package and the wide variety of models it is possible
to fit with it will compensate for this initial burden. Hopefully you will agree!

See the installation vignette referenced in the Examples section below for installation instructions.

The naming convention for dynr exploits the pronunciation of the package name, dynr, pronounced

6 dynr-package

the same as “dinner”. That is, the names of functions and methods are specifically designed to relate
to things done surrounding dinner, such as gathering ingredients (e.g., the data), preparing recipes,
cooking, and serving the finished product. The general procedure for using the dynr package can
be summarized in five steps as below.

1. Data are prepared using with the dynr.data() function.

2. Recipes are prepared. To each part of a model there is a corresponding prep.*() recipe func-
tion. Examples of such prep.*() functions include: prep.measurement(), prep.matrixDynamics(),
prep.formulaDynamics(), prep.initial(), prep.noise(), and prep.regimes().

3. The function dynr.model() mixes the data and recipes together into a model object of class
dynrModel.

4. The model is cooked with dynr.cook().

5. Results from model fitting and related estimation are served using functions such as summary(),
plot(), dynr.ggplot() (or its alias autoplot()), plotFormula(), and printex().

Note

State-space modeling, dynamic model, differential equation, regime switching, nonlinear

Author(s)

Lu Ou [aut], Michael D. Hunter [aut, cre], Sy-Miin Chow [aut]

Maintainer: Michael D. Hunter <mhunter.ou@gmail.com>

References

Chow S, Grimm KJ, Guillaume F, Dolan CV and McArdle JJ (2013). “Regime-switching bivariate
dual change score model.” Multivariate Behavioral Research, 48(4), pp. 463-502.

Chow S and Zhang G (2013). “Nonlinear Regime-Switching State-Space (RSSS) Models.” Psy-
chometrika: Application Reviews and Case Studies, 78(4), pp. 740-768.

Ou L, Hunter M and Chow S (under review). “What’s for dynr: A package for linear and nonlinear
dynamic modeling in R.” Journal of Statistical Software.

Yang M and Chow S (2010). “Using state-space model with regime switching to represent the
dynamics of Facial electromyography (EMG) data.” Psychometrika: Application and Case Studies,
74(4), pp. 744-771.

Chow S, Ou L, Ciptadi A, Prince E, Rehg JM, Rozga A and Messinger DS (accepted with revisions).
“Differential equation modeling approaches to representing sudden shifts in intensive dyadic inter-
action data.” Psychometrika.

See Also

For other annotated tutorials using the dynr package see https://quantdev.ssri.psu.edu/
resources/what%E2%80%99s-dynr-package-linear-and-nonlinear-dynamic-modeling-r

https://quantdev.ssri.psu.edu/resources/what%E2%80%99s-dynr-package-linear-and-nonlinear-dynamic-modeling-r
https://quantdev.ssri.psu.edu/resources/what%E2%80%99s-dynr-package-linear-and-nonlinear-dynamic-modeling-r

coef.dynrModel 7

Examples

For installation instructions see the package vignette below
vignette(package='dynr', 'InstallationForUsers')
This should open a pdf/html file to guide you through proper
installation and configuration.

#For illustrations of the functions in dynr, check out some of the demo examples in:
demo(package='dynr')

#For example, to run the demo 'LinearSDE' type
the following without the comment character (#) in front of it.
#demo('LinearSDE', package='dynr')

coef.dynrModel Extract fitted parameters from a dynrCook Object

Description

aliases coef.dynrModel coef<- coef<-.dynrModel

Usage

S3 method for class 'dynrModel'
coef(object, ...)

coef(object) <- value

S3 replacement method for class 'dynrModel'
coef(object) <- value

S3 method for class 'dynrCook'
coef(object, ...)

Arguments

object The dynrCook object for which the coefficients are desired

... further named arguments, ignored for this method

value values for setting

Value

A numeric vector of the fitted parameters.

See Also

Other S3 methods logLik.dynrCook

8 confint.dynrCook

Examples

Let cookedModel be the output from dynr.cook
#coef(cookedModel)

confint.dynrCook Confidence Intervals for Model Parameters

Description

Confidence Intervals for Model Parameters

Usage

S3 method for class 'dynrCook'
confint(object, parm, level = 0.95, ...)

Arguments

object a fitted model object

parm which parameters are to be given confidence intervals

level the confidence level

... further names arguments. Ignored.

Details

The parm argument can be a numeric vector or a vector of names. If it is missing then it defaults to
using all the parameters.

These are Wald-type confidence intervals based on the standard errors of the (transformed) parame-
ters. Wald-type confidence intervals are known to be inaccurate for variance parameters, particularly
when the variance is near zero (See references for issues with Wald-type confidence intervals).

Value

A matrix with columns giving lower and upper confidence limits for each parameter. These will be
labelled as (1-level)/2 and 1 - (1-level)/2 as a percentage (e.g. by default 2.5

References

Pritikin, J.N., Rappaport, L.M. & Neale, M.C. (In Press). Likelihood-Based Confidence Intervals
for a Parameter With an Upper or Lower Bound. Structural Equation Modeling. DOI: 10.1080/10705511.2016.1275969

Neale, M. C. & Miller M. B. (1997). The use of likelihood based confidence intervals in genetic
models. Behavior Genetics, 27(2), 113-120.

Pek, J. & Wu, H. (2015). Profile likelihood-based confidence intervals and regions for structural
equation models. Psychometrica, 80(4), 1123-1145.

Wu, H. & Neale, M. C. (2012). Adjusted confidence intervals for a bounded parameter. Behavior
genetics, 42(6), 886-898.

diag,character-method 9

Examples

Let cookedModel be the output from dynr.cook
#confint(cookedModel)

diag,character-method Create a diagonal matrix from a character vector

Description

Create a diagonal matrix from a character vector

Usage

S4 method for signature 'character'
diag(x = 1, nrow, ncol)

Arguments

x Character vector used to create the matrix

nrow Numeric. Number of rows for the resulting matrix.

ncol Numeric. Number of columns for the resulting matrix.

Details

The default behavior for missing nrow and/or ncol arguments is the same as for the diag function
in the base package. Off-diagonal entries are filled with "0".

Examples

diag(letters[1:3])

dynr.cook Cook a dynr model to estimate its free parameters

Description

Cook a dynr model to estimate its free parameters

Usage

dynr.cook(dynrModel, conf.level = 0.95, infile, optimization_flag = TRUE,
hessian_flag = TRUE, verbose = TRUE, weight_flag = FALSE,
debug_flag = FALSE)

10 dynr.cook

Arguments

dynrModel a dynr model compiled using dynr.model, consisting of recipes for submodels,
starting values, parameter names, and C code for each submodel

conf.level a cumulative proportion indicating the level of desired confidence intervals for
the final parameter estimates (default is .95)

infile (not required for models specified through the recipe functions) the name of a
file that has the C codes for all dynr submodels for those interested in specifying
a model directly in C

optimization_flag

a flag (TRUE/FALSE) indicating whether optimization is to be done.

hessian_flag a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated.

verbose a flag (TRUE/FALSE) indicating whether more detailed intermediate output dur-
ing the estimation process should be printed

weight_flag a flag (TRUE/FALSE) indicating whether the negative log likelihood function
should be weighted by the length of the time series for each individual

debug_flag a flag (TRUE/FALSE) indicating whether users want additional dynr output that
can be used for diagnostic purposes

Details

Free parameter estimation uses the SLSQP routine from NLOPT.

The typical items returned in the cooked model are the filtered and smoothed latent variable esti-
mates. eta_smooth_final, error_cov_smooth_final and pr_t_given_T are respectively time-
varying smoothed latent variable mean estimates, smoothed error covariance estimates, and smoothed
regime probability. eta_filtered, error_cov_filtered and pr_t_given_t are respectively
time-varying filtered latent variable mean estimates, filtered error covariance matrix estimates, and
filtered regime probability.

When debug_flag is TRUE, then additional information is passed into the cooked model. eta_predicted,
error_cov_predicted, innov_vec, and residual_cov are respectively time-varying predicted
latent variable mean estimates, predicted error covariance matrix estimates, the error/residual esti-
mates (innovation vector), and the error/residual covariance matrix estimates.

See Also

autoplot, coef, confint, deviance, initialize, logLik, names, nobs, plot, print, show,
summary, vcov.

