Package ‘loon’

July 26, 2017
Type Package

Title Interactive Statistical Data Visualization
Version 1.1.0
Date 2017-07-26

URL http://waddella.github.io/loon/

Description An extendable toolkit for interactive data visualization and exploration.
License GPL-2

Depends R (>= 3.4.0), methods, tcltk

Imports tools, graphics, grDevices, utils, stats

Suggests maps, sp, graph, scagnostics, PairViz, RColorBrewer,
RnavGraphImageData, rworldmap, rgl, Rgraphviz, RDRToolbox,
kernlab, scales, MASS, dplyr, testthat, knitr, rmarkdown

LazyData true
RoxygenNote 6.0.1
VignetteBuilder knitr
NeedsCompilation no

Author Adrian Waddell [aut, cre],
R. Wayne Oldford [aut]

Maintainer Adrian Waddell <adrian@waddell.ch>
Repository CRAN
Date/Publication 2017-07-26 21:51:02 UTC

R topics documented:

as.graph e
as.doongraph e e
color_loon
complementl e
complement.Joongraph L
completegraph L. e e

http://waddella.github.io/loon/

R topics documented:

graphreduce e e e e 11
linegraph 12
linegraph.loongraph 12
loon . . . e e e 13
loongraph e e 14
loon_palette e e 15
Lafter idle e 16
Laspect e e e e 16
Laspect<- e e 17
Lbind_canvas 17
I_bind_canvas_delete e e 19
Ibind_canvas_get. e e e e 19
L bind canvas_ids e e e 20
I bind_canvas_reorder e e 21
Lbind_context e e 22
I_bind_context_delete 23
Lbind_context_get e 23
Lbind_context_ids e e e 24
I_bind_context_reorder e e e e e 25
Lbind_glyph e 25
Ibind_glyph_delete 26
Ibind_glyph_get 27
Lbind_glyph_ids 27
Ibind_glyph_reorder 28
Lbind_item e e 29
I_bind_item_delete e e e 30
Lbind_item_get e 30
Lbind_item_ids e e 31
I_bind_item_reorder e e e 32
Lbind_layer e 32
Ibind_layer_delete 33
Lbind_layer_get e e 34
Ibind_layer_ids e 34
Lbind_layer_reorder 35
Lbind_navigator 36
I_bind_navigator_delete 36
I_bind_navigator_get e e 37
Ibind_navigator_ids 38
I_bind_navigator_reorder 38
Lbind_state e e e e 39
1 bind_state _delete e e 40
ILbind_state_get e 40
Ibind_state_ids e e e e e e e 41
1_bind_state_reorder e 42
Lcget . . . e 42
Lconfigure e e e 43
1 context_add_context2d 44

I_context_add_geodesic2d 44

R topics documented: 3

I_context_add_slicing2d 45
Lcontext_delete e 46
I_context_getLabel 47
Leontext_ids L e 47
l_context_relabel 48
I create_handle e 48
LourrentindeX e e 49
Lcurrenttags e e e e e e e e e e 50
Ldata e e 51
Lexport e e e 52
Lexport_valid_formats 53
IgetColorList e e 53
LgetGraph e e 54
IgetLinkedStates 54
I_glyphs_inspector e e 55
1 glyphs_inspector_image 55
I_glyphs_inspector_pointrange 56
I_glyphs_inspector_serialaxes 57
I_glyphs_inspector_text e e 57
Lglyph_add e 58
Iglyph_add.default 60
Iglyph_add_image 60
I glyph_add_pointrange oL 61
Lglyph_add_polygon 62
I_glyph_add_serialaxes e 63
Lglyph_add_text e 64
Lglyph_delete. e 65
Lglyph_getlLabel 65
Lglyph_getType @ . e e 66
Lglyph ids e 66
Lglyph_relabel 67
Lgraph e e e e 67
I graph.default 68
Lgraph.graph L 69
I_graphdoongraph 69
I_graphswitch 70
I_graphswitch_add 71
I_graphswitch_add.default o 71
I_graphswitch_add.graph 72
l_graphswitch_add.loongraph oL oo 73
I_graphswitch_delete 74
I_graphswitch_get. e 74
I_graphswitch_getLabel 75
Lgraphswitch_ids 75
I_graphswitch_move e 76
I_graphswitch_relabel 76
I_graphswitch_reorder 77

Igraphswitch_set e 77

R topics documented:

I_graph_inspector e e e 78
l_graph_inspector_analysis 78
1_graph_inspector_navigators i e e 79
Lhelp . . . o e 80
Lhexcolor e 80
Lhist . . . e 81
Lhist_inspector e e 82
I_hist_inspector_analysis e 82
Limageviewer oL e e e e e e 83
Limage import_arrayo e e e e e e 84
Limage_import_files 85
Linfo_states 85
LisLoonWidget e 86
Llayer o o o e 87
Ilayerdensity e e e e e 89
LlayerLine e 90
Llayer.Lines. o o e 91
Ilayermap e e e e 92
Ilayer.Polygon e 93
Llayer.Polygons 94
I_layer.SpatialLines 95
I_layer.SpatialLinesDataFrame 96
I layer.SpatialPoints 97
I_layer.SpatialPointsDataFrame 98
I_layer.SpatialPolygons e 99
1_layer.SpatialPolygonsDataFrame 100
Llayers_inspector e e 101
Llayer_bbox e 101
I_layer_contourLines 102
ILlayer_delete e 103
Llayer_demote e 104
Llayer_expunge e e e e e e e e 105
I layer_getChildren L 105
Llayer_getlLabel 106
Ilayer_getParent 107
Llayer_getType o 0 e e e 108
Llayer_group L 109
I_layer_groupVisibility 110
I_layer_heatlmage e 111
Ilayer_hide oL 112
Llayer_ids. e 113
Llayer_index e 114
Ilayer_isVisible e 115
Ilayer_layerVisibility 116
Llayer_line e 117
Llayer_lines. o 0 e e e e 118
Llayer_lower e 119

Llayer_move e 120

R topics documented: 5

Ilayer_oval e e e 121
Llayer_points oL e e e e 122
Llayer_polygon 123
Ilayer_polygons e 124
Ilayer_printTree e e 126
Llayer_promote e 126
Llayer_raise o e e 127
I_layer_rasterImage e e e e 128
I_layer_rectangle e 129
Ilayer_rectangles L 130
Llayer_relabel 132
Llayer_show e 133
Llayer text e e e 134
Llayer_texts o e e e e 135
Lloon_inspector e e e e e e e 136
Lmove_grid e 136
Lmove_halign 137
Lmove_hdist e 138
LLmove_Jitter e e e e e e e 139
L move Treset e e s 140
Lmove_valign. 141
LLmove_vdist e e e e e e 142
Lnavgraph e 143
Lnavigator_add 144
I_navigator_delete 145
I_navigator_getLabel 145
Lnavigator_ids L 146
Lnavigator_relabel 146
I_navigator_walk_backward 147
I_navigator_walk_forward 147
Lnavigator_walk_path 148
I_nestedTclList2RIist e 148
Lng plots e 149
Lng plots.default 150
Lng plots.measures e e e e e 151
I_ng_plots.scagnostiCs e e e 152
Lng ranges e e 153
Ing_ranges.default 154
[_Ng_ranges.measures v vt e e e e e e e e e e e e e e e 155
1 ng ranges.scagnosticso e 156
Lpairs o e 157
Lplot . . e e 158
Lplotdefault e 159
Lplotmap o e e e 160
Lplotinspector o e e e 161
I_plot_inspector_analysis e e 161
Lredraw e 162