Examples

#fitted.model <- dynr.cook(model)

dynr.data 11

dynr.data Create a list of data for parameter estimation (cooking dynr) using
dynr.cook

Description

Create a list of data for parameter estimation (cooking dynr) using dynr.cook

Usage

dynr.data(dataframe, id = "id", time = "time", observed, covariates)

Arguments

dataframe either a “ts” class object of time series data for a single subject or a data frame
object of data for potentially multiple subjects that contain a column of subject
ID numbers (i.e., an ID variable), a column indicating subject-specific measure-
ment occasions (i.e., a TIME variable), at least one column of observed values,
and any number of covariates. If the data are fit to a discrete-time model, the
TIME variable should contain subject-specific sequences of (subsets of) consec-
utively equally spaced numbers (e.g, 1, 2, 3, ...). That is, the program assumes
that the input data.frame is equally spaced with potential missingness. If the
measurement occasions for a subject are a subset of an arithmetic sequence but
are not consecutive, NAs will be inserted automatically to create an equally
spaced data set before estimation. If the data are fit to a continuous-time model,
the TIME varibles can contain subject-specific increasing sequences of irregu-
larly spaced real numbers. Missing values in the observed variables shoud be
indicated by NA. Missing values in covariates are not allowed. That is, missing
values in the covariates, if there are any, should be imputed first.

id a character string of the name of the ID variable in the data. Optional for a “ts”
class object.

time a character string of the name of the TIME variable in the data. Optional for a
“ts” class object.

observed a vector of character strings of the names of the observed variables in the data.
Optional for a “ts” class object.

covariates (optional) a vector of character strings of the names of the covariates in the data,
which can be missing.

Examples

data(EMGsim)
dd <- dynr.data(EMGsim, id = 'id', time = 'time', observed = 'EMG', covariates = 'self')

z <- ts(matrix(rnorm(300), 100, 3), start = c(1961, 1), frequency = 12)
dz <- dynr.data(z)

12 dynr.ggplot

dynr.ggplot The ggplot of the smoothed state estimates and the most likely regimes

Description

The ggplot of the smoothed state estimates and the most likely regimes

Usage

dynr.ggplot(res, dynrModel, style = 1, numSubjDemo = 2, idtoPlot = c(),
names.state, names.observed, names.regime, shape.values, title, ylab,
is.bw = FALSE, colorPalette = "Set2", fillPalette = "Set2",
mancolorPalette, manfillPalette, ...)

S3 method for class 'dynrCook'
autoplot(object, dynrModel, style = 1, numSubjDemo = 2,
idtoPlot = c(), names.state, names.observed, names.regime, shape.values,
title, ylab, is.bw = FALSE, colorPalette = "Set2", fillPalette = "Set2",
mancolorPalette, manfillPalette, ...)

Arguments

res The dynr object returned by dynr.cook().

dynrModel The model object to plot.

style The style of the plot. If style is 1 (default), user-selected smoothed state vari-
ables are plotted. If style is 2, user-selected observed-versus-predicted values
are plotted.

numSubjDemo The number of subjects to be randomly selected for plotting.

idtoPlot Values of the ID variable to plot.

names.state (optional) The names of the states to be plotted, which should be a subset of the
state.names slot of the measurement slot of dynrModel.

names.observed (optional) The names of the observed variables to be plotted, which should be a
subset of the obs.names slot of the measurement slot of dynrModel.

names.regime (optional) The names of the regimes to be plotted, which can be missing.

shape.values (optional) A vector of values that correspond to the shapes of the points, which
can be missing. See the R documentation on pch for details on possible shapes.

title (optional) A title of the plot.

ylab (optional) The label of the y axis.

is.bw Is plot in black and white? The default is FALSE.

colorPalette A color palette for lines and dots. It is a value passed to the palette argument
of the ggplot2::scale_colour_brewer() function. These palettes are in the
R package RColorBrewer. One can find them by attaching the package with
library(RColorBrewer) and run display.brewer.all().

dynr.ggplot 13

fillPalette A color palette for blocks. It is a value passed to the palette argument of the
ggplot2::scale_fill_brewer() function. These palettes are in the package
RColorBrewer. One can find them by attaching the package with library(RColorBrewer)
and run display.brewer.all().

mancolorPalette

(optional) A color palette for manually scaling the colors of lines and dots. It is a
vector passed to the values argument of the ggplot2::scale_colour_manual
function.

manfillPalette (optional) A color palette for manually scaling the colors of filled blocks. It is
a vector passed to the values argument of the ggplot2::scale_fill_manual
function.

... A list of elements that modify the existing ggplot theme. Consult the ggplot2::theme()
function in the R package ggplot2 for more options.

object The same as res. The dynr object returned by dynr.cook().

Details

This function outputs a ggplot layer that can be modified using functions in the package ggplot2.
That is, one can add layers, scales, coords and facets with the "+" sign. In an example below, the
ggplot2::ylim() function is used to modify the limits of the y axis of the graph. More details can
be found on http://ggplot2.org and http://ggplot2.tidyverse.org/reference/.

The two functions dynr.ggplot() and autoplot() as identical aliases of one another. The autoplot()
function is an S3 method from the package ggplot2 that allows many objects to be plotted and works
like the base plot() function.

Examples

The following code is part of a demo example in dynr
One can obtain the yum and rsmod objects needed below by running demo(RSLinearDiscreteYang).
p <- dynr.ggplot(yum, dynrModel = rsmod, style = 1,
names.regime = c("Deactivated", "Activated"),
title = "(B) Results from RS-AR model", numSubjDemo = 1,
shape.values = c(1),
text = element_text(size = 16),
is.bw = TRUE)
One can modify the limits on the y axis by using '+'
p + ggplot2::ylim(-2, 4)

autoplot(yum, dynrModel = rsmod, style = 1,
names.regime = c("Deactivated", "Activated"),
title = "(B) Results from RS-AR model", numSubjDemo = 1,
shape.values = c(1),
text = element_text(size = 16),
is.bw = TRUE)

http://ggplot2.org
http://ggplot2.tidyverse.org/reference/

14 dynr.mi

dynr.ldl LDL Decomposition for Matrices

Description

LDL Decomposition for Matrices

Usage

dynr.ldl(x)

Arguments

x a numeric matrix
This is a wrapper function around the chol function. The goal is to factor a
square, symmetric, positive (semi-)definite matrix into the product of a lower
triangular matrix, a diagonal matrix, and the transpose of the lower triangular
matrix. The value returned is a lower triangular matrix with the elements of D
on the diagonal.

dynr.mi Multiple Imputation of dynrModel objects

Description

Multiple Imputation of dynrModel objects

Usage

dynr.mi(model, m = 5, aux.variable, imp.obs = FALSE, imp.exo = FALSE, lag)

Arguments

model dynrModel object

m number of multiple imputations

aux.variable names of auxiliary variables used in imputation

imp.obs logical. whether to impute the observed variables

imp.exo logical. whether to impute the exogenous variables

lag numeric. the number of lags to use

Details

This function is in alpha-testing form. Please do not use or rely on it for now. A full implementation
is in progress.

dynr.model 15

dynr.model Create a dynrModel object for parameter estimation (cooking dynr)
using dynr.cook

Description

Create a dynrModel object for parameter estimation (cooking dynr) using dynr.cook

Usage

dynr.model(dynamics, measurement, noise, initial, data, ..., outfile)

Arguments

dynamics a dynrDynamics object prepared with prep.formulaDynamics or prep.matrixDynamics

measurement a dynrMeasurement object prepared with prep.loadings or prep.measurement

noise a dynrNoise object prepared with prep.noise

initial a dynrInitial object prepared with prep.initial

data a dynrData object made with dynr.data

... additional arguments specifying other dynrRecipe objects. Argument regimes is
for a dynrRegimes object prepared with prep.regimes and argument transform
is for a dynrTrans object prepared with prep.tfun.

outfile a character string of the name of the output C script of model functions to be
compiled for parameter estimation.

Details

A dynrModel is a collection of recipes. The recipes are constructed with the functions prep.measurement,
prep.noise, prep.formulaDynamics, prep.matrixDynamics, prep.initial, and in the case of
regime-switching models prep.regimes. Additionally, data must be prepared with dynr.data and
added to the model.

Several named arguments can be passed into the ... section of the function. These include

• Argument regimes is for a dynrRegimes object prepared with prep.regimes

• Argument transform is for a dynrTrans object prepared with prep.tfun.

• Argument options a list of options. Check the NLopt website http://ab-initio.mit.edu/
wiki/index.php/NLopt_Reference#Stopping_criteria for details. Available options for
use with a dynrModel object include xtol_rel, stopval, ftol_rel, ftol_abs, maxeval, and max-
time, all of which control the termination conditions for parameter optimization. The examples
below show a case where options were set.

There are several available methods for dynrModel objects.

• The dollar sign ($) can be used to both get objects out of a model and to set pieces of the
model.

http://ab-initio.mit.edu/wiki/index.php/NLopt_Reference#Stopping_criteria
http://ab-initio.mit.edu/wiki/index.php/NLopt_Reference#Stopping_criteria

16 dynr.plotFreq

• names returns the names of the free parameters in a model.

• printex prints LaTeX expressions for the equations that compose a model. The output can
then be readily typeset for inclusion in presentations and papers.