LIesize e 163

Index

as.graph

I Rlist2nestedTclList e e 163
I_scaleto_active e e e e e e e e e e e e 164
Iscaleto_layer e e 164
Lscaleto_plot e 165
I_scaleto_selected e 165
I scaleto_world e 165
Lserialaxes 166
Lserialaxes_inSpector e e e 167
LSEtASPECt o o e e 167
LsetColorList e e 168
I_setColorList_baseR 170
I_setColorList_ColorBrewer i 170
I_setColorList_hcl. e 171
I_setLinkedStates e 172
1USIZE . . e e 173
LSIZE<- o 173
Lsubwin 174
I_throwErrorlfNotLoonWidget o 174
LtoR . . e e 175
Lwidget e 175
Lworldview e e 176
_zoom e e e e e 176
make_glyphs L 177
measuresld L e e 178
measures2d L e e e 179
MINOTILY o o o e e e e e e e e e 180
ndtransitiongraph L. 180
OliVe e e e 181
oliveAcids e e e 181
plotloongraph e e 182
print.l_layero L. e e e 183
print.measuresld L. e 183
print.measures2d L L e e e e e e 184
scagnostics2d L e 184
tkeolors L e e e 185
UsAndThem e 186

187

as.graph Convert a loongraph object to an object of class graph

as.loongraph 7

Description

Loon’s native graph class is fairly basic. The graph package (on bioconductor) provides a more
powerful alternative to create and work with graphs. Also, many other graph theoretic algorithms
such as the complement function and some graph layout and visualization methods are implemented
for the graph objects in the RBGL and Rgraphviz R packages. For more information on packages
that are useful to work with graphs see the gRaphical Models in R CRAN Task View at https:
//CRAN.R-project.org/view=gR.

Usage

as.graph(loongraph)

Arguments

loongraph object of class loongraph

Details
See http://www.bioconductor.org/packages/release/bioc/html/graph.html for more in-
formation about the graph R package.

Value

graph object of class loongraph

Examples

library(graph)
g <- loongraph(letters[1:4], letters[1:3], letters[2:4], FALSE)
gl <- as.graph(g)

as.loongraph Convert a graph object to a loongraph object

Description
Sometimes it is simpler to work with objects of class loongraph than to work with object of class
graph.

Usage

as.loongraph(graph)

Arguments

graph object of class graph (defined in the graph library)

https://CRAN.R-project.org/view=gR
https://CRAN.R-project.org/view=gR
http://www.bioconductor.org/packages/release/bioc/html/graph.html

8 color_loon

Details

See http://www.bioconductor.org/packages/release/bioc/html/graph.html for more in-
formation about the graph R package.

For more information run: 1_help("learn_R_display_graph.html.html#graph-utilities")

Value

graph object of class loongraph

Examples

library(graph)
graph_graph = randomEGraph(LETTERS[1:15], edges=100)

loon_graph <- as.loongraph(graph_graph)

color_loon Create a palette with loon’s color mapping

Description

Used to map nominal data to colors. By default these colors are chosen so that the categories can
be well differentiated visually (e.g. to highlight the different groups)

Usage

color_loon()

Details

This is the function that loon uses by default to map values to colors. Loon’s mapping algorithm is
as follows:

1. if all values already represent valid Tk colors (see tkcolors) then those colors are taken

2. if the number of distinct values are less than number of values in loon’s color mapping list
then they get mapped according to the color list, see 1_setColorList and 1_getColorList.

3. if there are more distinct values as there are colors in loon’s color mapping list then loon’s
own color mapping algorithm is used. See loon_palette and the details section in the docu-
mentation of 1_setColorList.

For other mappings see the col_numeric and col_factor functions from the scales package.

Value

A function that takes a vector with values and maps them to a vector of 6 digit hexadecimal encoded
color representation (strings). Note that loon uses internally 12 digit hexadecimal encoded color
values. If all the values that get passed to the function are valid color names in Tcl then those colors
get returned hexencoded. Otherwise, if there is one or more elements that is not a valid color name
it uses the loons default color mapping algorithm.

http://www.bioconductor.org/packages/release/bioc/html/graph.html

complement 9

See Also

1_setColorList, 1_getColorList, loon_palette

Examples

pal <- color_loon()
pal(letters[1:4])
pal(c('a','a','b",'c"))
pal(c('green', 'yellow'))

show color choices for different n's
library(grid)

grid.newpage()
pushViewport(plotViewport())
grid.rect()

n <- 2%(1:5)
pushViewport(dataViewport(xscale=c(@, max(n)+1), yscale=c(@, length(n)+1)))
grid.yaxis(at=c(1:1length(n)), label=paste("n =", n))

for (i in rev(seqg_along(n))) {

cols <- pal(1:n[il)

grid.points(x = 1:n[i], y = rep(i, n[il]), default.units = "native", pch=15, gp=gpar(col=cols))
3

grid.text("note the fist i colors are shared for each n" , y=unit(1,"npc")+unit(1, "line"))

complement Create the Complement Graph of a Graph

Description

Creates a complement graph of a graph

Usage

complement (x)