• nobs gives the total number of observations (e.g. all times across all people)

• coef gives the free parameter starting values. Free parameters can also be assigned with
coef(model) <- aNamedVectorOfCoefficients

Examples

#rsmod <- dynr.model(dynamics=recDyn, measurement=recMeas, noise=recNoise,
initial=recIni, regimes=recReg, data=dd, outfile="RSLinearDiscrete.c")

#Set relative tolerance on function value via 'options':
#rsmod <- dynr.model(dynamics=recDyn, measurement=recMeas, noise=recNoise,
initial=recIni, regimes=recReg, data=dd, outfile="RSLinearDiscrete.c",
options=list(ftol_rel=as.numeric(1e-6)))

#For a full demo example, see:
#demo(RSLinearDiscrete , package="dynr")

dynr.plotFreq Plot of the estimated frequencies of the regimes across all individuals
and time points based on their smoothed regime probabilities

Description

Plot of the estimated frequencies of the regimes across all individuals and time points based on their
smoothed regime probabilities

Usage

dynr.plotFreq(res, dynrModel, names.regime, title, xlab, ylab, textsize = 12,
print = TRUE)

Arguments

res The dynr object returned by dynr.cook().

dynrModel The model object to plot.

names.regime (optional) Names of the regimes (must match the length of the number of regimes)

title (optional) Title of the plot.

xlab (optional) Label of the x-axis.

ylab (optional) Label of the y-axis.

textsize (default = 12) Text size for the axis labels and title (= textsize + 2).

print (default = TRUE) A flag for whether the plot should be printed.

dynrCook-class 17

dynrCook-class The dynrCook Class

Description

The dynrCook Class

Details

This is an internal class structure. You should not use it directly. Use dynr.cook instead.

dynrDynamics-class The dynrDynamics Class

Description

The dynrDynamics Class

Details

This is an internal class structure. The classes dynrDynamicsFormula-class and dynrDynamicsMatrix-class
are subclasses of this. However, you should not use it directly. Use prep.matrixDynamics or
prep.formulaDynamics instead.

dynrInitial-class The dynrInitial Class

Description

The dynrInitial Class

Details

This is an internal class structure. You should not use it directly. Use prep.initial instead.

dynrMeasurement-class The dynrMeasurement Class

Description

The dynrMeasurement Class

Details

This is an internal class structure. You should not use it directly. Use prep.measurement or
prep.loadings instead.

18 dynrRecipe-class

dynrModel-class The dynrModel Class

Description

The dynrModel Class

Details

This is an internal class structure. You should not use it directly. Use dynr.model instead.

dynrNoise-class The dynrNoise Class

Description

The dynrNoise Class

Details

This is an internal class structure. You should not use it directly. Use prep.noise instead.

dynrRecipe-class The dynrRecipe Class

Description

The dynrRecipe Class

Details

This is an internal class structure. You should not use it directly. The following are all subclasses of
this class: dynrMeasurement-class, dynrDynamics-class, dynrRegimes-class, dynrInitial-class,
dynrNoise-class, and dynrTrans-class. Recipes are the things that go into a dynrModel-class
using dynr.model. Use the recipe prep functions (prep.measurement, prep.formulaDynamics,
prep.matrixDynamics, prep.regimes, prep.initial, prep.noise, or prep.tfun) to create
these classes instead.

dynrRegimes-class 19

dynrRegimes-class The dynrRegimes Class

Description

The dynrRegimes Class

Details

This is an internal class structure. You should not use it directly. Use prep.regimes instead.

dynrTrans-class The dynrTrans Class

Description

The dynrTrans Class

Details

This is an internal class structure. You should not use it directly. Use prep.tfun instead.

EMG Single-subject time series of facial electromyography data

Description

A dataset obtained and analyzed in Yang and Chow (2010).

Usage

data(EMG)

Format

A data frame with 695 rows and 4 variables

20 EMGsim

Details

Reference: Yang, M-S. & Chow, S-M. (2010). Using state-space models with regime switching to
represent the dynamics of facial electromyography (EMG) data. Psychometrika, 74(4), 744-771

The variables are as follows:

• id. ID of the participant (= 1 in this case, over 695 time points)

• time Time in seconds

• iEMG. Observed integrated facial electromyograhy data

• SelfReport. Covariate - the individual’s concurrent self-reports

EMGsim Simulated single-subject time series to capture features of facial elec-
tromyography data

Description

A dataset simulated using an autoregressive model of order (AR(1)) with regime-specific AR weight,
intercept, and slope for a covariate. This model is a special case of Model 1 in Yang and Chow
(2010) in which the moving average coefficient is set to zero.

Reference: Yang, M-S. & Chow, S-M. (2010). Using state-space models with regime switching to
represent the dynamics of facial electromyography (EMG) data. Psychometrika, 74(4), 744-771

Usage

data(EMGsim)

Format

A data frame with 500 rows and 6 variables

Details

The variables are as follows:

• id. ID of the participant (= 1 in this case, over 500 time points)

• EMG. Hypothetical observed facial electromyograhy data

• self. Covariate - the individual’s concurrent self-reports

• truestate. The true score of the individual’s EMG at each time point

• trueregime. The true underlying regime for the individual at each time point

internalModelPrep 21

internalModelPrep Do internal model preparation for dynr

Description

Principally, this function takes a host of arguments and gives back a list that importantly includes
the function addresses.

Usage

internalModelPrep(num_regime, dim_latent_var, xstart, ub, lb,
options = default.model.options, isContinuousTime, infile, outfile,
compileLib, verbose)

Arguments

num_regime An integer number of the regimes.

dim_latent_var An integer number of the latent variables.

xstart The starting values for parameter estimation.

ub The upper bounds of the estimated parameters.

lb The lower bounds of the estimated parameters.

options A list of NLopt estimation options. By default, xtol_rel=1e-7, stopval=-9999,
ftol_rel=-1, ftol_abs=-1, maxeval=as.integer(-1), and maxtime=-1.

isContinuousTime

A binary flag indicating whether the model is a continuous-time model (FALSE/0
= no; TRUE/1 = yes)

infile Input file name

outfile Output file name

compileLib Whether to compile the libary anew

verbose Logical flag for verbose output

Value

A list of model statements to be passed to dynr.cook().

22 LogisticSetPointSDE

LogisticSetPointSDE Simulated time series data for a stochastic linear damped oscillator
model with logistic time-varying setpoints

Description

A dataset simulated using a continuous-time stochastic linear damped oscillator model. The vari-
ables are as follows:

Usage

data(LogisticSetPointSDE)

Format

A data frame with 2410 rows and 6 variables

Details

• id. ID of the systems (1 to 10)

• times. Time index (241 time points for each system)

• x. Latent level variable

• y. Latent first derivative variable

• z. True values of time-varying setpoints

• obsy. Observed level

Examples

The following was used to generate the data
#--------------------------------------
#require(Sim.DiffProc)
#freq <- -1
#damp <- -.1
#mu <- -2
#r <- .5
#b <- .1
#sigma1 <- 0.1
#sigma2 <- 0.1
#fx <- expression(y, freq*(x-z) + damp*y, r*z*(1-b*z))
#gx <- expression(0, sigma1, 0)
#r3dall <- c()
#for (j in 1:10){
r3dtemp <- c(-5,0,.1)
r3d <- r3dtemp
for (i in seq(0.125, 30, by=0.125)){
mod3dtemp <- snssde3d(drift=fx, diffusion=gx, M=1, t0=i-0.125,
x0=as.numeric(r3dtemp), T=i, N=500, type="str",

logLik.dynrCook 23

method="smilstein")
r3dtemp <- rsde3d(mod3dtemp,at=i)
r3d <-rbind(r3d,r3dtemp)
}
r3dall <- rbind(r3dall, cbind(r3d, id=j))
#}
#
#r3dall$obsy <- r3dall$x+rnorm(length(r3dall$x),0,1)
#write.table(r3dall, file="LogisticSetPointSDE.txt")

logLik.dynrCook Extract the log likelihood from a dynrCook Object

Description

Extract the log likelihood from a dynrCook Object

Usage

S3 method for class 'dynrCook'
logLik(object, ...)

S3 method for class 'dynrCook'
deviance(object, ...)

Arguments

object The dynrCook object for which the log likelihood is desired

... further named arguments, ignored for this method

Details

The ’df’ attribute for this object is the number of freely estimated parameters. The ’nobs’ attribute
is the total number of rows of data, adding up the number of time points for each person.

The deviance method returns minus two times the log likelihood.

Value

In the case of logLik, an object of class logLik.

See Also

Other S3 methods coef.dynrCook

Examples

Let cookedModel be the output from dynr.cook
#logLik(cookedModel)

24 names,dynrModel-method

names,dynrCook-method Extract the free parameter names of a dynrCook object

Description

Extract the free parameter names of a dynrCook object

Usage

S4 method for signature 'dynrCook'
names(x)

Arguments

x The dynrCook object from which the free parameter names are desired

names,dynrModel-method

Extract the free parameter names of a dynrModel object

Description

Extract the free parameter names of a dynrModel object

Usage

S4 method for signature 'dynrModel'
names(x)

Arguments

x The dynrModel object from which the free parameter names are desired

nobs.dynrCook 25

nobs.dynrCook Extract the number of observations for a dynrCook object

Description

Extract the number of observations for a dynrCook object

Usage

S3 method for class 'dynrCook'
nobs(object, ...)