Arguments

X graph or loongraph object

Value

graph object

10

completegraph

complement.loongraph Create the Complement Graph of a loon Graph

Description

Creates a complement graph of a graph

Usage

S3 method for class 'loongraph'

complement (x)

Arguments

X

Details

loongraph object

This method is currently only implemented for undirected graphs.

Value

graph object of class loongraph

completegraph

Create a complete graph or digraph with a set of nodes

Description

From Wikipedia: "a complete graph is a simple undirected graph in which every pair of distinct
vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair
of distinct vertices is connected by a pair of unique edges (one in each direction

Usage

completegraph(nodes, isDirected = FALSE)

Arguments

nodes

isDirected

a character vector with node names, each element defines a node hence the ele-
ments need to be unique

a boolean scalar to indicate wheter the returned object is a complete graph (undi-
rected) or a complete digraph (directed).

graphreduce 11

Details

Note that this function masks the completegraph function of the graph package. Hence it is a good
idead to specify the package namespace with ::, i.e. loon::completegraph and graph::completegraph.

For more information run: 1_help("learn_R_display_graph.html.html#graph-utilities")

Value

graph object of class loongraph

Examples

g <- loon::completegraph(letters[1:5])

graphreduce Make each space in a node apprear only once

Description

Reduce a graph to have unique node names

Usage

graphreduce(graph, separator)

Arguments

graph graph of class loongraph

separator one character that separates the spaces in node names
Details

Note this is a string based operation. Node names must not contain the separator character!

Value

graph object of class loongraph

Examples

G <- completegraph(nodes=LETTERS[1:4])
LG <- linegraph(G)

LLG <- linegraph(LG)
graphreduce(LLG)

Not run:
library(Rgraphviz)

12 linegraph.loongraph

plot(graphreduce(LLG))

End(Not run)

linegraph Create a linegraph

Description

The line graph of G, here denoted L(G), is the graph whose nodes correspond to the edges of G
and whose edges correspond to nodes of G such that nodes of L(G) are joined if and only if the
corresponding edges of G are adjacent in G.

Usage
linegraph(x, ...)
Arguments
X graph of class graph or loongraph
arguments passed on to method
Value
graph object

linegraph.loongraph Create a linegraph of a graph

Description

Create a lingraph of a loongraph

Usage
S3 method for class 'loongraph'
linegraph(x, separator = ":", ...)
Arguments
X loongraph object
separator one character - node names in x get concatenated with this character

additional arguments are not used for this methiod

loon 13

Details

linegraph.loongraph needs the code part for directed graphs (i.e. isDirected=TRUE)

Value

graph object of class loongraph

Examples

g <- loongraph(letters[1:4], letters[1:3], letters[2:4], FALSE)

linegraph(g)

loon loon: A Toolkit for Interactive Data Visualization and Exploration

Description

Loon is a toolkit for highly interactive data visualization. Interactions with plots are provided with
mouse and keyboard gestures as well as via command line control and with inspectors that provide
graphical user interfaces (GUIs) for modifying and overseeing plots.

Details

Currently, loon implements the following statistical graphs: histogram, scatterplot, serialaxes plot
(star glyphs, parallel coordinates) and a graph display for creating navigation graphs.

Some of the implemented scatterplot features, for example, are zooming, panning, selection and
moving of points, dynamic linking of plots, layering of visual information such as maps and re-
gression lines, custom point glyphs (images, text, star glyphs), and event bindings. Event bindings
provide hooks to evaluate custom code at specific plot state changes or mouse and keyboard inter-
actions. Hence, event bindings can be used to add to or modify the default behavior of the plot
widgets.

Loon’s capabilities are very useful for statistical analysis tasks such as interactive exploratory data
analysis, sensitivity analysis, animation, teaching, and creating new graphical user interfaces.

To get started using loon read the package vigniettes or visit the loon website at http: //waddella.
github.io/loon/learn_R_intro.html.

Author(s)

Maintainer: Adrian Waddell <adrian@waddell.ch>
Authors:

* R. Wayne Oldford <rwoldford@uwaterloo.ca>

http://waddella.github.io/loon/learn_R_intro.html
http://waddella.github.io/loon/learn_R_intro.html

14 loongraph

See Also

Useful links:

e http://waddella.github.io/loon/

loongraph Create a graph object of class loongraph

Description

The loongraph class provides a simple alternative to the graph class to create common graphs that
are useful for use as navigation graphs.

Usage

loongraph(nodes, from = character(@), to = character(9),
isDirected = FALSE)

Arguments
nodes a character vector with node names, each element defines a node hence the ele-
ments need to be unique
from a character vector with node names, each element defines an edge
to a character vector with node names, each element defines an edge
isDirected boolean scalar, defines whether from and to define directed edges
Details

loongraph objects can be converted to graph objects (i.e. objects of class graph which is defined in
the graph package) with the as.graph function.

For more information run: 1_help("learn_R_display_graph.html.html#graph-utilities")

Value

graph object of class loongraph

See Also

completegraph, linegraph, complement, as.graph

http://waddella.github.io/loon/

loon_palette 15

Examples

g <- loongraph(
nodes = c("A", "B", "C", "D"),
from = c("A”, "A", "B", "B", "C"),
to = c("B", "C", "C", "D", "D")

Not run:
create a loon graph plot

p <- l_graph(g)
End(Not run)

lg <- linegraph(g)

loon_palette Loon’s color generator for creating color palettes

Description

Loon has a color sequence generator implemented creates a color palettes where the first m colors
of a color palette of size m+1 are the same as the colors in a color palette of size m, for all positive
natural numbers m. See the details in the 1_setColorList documentation.

Usage

loon_palette(n)

Arguments

n numer of different colors in the palette

Value

vector with hexencoded color values

See Also

1_setColorlList

Examples

loon_palette(12)

16 I _aspect

1_after_idle Evaluate a function on once the processor is idle

Description

It is possible for an observer to call the configure method of that plot while the plot is still in the
configuration pipeline. In this case, a warning is thrown as unwanted side effects can happen if
the next observer in line gets an outdated notification. In this case, it is recommended to use the
1_after_idle function that evaluates some code once the processor is idle.

Usage
1_after_idle(fun)

Arguments
fun function to be evaluated once tcl interpreter is idle
1_aspect Query the aspect ratio of a plot
Description

The aspect ratio is defined by the ratio of the number of pixels for one data unit on the y axis and
the number of pixels for one data unit on the x axes.

Usage

1_aspect(widget)

Arguments

widget widget path as a string or as an object handle

Value

aspect ratio
Examples
p <- with(iris, 1_plot(Sepal.Length ~ Sepal.Width, color=Species))

1_aspect(p)
1_aspect(p) <- 1

I_aspect<- 17

1_aspect<- Set the aspect ratio of a plot

Description
The aspect ratio is defined by the ratio of the number of pixels for one data unit on the y axis and
the number of pixels for one data unit on the x axes.

Usage

1_aspect(widget) <- value

Arguments
widget widget path as a string or as an object handle
value aspect ratio

Details

Changing the aspect ratio with 1_aspect<- changes effectively the zoomY state to obtain the desired
aspect ratio. Note that the aspect ratio in loon depends on the plot width, plot height and the
states zoomX, zoomY, deltaX, deltaY and swapAxes. Hence, the aspect aspect ratio can not be set
permanently for a loon plot.

Examples
p <- with(iris, 1l_plot(Sepal.Length ~ Sepal.Width, color=Species))

1_aspect(p)
1_aspect(p) <- 1

1_bind_canvas Create a Canvas Binding

Description

Canvas bindings are triggered by a mouse/keyboard gesture over the plot as a whole.