Arguments

object A fitted model object

... Further named arguments. Ignored.

Details

We return the total number of rows of data, adding up the number of time points for each person.
For some purposes, you may want the mean number of observations per person or the number of
people instead. These are not currently supported via nobs.

Value

A single number. The total number of observations across all IDs.

Examples

Let cookedModel be the output from dynr.cook
#nobs(cookedModel)

nobs.dynrModel Extract the number of observations for a dynrModel object

Description

Extract the number of observations for a dynrModel object

Usage

S3 method for class 'dynrModel'
nobs(object, ...)

26 NonlinearDFAsim

Arguments

object An unfitted model object

... Further named arguments. Ignored.

Details

We return the total number of rows of data, adding up the number of time points for each person.
For some purposes, you may want the mean number of observations per person or the number of
people instead. These are not currently supported via nobs.

Value

A single number. The total number of observations across all IDs.

Examples

Let rawModel be the output from dynr.model
#nobs(rawModel)

NonlinearDFAsim Simulated multi-subject time series based on a dynamic factor analysis
model with nonlinear relations at the latent level

Description

A dataset simulated using a discrete-time nonlinear dynamic factor analysis model with 6 observed
indicators for identifying two latent factors: individuals’ positive and negative emotions. Proposed
by Chow and Zhang (2013), the model was inspired by models of affect and it posits that the two
latent factors follow a vector autoregressive process of order 1 (VAR(1)) with parameters that vary
between two possible regimes: (1) an "independent" regime in which the lagged influences between
positive and negative emotions are zero; (2) a "high-activation" regime to capture instances on which
the lagged influences between PA and NA intensify when an individual’s previous levels of positive
and negative emotions were unusually high or low (see Model 2 in Chow & Zhang).

Reference: Chow, S-M, & Zhang, G. (2013). Regime-switching nonlinear dynamic factor analysis
models. Psychometrika, 78(4), 740-768.

Usage

data(NonlinearDFAsim)

Format

A data frame with 3000 rows and 8 variables

Oscillator 27

Details

• id. ID of the participant (1 to 10)

• time. Time index (300 time points from each subject)

• y1-y3. Observed indicators for positive emotion

• y4-y6. Observed indicators for negative emotion

Oscillator Simulated time series data a damped linear oscillator

Description

A dataset simulated using a damped linear oscillator model in continuous time with 1 observed
indicators for identifying two latent factors (position and velocity). The variables are as follows:

Usage

data(Oscillator)

Format

A data frame with 1000 rows and 5 variables

Details

• id. ID of the systems (1 to 1 because this is a single person)

• y1. Noisy observed position

• times. Time index (1000 time points) spaced at one unit intervals

• x1. True latent position

• x2. True latent velocity

Examples

The following was used to generate the data
#--------------------------------------
Data Generation
#require(mvtnorm)
#require(Matrix)
#
#xdim <- 2
#udim <- 1
#ydim <- 1
#tdim <- 1000
#set.seed(315)
#tA <- matrix(c(0, -.3, 1, -.7), xdim, xdim)
#tB <- matrix(c(0), xdim, udim)
#tC <- matrix(c(1, 0), ydim, xdim)

28 plot.dynrCook

#tD <- matrix(c(0), ydim, udim)
#tQ <- matrix(c(0), xdim, xdim); diag(tQ) <- c(0, 2.2)
#tR <- matrix(c(0), ydim, ydim); diag(tR) <- c(1.5)
#
#x0 <- matrix(c(0, 1), xdim, 1)
#P0 <- diag(c(1), xdim)
#tdx <- matrix(0, xdim, tdim+1)
#tx <- matrix(0, xdim, tdim+1)
#tu <- matrix(0, udim, tdim)
#ty <- matrix(0, ydim, tdim)
#
#tT <- matrix(0:tdim, nrow=1, ncol=tdim+1)
#
#tI <- diag(1, nrow=xdim)
#
#tx[,1] <- x0
#for(i in 2:(tdim+1)){
q <- t(rmvnorm(1, rep(0, xdim), tQ))
tdx[,i] <- tA %*% tx[,i-1] + tB %*% tu[,i-1] + q
expA <- as.matrix(expm(tA * (tT[,i]-tT[,i-1])))
intA <- solve(tA) %*% (expA - tI)
tx[,i] <- expA %*% tx[, i-1] + intA %*% tB %*% tu[,i-1] + intA %*% q
ty[,i-1] <- tC %*% tx[,i] + tD %*% tu[,i-1] + t(rmvnorm(1, rep(0, ydim), tR))
#}
#
#
#
#rownames(ty) <- paste('y', 1:ydim, sep='')
#rownames(tx) <- paste('x', 1:xdim, sep='')
#simdata <- cbind(id=rep(1, tdim), t(ty), times=tT[,-1], t(tx)[-1,])
write.table(simdata, file='Oscillator.txt', row.names=FALSE, col.names=TRUE)
#
#plot(tx[1,], type='l')
#plot(tT[,-1], ty[1,], type='l')

plot.dynrCook Plot method for dynrCook objects

Description

Plot method for dynrCook objects

Usage

S3 method for class 'dynrCook'
plot(x, dynrModel, style = 1, names.state, names.observed,
printDyn = TRUE, printMeas = TRUE, textsize = 4, ...)

plotFormula 29

Arguments

x dynrCook object
dynrModel model object
style The style of the plot in the first panel. If style is 1 (default), user-selected

smoothed state variables are plotted. If style is 2, user-selected observed-versus-
predicted values are plotted.

names.state (optional) The names of the states to be plotted, which should be a subset of the
state.names slot of the measurement slot of dynrModel.

names.observed (optional) The names of the observed variables to be plotted, which should be a
subset of the obs.names slot of the measurement slot of dynrModel.

printDyn A logical value indicating whether or not to plot the formulas for the dynamic
model

printMeas A logical value indicating whether or not to plot the formulas for the measure-
ment model

textsize numeric. Font size used in the plot.
... Further named arguments

Details

This is a wrapper around dynr.ggplot. A great benefit of it is that it shows the model equations in
a plot.

plotFormula Plot the formula from a model

Description

Plot the formula from a model

Usage

plotFormula(dynrModel, ParameterAs, printDyn = TRUE, printMeas = TRUE,
textsize = 4)

Arguments

dynrModel The model object to plot.
ParameterAs The parameter values or names to plot. The underscores in parameter names

are saved for use of subscripts. Greek letters can be specified as correspond-
ing LaTeX symbols without backslashes (e.g., "lambda") and printed as greek
letters.

printDyn A logical value indicating whether or not to plot the formulas for the dynamic
model.

printMeas A logical value indicating whether or not to plot the formulas for the measure-
ment model

textsize The text size use in the plot.

30 prep.formulaDynamics

Details

This function typesets a set of formulas that represent the model. Typical inputs to the ParameterAs
argument are (1) the starting values for a model, (2) the final estimated values for a model, and
(3) the parameter names. These are accessible with (1) model$xstart, (2) coef(cook), and (3)
model$param.names or names(coef(cook)), respectively.

PPsim Simulated time series data for multiple eco-systems based on a
predator-and-prey model

Description

A dataset simulated using a continuous-time nonlinear predator-and-prey model with 2 observed
indicators for identifying two latent factors. The variables are as follows:

Usage

data(PPsim)

Format

A data frame with 1000 rows and 6 variables

Details

• id. ID of the systems (1 to 20)

• time. Time index (50 time points for each system)

• prey. The true population of the prey species

• predator. The true population of the predator species

• x. Observed indicator for the population of the prey species

• y. Observed indicator for the population of the predator species

prep.formulaDynamics Recipe function for specifying dynamic functions using formulas

Description

Recipe function for specifying dynamic functions using formulas

Usage

prep.formulaDynamics(formula, startval = numeric(0),
isContinuousTime = FALSE, jacobian)

prep.formulaDynamics 31

Arguments

formula a list of formulas specifying the drift or state-transition equations for the latent
variables in continuous or discrete time, respectively.

startval a named vector of starting values of the parameters in the formulas for estimation
with parameter names as its name. If there are no free parameters in the dynamic
functions, leave startval as the default numeric(0).

isContinuousTime

if True, the left hand side of the formulas represent the first-order derivatives of
the specified variables; if False, the left hand side of the formulas represent the
current state of the specified variable while the same variable on the righ hand
side is its previous state.

jacobian (optional) a list of formulas specifying the analytic jacobian matrices contain-
ing the analytic differentiation function of the dynamic functions with respect
to the latent variables. If this is not provided, dynr will invoke an automatic
differentiation procedure to compute the jacobian functions.