Usage

1_bind_canvas(widget, event, callback)

18 1 bind_canvas

Arguments
widget widget path as a string or as an object handle
event event patterns as defined for Tk canvas widget http://www. tcl. tk/man/tcl8.
6/TkCmd/bind. htm#M5.
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Canvas bindings are used to evaluate callbacks at certain X events on the canvas widget (underlying
widget for all of loon’s plot widgets). Such X events include re-sizing of the canvas and entering
the canvas with the mouse.

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

canvas binding id

See Also

1_bind_canvas_ids, 1_bind_canvas_get, 1_bind_canvas_delete, 1_bind_canvas_reorder

Examples

binding for when plot is resized
p <- 1_plot(iris[,1:2], color=iris$Species)

printSize <- function(p) {
size <- 1_size(p)
cat(paste('Size of widget ', p, ' is: ',
size[1], 'x', size[2], ' pixels\n', sep=""'))

3
1_bind_canvas(p, event='<Configure>', function(W) {printSize(W)3})

id <- 1_bind_canvas_ids(p)
id

1_bind_canvas_get(p, id)

http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M5
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M5

1 _bind_canvas_delete 19

1_bind_canvas_delete Delete a canvas binding

Description

Remove a canvas binding

Usage

1_bind_canvas_delete(widget, id)

Arguments
widget widget path as a string or as an object handle
id canvas binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

See Also

1_bind_canvas, 1_bind_canvas_ids, 1_bind_canvas_get, 1_bind_canvas_reorder

1_bind_canvas_get Get the event pattern and callback Tcl code of a canvas binding

Description
This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that machtches the event pattern.

Usage

1_bind_canvas_get(widget, id)

Arguments
widget widget path as a string or as an object handle
id canvas binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

20 1 _bind_canvas_ids

Value

Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_canvas, 1_bind_canvas_ids, 1_bind_canvas_delete, 1_bind_canvas_reorder

Examples

binding for when plot is resized
p <- 1_plot(iris[,1:2], color=iris$Species)

printSize <- function(p) {
size <- 1_size(p)
cat(paste('Size of widget ', p, ' is: ',

size[1], 'x', size[2], ' pixels\n', sep=""'))

3
1_bind_canvas(p, event='<Configure>', function(W) {printSize(W)3})

id <- 1_bind_canvas_ids(p)
id

1_bind_canvas_get(p, id)

1_bind_canvas_ids List canvas binding ids

Description

List all user added canvas binding ids

Usage

1_bind_canvas_ids(widget)

Arguments

widget widget path as a string or as an object handle

Details
Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with canvas binding ids

1 _bind_canvas_reorder 21

See Also

1_bind_canvas, 1_bind_canvas_get, 1_bind_canvas_delete, 1_bind_canvas_reorder

Examples

binding for when plot is resized
p <- 1_plot(iris[,1:2], color=iris$Species)

printSize <- function(p) {
size <- 1_size(p)
cat(paste('Size of widget ', p, ' is: ',

size[1], 'x', size[2], ' pixels\n', sep=""'))

3
1_bind_canvas(p, event='<Configure>', function(W) {printSize(W)3})

id <- 1_bind_canvas_ids(p)
id

1_bind_canvas_get(p, id)

1_bind_canvas_reorder Reorder the canvas binding evaluation sequence

Description
The order the canvas bindings defines how they get evaluated once an event matches event patterns
of multiple canvas bindings.

Usage

1_bind_canvas_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new canvas binding id evaluation order, this must be a rearrangement of the
elements returned by the 1_bind_canvas_ids function.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

22 1 _bind_context

See Also

1_bind_canvas, 1_bind_canvas_ids, 1_bind_canvas_get, 1_bind_canvas_delete

1_bind_context Add a context binding

Description

Creates a binding that evaluates a callback for particular changes in the collection of contexts of a
display.

Usage

1_bind_context(widget, event, callback)

Arguments
widget widget path as a string or as an object handle
event a vector with one or more of the following evnets: 'add’, 'delete’, 'relabel’
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

context binding id

See Also

1_bind_context_ids,1_bind_context_get, 1 _bind_context_delete, 1_bind_context_reorder

1 _bind_context_delete 23

1_bind_context_delete Delete a context binding

Description

Remove a context binding

Usage

1_bind_context_delete(widget, id)

Arguments
widget widget path as a string or as an object handle
id context binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

See Also

1_bind_context, 1_bind_context_ids, 1_bind_context_get, 1_bind_context_reorder

1_bind_context_get Get the event pattern and callback Tcl code of a context binding

Description
This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that machtches the event pattern.

Usage
1_bind_context_get(widget, id)

Arguments
widget widget path as a string or as an object handle
id context binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

24 1 _bind_context_ids

Value
Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_context, 1_bind_context_ids, 1_bind_context_delete, 1_bind_context_reorder

1_bind_context_ids List context binding ids

Description

List all user added context binding ids

Usage

1_bind_context_ids(widget)

Arguments

widget widget path as a string or as an object handle

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with context binding ids

See Also

1_bind_context, 1_bind_context_get, 1_bind_context_delete, 1_bind_context_reorder

1 _bind_context_reorder 25

1_bind_context_reorder
Reorder the context binding evaluation sequence

Description

The order the context bindings defines how they get evaluated once an event matches event patterns
of multiple context bindings.

Usage

1_bind_context_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new context binding id evaluation order, this must be a rearrangement of the
elements returned by the 1_bind_context_ids function.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1_bind_context, 1_bind_context_ids, 1_bind_context_get, 1_bind_context_delete

1_bind_glyph Add a glyph binding

Description
Creates a binding that evaluates a callback for particular changes in the collection of glyphs of a
display.

Usage

1_bind_glyph(widget, event, callback)

26 1_bind_glyph_delete

Arguments
widget widget path as a string or as an object handle
event a vector with one or more of the following evnets: 'add', 'delete’, 'relabel’
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

glyph binding id

See Also

1_bind_glyph_ids, 1_bind_glyph_get, 1_bind_glyph_delete, 1_bind_glyph_reorder

1_bind_glyph_delete Delete a glyph binding

Description

Remove a glyph binding

Usage
1 _bind_glyph_delete(widget, id)

Arguments
widget widget path as a string or as an object handle
id glyph binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

See Also

1_bind_glyph, 1_bind_glyph_ids, 1_bind_glyph_get, 1_bind_glyph_reorder

1 _bind_glyph_get 27

1_bind_glyph_get Get the event pattern and callback Tcl code of a glyph binding

Description
This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that machtches the event pattern.

Usage
1_bind_glyph_get(widget, id)

Arguments
widget widget path as a string or as an object handle
id glyph binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")
Value

Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_glyph, 1_bind_glyph_ids, 1_bind_glyph_delete, 1_bind_glyph_reorder

1_bind_glyph_ids List glyph binding ids

Description

List all user added glyph binding ids

Usage
1_bind_glyph_ids(widget)

Arguments

widget widget path as a string or as an object handle

28 1_bind_glyph_reorder

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

vector with glyph binding ids

See Also

1_bind_glyph, 1_bind_glyph_get, 1_bind_glyph_delete, 1_bind_glyph_reorder

1_bind_glyph_reorder Reorder the glyph binding evaluation sequence

Description
The order the glyph bindings defines how they get evaluated once an event matches event patterns
of multiple glyph bindings.

Usage

1_bind_glyph_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new glyph binding id evaluation order, this must be a rearrangement of the ele-
ments returned by the 1_bind_glyph_ids function.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1 _bind_glyph, 1_bind_glyph_ids, 1_bind_glyph_get, 1_bind_glyph_delete

1 _bind_item 29

1_bind_item Create a Canvas Binding

Description

Canvas bindings are triggered by a mouse/keyboard gesture over the plot as a whole.

Usage

1 _bind_item(widget, tags, event, callback)

Arguments
widget widget path as a string or as an object handle
tags item tags as as explained in 1_help("learn_R_bind.html#item-bindings")
event event patterns as defined for Tk canvas widget http: //www. tcl.tk/man/tcl8.
6/TkCmd/bind. htm#M5.
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Item bindings are used for evaluating callbacks at certain mouse and/or keyboard gestures events
(i.e. X events) on visual items on the canvas. Items on the canvas can have tags and item bindings
are specified to be evaluated at certain X events for items with specific tags.

Note that item bindings get currently evaluated in the order that they are added.