Details

This function defines the dynamic functions of the model either in discrete time or in continuous
time. The function can be either linear or nonlinear, with free or fixed parameters, numerical con-
stants, covariates, and other mathematical functions that define the dynamics of the latent variables.
Every latent variable in the model needs to be defined by a differential (for continuous time model),
or difference (for discrete time model) equation. The names of the latent variables should match
the specification in prep.measurement(). For nonlinear models, the estimation algorithm generally
needs a Jacobian matrix that contains elements of first differentiations of the dynamic functions
with respect to the latent variables in the model. For most nonlinear models, such differentiations
can be handled automatically by dynr. However, in some cases, such as when the absolute function
(abs) is used, the automatic differentiation would fail and the user may need to provide his/her own
Jacobian functions.

Examples

In this example, we present how to define the dynamics of a bivariate dual change score model
(McArdle, 2009). This is a linear model and the user does not need to worry about
providing any jacobian function (the default).

We start by creating a list of formula that describes the model. In this model, we have four
latent variables, which are "readLevel", "readSlope", "mathLevel", and "math Slope". The right-
hand side of each formula gives a function that defines the dynamics.

formula =list(
list(readLevel~ (1+beta.read)*readLevel + readSlope + gamma.read*mathLevel,
readSlope~ readSlope,
mathLevel~ (1+beta.math)*mathLevel + mathSlope + gamma.math*readLevel,
mathSlope~ mathSlope
))

Then we use prep.formulaDynamics() to define the formula, starting value of the parameters in
the model, and state the model is in discrete time by setting isContinuousTime=FALSE.

32 prep.initial

dynm <- prep.formulaDynamics(formula=formula,
startval=c(beta.read = -.5, beta.math = -.5,

gamma.read = .3, gamma.math = .03
), isContinuousTime=FALSE)

For a full demo example of regime switching nonlinear discrete time model, you
may refer to a tutorial on
\url{https://quantdev.ssri.psu.edu/tutorials/dynr-rsnonlineardiscreteexample}

#Not run:
#For a full demo example that uses user-supplied analytic jacobian functions see:
#demo(RSNonlinearDiscrete, package="dynr")
formula <- list(

list(
x1 ~ a1*x1,
x2 ~ a2*x2),

list(
x1 ~ a1*x1 + c12*(exp(abs(x2)))/(1+exp(abs(x2)))*x2,
x2 ~ a2*x2 + c21*(exp(abs(x1)))/(1+exp(abs(x1)))*x1)

)
jacob <- list(

list(x1~x1~a1,
x2~x2~a2),

list(x1~x1~a1,
x1~x2~c12*(exp(abs(x2))/(exp(abs(x2))+1)+x2*sign(x2)*exp(abs(x2))/(1+exp(abs(x2))^2)),
x2~x2~a2,

x2~x1~c21*(exp(abs(x1))/(exp(abs(x1))+1)+x1*sign(x1)*exp(abs(x1))/(1+exp(abs(x1))^2))))
dynm <- prep.formulaDynamics(formula=formula, startval=c(a1=.3, a2=.4, c12=-.5, c21=-.5),

isContinuousTime=FALSE, jacobian=jacob)

#For a full demo example that uses automatic jacobian functions (the default) see:
#demo(RSNonlinearODE , package="dynr")
formula=list(prey ~ a*prey - b*prey*predator, predator ~ -c*predator + d*prey*predator)
dynm <- prep.formulaDynamics(formula=formula,

startval=c(a = 2.1, c = 0.8, b = 1.9, d = 1.1),
isContinuousTime=TRUE)

prep.initial Recipe function for preparing the initial conditions for the model.

Description

Recipe function for preparing the initial conditions for the model.

Usage

prep.initial(values.inistate, params.inistate, values.inicov, params.inicov,
values.regimep = 1, params.regimep = 0, covariates, deviation = FALSE,
refRow)

prep.initial 33

Arguments

values.inistate

a vector or list of vectors of the starting or fixed values of the initial state vector
in one or more regimes. May also be a matrix or list of matrices.

params.inistate

a vector or list of vectors of the parameter names that appear in the initial state
vector in one or more regimes. If an element is 0 or "fixed", the correspond-
ing element is fixed at the value specified in the values vector; Otherwise, the
corresponding element is to be estimated with the starting value specified in the
values vector. May also be a matrix or list of matrices.

values.inicov a positive definite matrix or a list of positive definite matrices of the starting or
fixed values of the initial error covariance structure(s) in one or more regimes.
If only one matrix is specified for a regime-switching dynamic model, the initial
error covariance structure stays the same across regimes. To ensure the matrix
is positive definite in estimation, we apply LDL transformation to the matrix.
Values are hence automatically adjusted for this purpose.

params.inicov a matrix or list of matrices of the parameter names that appear in the initial error
covariance(s) in one or more regimes. If an element is 0 or "fixed", the corre-
sponding element is fixed at the value specified in the values matrix; Otherwise,
the corresponding element is to be estimated with the starting value specified
in the values matrix. If only one matrix is specified for a regime-switching dy-
namic model, the process noise structure stays the same across regimes. If a list
is specified, any two sets of the parameter names as in two matrices should be
either the same or totally different to ensure proper parameter estimation.

values.regimep a vector/matrix of the starting or fixed values of the initial probabilities of being
in each regime. By default, the initial probability of being in the first regime is
fixed at 1.

params.regimep a vector/matrix of the parameter indices of the initial probabilities of being in
each regime. If an element is 0 or "fixed", the corresponding element is fixed
at the value specified in the "values" vector/matrix; Otherwise, the correspond-
ing element is to be estimated with the starting value specified in the values
vector/matrix.

covariates character vector of the names of the (person-level) covariates

deviation logical. Whether to use the deviation form or not. See Details.

refRow numeric. Which row is treated at the reference. See Details.

Details

The initial condition model includes specifications for the intial state vector, initial error covariance
matrix, initial probabilities of being in each regime and all associated parameter specifications.
The initial probabilities are specified in multinomial logistic regression form. When there are no
covariates, this implies multinomial logistic regression with intercepts only. In particular, the initial
probabilities not not specified on a 0 to 1 probability scale, but rather a negative infinity to positive
infinity log odds scale. Fixing an initial regime probability to zero does not mean zero probability.
It translates to a comparison log odds scale against which other regimes will be judged.

34 prep.initial

The structure of the initial state vector and the initial probability vector depends on the presence
of covariates. When there are no covariates these should be vectors, or equivalently single-column
matrices. When there are covariates they should have c + 1 columns for c covariates. The number
of rows should be the number of regimes for the initial regimes, or the number of latent states for
the initial states.

When deviation=FALSE, the non-deviation form of the multinomial logistic regression is used.
This form has a separate intercept term for each entry of the initial probability vector. When
deviation=TRUE, the deviation form of the multinomial logistic regression is used. This form
has an intercept term that is common to all rows of the initial probability vector. The rows are then
distinguished by their own individual deviations from the common intercept. The deviation form
requires the same reference row constraint as the non-deviation form (described below). By default
the reference row is taken to be the row with all zero covariate effects. Of course, if there are no
covariates and the deviation form is desired, then the user must provide the reference row.

The refRow argument determines which row is used as the intercept row. It is only used in the
deviation form (i.e. deviation=TRUE). In the deviation form, one row of values.regimep and
params.regimep contains the intercepts, other rows contain deviations from these intercepts. The
refRow argument says which row contains the intercept terms. The default behavior for refRow is to
detect the reference row automatically based on which parameters are fixed. If we have problems
detecting which is the reference row, then we provide error messages that are as helpful as we can
make them.

See Also

Methods that can be used include: print, printex, show

Examples

No-covariates
Single regime, no covariates
latent states are position and velocity
initial position is free and called 'inipos'
initial slope is fixed at 1
initial covariance is fixed to a diagonal matrix of 1s
initialNoC <- prep.initial(
values.inistate=c(0, 1),
params.inistate=c('inipos', 'fixed'),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2))

One covariate
Single regime, one covariate on the inital mean
latent states are position and velocity
initial covariance is fixed to a diagonal matrix of 1s
initial latent means have
nrow = numLatentState, ncol = numCovariates + 1
initial position has free intercept and free u1 effect
initial slope is fixed at 1
initialOneC <- prep.initial(
values.inistate=matrix(
c(0, .5,

prep.loadings 35

1, 0), byrow=TRUE,
nrow=2, ncol=2),
params.inistate=matrix(
c('iniPosInt', 'iniPosSlopeU1',
'fixed', 'fixed'), byrow=TRUE,
nrow=2, ncol=2),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2),
covariates='u1')

Regime-switching, one covariate
latent states are position and velocity
initial covariance is fixed to a diagonal matrix of 1s
initial latent means have
nrow = numLatentState, ncol = numCovariates + 1
initial position has free intercept and free u1 effect
initial slope is fixed at 1
There are 3 regimes but the mean and covariance
are not regime-switching.
initialRSOneC <- prep.initial(
values.regimep=matrix(
c(1, 1,

0, 1,
0, 0), byrow=TRUE,

nrow=3, ncol=2),
params.regimep=matrix(
c('r1int', 'r1slopeU1',

'r2int', 'r2slopeU2',
'fixed', 'fixed'), byrow=TRUE,

nrow=3, ncol=2),
values.inistate=matrix(
c(0, .5,

1, 0), byrow=TRUE,
nrow=2, ncol=2),
params.inistate=matrix(
c('iniPosInt', 'iniPosSlopeU1',
'fixed', 'fixed'), byrow=TRUE,
nrow=2, ncol=2),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2),
covariates='u1')

prep.loadings Recipe function to quickly create factor loadings

Description

Recipe function to quickly create factor loadings

36 prep.loadings

Usage

prep.loadings(map, params, idvar, exo.names = character(0))

Arguments

map list giving how the latent variables map onto the observed variables

params parameter numbers

idvar Names of the variables used to identify the factors

exo.names names of the exogenous covariates

Details

The default pattern for ’idvar’ is to fix the first factor loading for each factor to one. The variable
names listed in ’idvar’ have their factor loadings fixed to one. However, if the names of the latent
variables are used for ’idvar’, then all the factor loadings will be freely estimated and you should
fix the factor variances in the noise part of the model (e.g. prep.noise).

This function does not have the full set of features possible in the dynr package. In particular, it
does not have regime-swtiching factor loadings, any intercepts, or any covariates. For complete
functionality use prep.measurement.

Examples

#Single factor model with one latent variable fixing first loading
prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_",2:4))

#Single factor model with one latent variable fixing the fourth loading
prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_",1:3), idvar='y4')

#Single factor model with one latent variable freeing all loadings
prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_", 1:4), idvar='eta1')

Two factor model with simple structure
prep.loadings(list(eta1=paste0('y', 1:4), eta2=paste0('y', 5:7)),
paste0("lambda_", c(2:4, 6:7)))

#Two factor model with repeated use of a free parameter
prep.loadings(list(eta1=paste0('y', 1:4), eta2=paste0('y', 5:8)),
paste0("lambda_", c(2:4, 6:7, 4)))

#Two factor model with a cross loading
prep.loadings(list(eta1=paste0('y', 1:4), eta2=c('y5', 'y2', 'y6')),
paste0("lambda_", c("21", "31", "41", "22", "62")))

prep.matrixDynamics 37

prep.matrixDynamics Recipe function for creating Linear Dynamcis using matrices

Description

Recipe function for creating Linear Dynamcis using matrices

Usage

prep.matrixDynamics(params.dyn = NULL, values.dyn, params.exo = NULL,
values.exo = NULL, params.int = NULL, values.int = NULL, covariates,
isContinuousTime)

Arguments

params.dyn the matrix of parameter names for the transition matrix in the specified linear
dynamic model

values.dyn the matrix of starting/fixed values for the transition matrix in the specified linear
dynamic model

params.exo the matrix of parameter names for the regression slopes of covariates on the
latent variables (see details)

values.exo matrix of starting/fixed values for the regression slopes of covariates on the latent
variables (see details)

params.int vector of names for intercept parameters in the dynamic model specified as a
matrix or list of matrices.

values.int vector of intercept values in the dynamic model specified as matrix or list of
matrices. Contains starting/fixed values of the intercepts.

covariates the names or the index numbers of the covariates used in the dynamic model
isContinuousTime

logical. When TRUE, use a continuous time model. When FALSE use a discrete
time model.

Details

A recipe function for specifying the deterministic portion of a set of linear dynamic functions as:

Discrete-time model: eta(t+1) = int + dyn*eta(t) + exo*x(t), where eta(t) is a vector of latent vari-
ables, x(t) is a vector of covariates, int, dyn, and exo are vectors and matrices specified via the
arguments *.int, *.dyn, and *.exo.

Continuous-time model: d/dt eta(t) = int + dyn*eta(t) + exo*x(t), where eta(t) is a vector of latent
variables, x(t) is a vector of covariates, int, dyn, and exo are vectors and matrices specified via the
arguments *.int, *.dyn, and *.exo.

The left-hand side of the dynamic model consists of a vector of latent variables for the next time
point in the discrete-time case, and the vector of derivatives for the latent variables at the current
time point in the continuous-time case.

38 prep.measurement

For models with regime-switching dynamic functions, the user will need to provide a list of the *.int,
*.dyn, and *.exo arguments. (when they are specified to take on values other than the default of zero
vectors and matrices), or if a single set of vectors/matrices are provided, the same vectors/matrices
are assumed to hold across regimes.

prep.matrixDynamics serves as an alternative to prep.formulaDynamics.

See Also

Methods that can be used include: print, show

Examples

#Single-regime, continuous-time model. For further details run:
#demo(RSNonlinearDiscrete, package="dynr"))
dynamics <- prep.matrixDynamics(
values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
isContinuousTime=TRUE)

#Two-regime, continuous-time model. For further details run:
#demo(RSNonlinearDiscrete, package="dynr"))
dynamics <- prep.matrixDynamics(
values.dyn=list(matrix(c(0, -0.1, 1, -0.2), 2, 2),

matrix(c(0, -0.1, 1, 0), 2, 2)),
params.dyn=list(matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),

matrix(c('fixed', 'spring', 'fixed', 'fixed'), 2, 2)),
isContinuousTime=TRUE)

prep.measurement Prepare the measurement recipe

Description

Prepare the measurement recipe

Usage

prep.measurement(values.load, params.load = NULL, values.exo = NULL,
params.exo = NULL, values.int = NULL, params.int = NULL, obs.names,
state.names, exo.names)

Arguments

values.load matrix of starting or fixed values for factor loadings. For models with regime-
specific factor loadings provide a list of matrices of factor loadings.

params.load matrix or list of matrices. Contains parameter names of the factor loadings.

values.exo matrix or list of matrices. Contains starting/fixed values of the covariate regres-
sion slopes.

prep.noise 39

params.exo matrix or list of matrices. Parameter names of the covariate regression slopes.

values.int vector of intercept values specified as matrix or list of matrices. Contains start-
ing/fixed values of the intercepts.

params.int vector of names for intercept parameters specified as a matrix or list of matrices.

obs.names vector of names for the observed variables in the order they appear in the mea-
surement model.

state.names vector of names for the latent variables in the order they appear in the measure-
ment model.

exo.names (optional) vector of names for the exogenous variables in the order they appear
in the measurement model.

Details

The values.* arguments give the starting and fixed values for their respective matrices. The params.*
arguments give the free parameter labels for their respective matrices. Numbers can be used as
labels. The number 0 and the character ’fixed’ are reserved for fixed parameters.

When a single matrix is given to values.*, that matrix is not regime-switching. Correspondingly,
when a list of length r is given, that matrix is regime-switching with values and params for the r
regimes in the elements of the list.

See Also

Methods that can be used include: print, printex, show

Examples

prep.measurement(diag(1, 5), diag("lambda", 5))
prep.measurement(matrix(1, 5, 5), diag(paste0("lambda_", 1:5)))
prep.measurement(diag(1, 5), diag(0, 5)) #identity measurement model

#Regime-switching measurement model where the first latent variable is
active for regime 1, and the second latent variable is active for regime 2
No free parameters are present.
prep.measurement(values.load=list(matrix(c(1,0), 1, 2), matrix(c(0, 1), 1, 2)))

prep.noise Recipe function for specifying the measurement error and process
noise covariance structures

Description

Recipe function for specifying the measurement error and process noise covariance structures

Usage

prep.noise(values.latent, params.latent, values.observed, params.observed)

40 prep.noise

Arguments

values.latent a positive definite matrix or a list of positive definite matrices of the starting or
fixed values of the process noise covariance structure(s) in one or more regimes.
If only one matrix is specified for a regime-switching dynamic model, the pro-
cess noise covariance structure stays the same across regimes. To ensure the
matrix is positive definite in estimation, we apply LDL transformation to the
matrix. Values are hence automatically adjusted for this purpose.

params.latent a matrix or list of matrices of the parameter names that appear in the process
noise covariance(s) in one or more regimes. If an element is 0 or "fixed", the
corresponding element is fixed at the value specified in the values matrix; Other-
wise, the corresponding element is to be estimated with the starting value spec-
ified in the values matrix. If only one matrix is specified for a regime-switching
dynamic model, the process noise structure stays the same across regimes. If a
list is specified, any two sets of the parameter names as in two matrices should
be either the same or totally different to ensure proper parameter estimation. See
Details.

values.observed

a positive definite matrix or a list of positive definite matrices of the start-
ing or fixed values of the measurement error covariance structure(s) in one or
more regimes. If only one matrix is specified for a regime-switching measure-
ment model, the measurement noise covariance structure stays the same across
regimes. To ensure the matrix is positive definite in estimation, we apply LDL
transformation to the matrix. Values are hence automatically adjusted for this
purpose.

params.observed

a matrix or list of matrices of the parameter names that appear in the measure-
ment error covariance(s) in one or more regimes. If an element is 0 or "fixed",
the corresponding element is fixed at the value specified in the values matrix;
Otherwise, the corresponding element is to be estimated with the starting value
specified in the values matrix. If only one matrix is specified for a regime-
switching dynamic model, the process noise structure stays the same across
regimes. If a list is specified, any two sets of the parameter names as in two
matrices should be either the same or totally different to ensure proper parame-
ter estimation. See Details.

Details

The arguments of this function should generally be either matrices or lists of matrices. Lists of
matrices are used for regime-switching models with each list element corresponding to a regime.
Thus, a list of three matrices implies a three-regime model. Single matrices are for non-regime-
switching models. Some checking is done to ensure that the number of regimes implied by one part
of the model matches that implied by the others. For example, the noise model (prep.noise) cannot
suggest three regimes when the measurement model (prep.measurement) suggests two regimes.
An exception to this rule is single-regime (i.e. non-regime-switching) components. For instance,
the noise model can have three regimes even though the measurement model implies one regime.
The single-regime components are simply assumed to be invariant across regimes.

Care should be taken that the parameters names for the latent covariances do not overlap with the
parameters in the observed covariances. Likewise, the parameter names for the latent covariances

prep.regimes 41

in each regime should either be identical or completely distinct. Because the LDL’ transformation
is applied to the covariances, sharing a parameter across regimes may cause problems with the
parameter estimation.

Use $ to show specific arguments from a dynrNoise object (see examples).

See Also

printex to show the covariance matrices in latex.

Examples

Two latent variables and one observed variable in a one-regime model
Noise<-prep.noise(values.latent=diag(c(0.8, 1)), params.latent=diag(c('fixed', "e_x")),
values.observed=diag(1.5,1), params.observed=diag("e_y", 1))
For matrices that can be import to latex:
printex(Noise,show=TRUE)
If you want to check specific arguments you've specified, for example,
values for variance structure of the latent variables
Noise$values.latent
[[1]]
[,1] [,2]
[1,] 0.8 0
[2,] 0.0 1

Two latent variables and one observed variable in a two-regime model
Noise<-prep.noise(values.latent=list(diag(c(0.8, 1)),diag(c(0.8, 1))),
params.latent=list(diag(c('fixed', "e_x1")),diag(c('fixed', "e_x2"))),
values.observed=list(diag(1.5,1),diag(0.5,1)),
params.observed=list(diag("e_y1", 1),diag("e_y2",1)))
If the error and noise structures are assumed to be the same across regimes,
it is okay to use matrices instead of lists.

prep.regimes Recipe function for creating regime switching (Markov transition)
functions

Description

Recipe function for creating regime switching (Markov transition) functions

Usage

prep.regimes(values, params, covariates, deviation = FALSE, refRow)

42 prep.regimes

Arguments

values matrix giving the values. Should have (number of Regimes) rows and (number
of regimes x number of covariates) columns

params matrix of the same size as "values" consisting of the names of the parameters

covariates a vector of the names of the covariates to be used in the regime-switching func-
tions

deviation logical. Whether to use the deviation form or not. See Details.

refRow numeric. Which row is treated at the reference. See Details.

Details

Note that each row of the transition probability matrix must sum to one. To accomplish this fix
at least one transition log odds parameter in each row of "values" (including its intercept and the
regression slopes of all covariates) to 0.

When deviation=FALSE, the non-deviation form of the multinomial logistic regression is used.
This form has a separate intercept term for each entry of the transition probability matrix (TPM).
When deviation=TRUE, the deviation form of the multinomial logistic regression is used. This
form has an intercept term that is common to each column of the TPM. The rows are then distin-
guished by their own individual deviations from the common intercept. The deviation form requires
the same reference column constraint as the non-deviation form; however, the deviation form also
requires one row to be indicated as the reference row (described below). By default the reference
row is taken to be the same as the reference column.

The refRow argument determines which row is used as the intercept row. It is only used in the
deviation form (i.e. deviation=TRUE). In the deviation form, one row of values and params
contains the intercepts, other rows contain deviations from these intercepts. The refRow argument
says which row contains the intercept terms. The default behavior for refRow is to be the same
as the reference column. The reference column is automatically detected. If we have problems
detecting which is the reference column, then we provide error messages that are as helpful as we
can make them.

See Also

Methods that can be used include: print, printex, show

Examples

#Two-regime example with a covariate, x; log odds (LO) parameters represented in default form,
#2nd regime set to be the reference regime (i.e., have LO parameters all set to 0).
#The values and params matrices are of size 2 (numRegimes=2) x 4 (numRegimes*(numCovariates+1)).
The LO of staying within the 1st regime (corresponding to the (1,1) entry in the
2 x 2 transition probability matrix for the 2 regimes) = a_11 + d_11*x
The log odds of switching from the 1st to the 2nd regime (the (1,2) entry in the
transition probability matrix) = 0
The log odds of moving from regime 2 to regime 1 (the (2,1) entry) = a_21 + d_21*x
The log odds of staying within the 2nd regime (the (2,2) entry) = 0
b <- prep.regimes(
values=matrix(c(8,-1,rep(0,2),

-4,.1,rep(0,2)),

prep.tfun 43

nrow=2, ncol=4, byrow=TRUE),
params=matrix(c("a_11","d_11x",rep("fixed",2),

"a_21","d_21x",rep("fixed",2)),
nrow=2, ncol=4, byrow=TRUE), covariates=c("x"))

Same example as above, but expressed in deviation form by specifying 'deviation = TRUE'
The LO of staying within the 1st regime (corresponding to the (1,1) entry in the
2 x 2 transition probability matrix for the 2 regimes) = a_21 + a_11 + d_11*x
The log odds of switching from the 1st to the 2nd regime (the (1,2) entry in the
transition probability matrix) = 0
The log odds of moving from regime 2 to regime 1 (the (2,1) entry) = a_21 + d_21*x
The log odds of staying within the 2nd regime (the (2,2) entry) = 0
b <- prep.regimes(
values=matrix(c(8,-1,rep(0,2),

-4,.1,rep(0,2)),
nrow=2, ncol=4, byrow=TRUE),

params=matrix(c("a_11","d_11x",rep("fixed",2),
"a_21","d_21x",rep("fixed",2)),

nrow=2, ncol=4, byrow=TRUE), covariates=c("x"), deviation = TRUE)

#An example of regime-switching with no covariates. The diagonal entries are fixed
#at zero for identification purposes
b <- prep.regimes(values=matrix(0, 3, 3),
params=matrix(c('fixed', 'p12', 'p13',

'p21', 'fixed', 'p23',
'p31', 'p32', 'fixed'), 3, 3, byrow=TRUE))

#An example of regime-switching with no covariates. The parameters for the second regime are
fixed at zero for identification purposes, making the second regime the reference regime.
b <- prep.regimes(values=matrix(0, 3, 3),
params=matrix(c('p11', 'fixed', 'p13',

'p21', 'fixed', 'p23',
'p31', 'fixed', 'p33'), 3, 3, byrow=TRUE))

#2 regimes with three covariates
b <- prep.regimes(values=matrix(c(0), 2, 8),
params=matrix(c(paste0('p', 8:15), rep(0, 8)), 2, 8),
covariates=c('x1', 'x2', 'x3'))

prep.tfun Create a dynrTrans object to handle the transformations and inverse
transformations of model paramters

Description

Create a dynrTrans object to handle the transformations and inverse transformations of model
paramters

44 printex

Usage

prep.tfun(formula.trans, formula.inv, transCcode = TRUE)

Arguments

formula.trans a list of formulae for transforming freed parameters other than variance-covariance
parameters during the optimization process. These transformation functions
may be helpful for transforming parameters that would normally appear on a
constrained scale to an unconstrained scale (e.g., parameters that can only take
on positive values can be subjected to exponential transformation to ensure pos-
itivity.)

formula.inv a list of formulae that inverse the transformation on the free parameters and will
be used to calculate the starting values of the parameters.

transCcode a logical value indicating whether the functions in formula.trans need to be trans-
formed to functions in C. The default for transCcode is TRUE, which means that
the formulae will be translated to C functions and utilized during the optimiza-
tion process. If transCcode = FALSE, the transformations are only performed at
the end of the optimization process for standard error calculations but not during
the optimization process. ##’

Details

Prepares a dynr recipe that specifies the names of the parameters that are to be subjected to user-
supplied transformation functions and the corresponding transformation and reverse-transformation
functions. This can be very handy in fitting dynamic models in which certain parameters can only
take on permissible values in particular ranges (e.g., a parameter may have to positive). Note that
all variance-covariance parameters in the model are automatically subjected to transformation func-
tions to ensure that the resultant covariance matrices are positive-definite. Thus, no additional
transformation functions are needed for variance-covariance parameters.

Examples

#Specifies a transformation recipe, r20, that subjects the parameters
#'r10' and 'r20' to exponential transformation to ensure that they are positive.
trans <-prep.tfun(formula.trans=list(r10~exp(r10), r20~exp(r20)),

formula.inv=list(r10~log(r10),r20~log(r20)))

printex The printex Method

Description

The printex Method

RSPPsim 45

Usage

printex(object, ParameterAs, printDyn = TRUE, printMeas = TRUE,
printInit = FALSE, printRS = FALSE, outFile, show, ...)

Arguments

object The dynr object (recipe, model, or cooked model).

ParameterAs The parameter values or names to plot. The underscores in parameter names
are saved for use of subscripts. Greek letters can be specified as corresponding
LaTeX symbols without ##’ backslashes (e.g., "lambda") and printed as greek
letters.

printDyn logical. Whether or not to print the dynamic model. The default is TRUE.

printMeas logical. Whether or not to print the measurement model. The default is TRUE.

printInit logical. Whether or not to print the initial conditions. The default is FALSE.

printRS logical. Whether or not to print the regime-switching model. The default is
FALSE.

outFile The name of the output tex file.

show logical indicator of whether or not to show the result in the console.

... Further named arguments, passed to internal method. AsMatrix is a logical
indicator of whether to put the object in matrix form.

Details

This is a general way of getting a LaTeX string for recipes, models, and cooked models. It is a
great way to check that you specified the model or recipe you think you did before estimating its
free parameters (cooking). After the model is cooked, you can use it to get LaTeX code with the
estimated parameters in it.

Typical inputs to the ParameterAs argument are (1) the starting values for a model, (2) the fi-
nal estimated values for a model, and (3) the parameter names. These are accessible with (1)
model$xstart, (2) coef(cook), and (3) model$param.names or names(coef(cook)), respec-
tively.

See Also

A way to put this in a plot with plotFormula

RSPPsim Simulated time series data for multiple eco-systems based on a regime-
switching predator-and-prey model

Description

A dataset simulated using a regime-switching continuous-time nonlinear predator-and-prey model
with 2 observed indicators for identifying two latent factors. The variables are as follows:

46 summary.dynrCook

Usage

data(RSPPsim)

Format

A data frame with 6000 rows and 8 variables

Details

• id. ID of the systems (1 to 20)

• time. Time index (300 time points for each system)

• prey. The true population of the prey species

• predator. The true population of the predator species

• x. Observed indicator for the population of the prey species

• y. Observed indicator for the population of the predator species

• cond. A time-varying covariate indicating the conditions of the respective eco-system across
time which affects the regime-switching transition matrix

• regime. The true regime indicators across time (1 and 2).

summary.dynrCook Get the summary of a dynrCook object

Description

Get the summary of a dynrCook object

Usage

S3 method for class 'dynrCook'
summary(object, ...)

Arguments

object The dynrCook object for which the summary is desired.

... Further named arguments, passed to the print method (e.g., digits and signif.stars).

Details

The summary gives information on the free parameters estimated: names, parameter values, numer-
ical Hessian-based standard errors, t-values (values divided by standard errors), and standard-error
based confidence intervals. Additionally, the likelihood, AIC, and BIC are provided.

Note that an exclamation point (!) in the final column of the summary table indicates that the
standard error and confidence interval for this parameter may not be trustworthy. The corresponding
element of the (transformed, inverse) Hessian was negative and an absolute value was taken to make
it positive.

vcov.dynrCook 47

vcov.dynrCook Extract the Variance-Covariance Matrix of a dynrCook object

Description

Extract the Variance-Covariance Matrix of a dynrCook object

Usage

S3 method for class 'dynrCook'
vcov(object, ...)

Arguments

object The dynrCook object for which the variance-covariance matrix is desired

... further named arguments, ignored by this method

Details

This is the inverse Hessian of the transformed parameters.

Index

∗Topic State-space modeling
dynr-package, 3

∗Topic datasets
EMG, 19
EMGsim, 20
LogisticSetPointSDE, 22
NonlinearDFAsim, 26
Oscillator, 27
PPsim, 30
RSPPsim, 45

∗Topic differential equation
dynr-package, 3

∗Topic dynamic model
dynr-package, 3

∗Topic nonlinear
dynr-package, 3

∗Topic regime switching
dynr-package, 3

∗Topic
dynr-package, 3

$,dynrCook-method (dynrCook-class), 17
$,dynrModel-method (dynrModel-class), 18
$,dynrRecipe-method (dynrRecipe-class),

18
$<-,dynrModel-method (dynrModel-class),

18

autoplot, 10
autoplot.dynrCook (dynr.ggplot), 12

chol, 14
coef, 10
coef.dynrCook, 23
coef.dynrCook (coef.dynrModel), 7
coef.dynrModel, 7
coef<- (coef.dynrModel), 7
confint, 10
confint.dynrCook, 8

deviance, 10

deviance.dynrCook (logLik.dynrCook), 23
diag, 9
diag (diag,character-method), 9
diag,character-method, 9
diag.character (diag,character-method),

9
dynr (dynr-package), 3
dynr-package, 3
dynr.cook, 9, 11, 15, 17
dynr.data, 11, 15
dynr.ggplot, 12, 29
dynr.ldl, 14
dynr.mi, 14
dynr.model, 15, 18
dynr.plotFreq, 16
dynrCook-class, 17
dynrDebug-class (dynrCook-class), 17
dynrDynamics-class, 17
dynrDynamicsFormula-class

(dynrDynamics-class), 17
dynrDynamicsMatrix-class

(dynrDynamics-class), 17
dynrInitial-class, 17
dynrMeasurement-class, 17
dynrModel-class, 18
dynrNoise-class, 18
dynrRecipe-class, 18
dynrRegimes-class, 19
dynrTrans-class, 19

EMG, 19
EMGsim, 20

initialize, 10
internalModelPrep, 21

LogisticSetPointSDE, 22
logLik, 10
logLik.dynrCook, 7, 23

names, 10

48

INDEX 49

names,dynrCook-method, 24
names,dynrModel-method, 24
nobs, 10
nobs.dynrCook, 25
nobs.dynrModel, 25
NonlinearDFAsim, 26

Oscillator, 27

plot, 10
plot.dynrCook, 28
plotFormula, 29, 45
PPsim, 30
prep.formulaDynamics, 15, 17, 18, 30, 38
prep.initial, 15, 17, 18, 32
prep.loadings, 15, 17, 35
prep.matrixDynamics, 15, 17, 18, 37
prep.measurement, 15, 17, 18, 36, 38, 40
prep.noise, 15, 18, 36, 39
prep.regimes, 15, 18, 19, 41
prep.tfun, 15, 18, 19, 43
print, 10, 34, 38, 39, 42
print,dynrCook-method (dynrCook-class),

17
print,dynrModel-method

(dynrModel-class), 18
print,dynrRecipe-method

(dynrRecipe-class), 18
printex, 16, 34, 39, 41, 42, 44
printex,dynrCook-method (printex), 44
printex,dynrDynamicsFormula-method

(printex), 44
printex,dynrDynamicsMatrix-method

(printex), 44
printex,dynrInitial-method (printex), 44
printex,dynrMeasurement-method

(printex), 44
printex,dynrModel-method (printex), 44
printex,dynrNoise-method (printex), 44
printex,dynrRegimes-method (printex), 44

RSPPsim, 45

show, 10, 34, 38, 39, 42
show,dynrCook-method (dynrCook-class),

17
show,dynrModel-method

(dynrModel-class), 18
show,dynrRecipe-method

(dynrRecipe-class), 18

summary, 10
summary.dynrCook, 46

vcov, 10
vcov.dynrCook, 47

	dynr-package
	coef.dynrModel
	confint.dynrCook
	diag,character-method
	dynr.cook
	dynr.data
	dynr.ggplot
	dynr.ldl
	dynr.mi
	dynr.model
	dynr.plotFreq
	dynrCook-class
	dynrDynamics-class
	dynrInitial-class
	dynrMeasurement-class
	dynrModel-class
	dynrNoise-class
	dynrRecipe-class
	dynrRegimes-class
	dynrTrans-class
	EMG
	EMGsim
	internalModelPrep
	LogisticSetPointSDE
	logLik.dynrCook
	names,dynrCook-method
	names,dynrModel-method
	nobs.dynrCook
	nobs.dynrModel
	NonlinearDFAsim
	Oscillator
	plot.dynrCook
	plotFormula
	PPsim
	prep.formulaDynamics
	prep.initial
	prep.loadings
	prep.matrixDynamics
	prep.measurement
	prep.noise
	prep.regimes
	prep.tfun
	printex
	RSPPsim
	summary.dynrCook
	vcov.dynrCook
	Index