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

item binding id

See Also

1 bind_item_ids, 1_bind_item_get, 1_bind_item_delete, 1_bind_item_reorder

http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M5
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M5

30 I_bind_item_get

1_bind_item_delete Delete a item binding

Description

Remove a item binding

Usage
1_bind_item_delete(widget, id)

Arguments
widget widget path as a string or as an object handle
id item binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

See Also

1 _bind_item, 1_bind_item_ids, 1_bind_item_get, 1_bind_item_reorder

1_bind_item_get Get the event pattern and callback Tcl code of a item binding

Description
This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that machtches the event pattern.

Usage
1 _bind_item_get(widget, id)

Arguments
widget widget path as a string or as an object handle
id item binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

1 _bind_item_ids 31

Value
Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_item, 1_bind_item_ids, 1_bind_item_delete, 1_bind_item_reorder

1_bind_item_ids List item binding ids

Description

List all user added item binding ids

Usage

1 _bind_item_ids(widget)

Arguments

widget widget path as a string or as an object handle

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with item binding ids

See Also

1_bind_item, 1_bind_item_get, 1_bind_item_delete, 1_bind_item_reorder

32 [bind_layer

1_bind_item_reorder Reorder the item binding evaluation sequence

Description

The order the item bindings defines how they get evaluated once an event matches event patterns of
multiple item bindings.

Reordering item bindings has currently no effect. Item bindings are evaluated in the order in which
they have been added.

Usage

1 _bind_item_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new item binding id evaluation order, this must be a rearrangement of the ele-
ments returned by the 1_bind_item_ids function.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1 _bind_item, 1_bind_item_ids, 1_bind_item_get, 1_bind_item_delete

1_bind_layer Add a layer binding

Description
Creates a binding that evaluates a callback for particular changes in the collection of layers of a
display.

Usage

1_bind_layer(widget, event, callback)

[_bind_layer_delete 33

Arguments
widget widget path as a string or as an object handle
event a vector with one or more of the following evnets: 'add', 'delete’, "'move’,
'hide', 'show', 'relabel’
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

layer binding id

See Also

1_bind_layer_ids, 1_bind_layer_get, 1_bind_layer_delete, 1_bind_layer_reorder

1_bind_layer_delete Delete a layer binding

Description

Remove a layer binding

Usage
1 _bind_layer_delete(widget, id)

Arguments
widget widget path as a string or as an object handle
id layer binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

See Also
1_bind_layer, 1_bind_layer_ids, 1_bind_layer_get, 1_bind_layer_reorder

34 [_bind_layer_ids

1_bind_layer_get Get the event pattern and callback Tcl code of a layer binding

Description

This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that machtches the event pattern.

Usage
1_bind_layer_get(widget, id)

Arguments
widget widget path as a string or as an object handle
id layer binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value
Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also
1_bind_layer, 1_bind_layer_ids, 1_bind_layer_delete, 1_bind_layer_reorder

1_bind_layer_ids List layer binding ids

Description

List all user added layer binding ids

Usage
1_bind_layer_ids(widget)

Arguments

widget widget path as a string or as an object handle

[_bind_layer_reorder 35

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

vector with layer binding ids

See Also

1_bind_layer,1_bind_layer_get, 1_bind_layer_delete, 1_bind_layer_reorder

1_bind_layer_reorder Reorder the layer binding evaluation sequence

Description

The order the layer bindings defines how they get evaluated once an event matches event patterns
of multiple layer bindings.

Usage

1_bind_layer_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new layer binding id evaluation order, this must be a rearrangement of the ele-
ments returned by the 1_bind_layer_ids function.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1 _bind_layer,1_bind_layer_ids, 1_bind_layer_get, 1_bind_layer_delete

36 1_bind_navigator_delete

1_bind_navigator Add a navigator binding

Description

Creates a binding that evaluates a callback for particular changes in the collection of navigators of
a display.

Usage

1_bind_navigator(widget, event, callback)

Arguments
widget widget path as a string or as an object handle
event a vector with one or more of the following evnets: 'add’, 'delete’, 'relabel’
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

navigator binding id

See Also

1_bind_navigator_ids,1_bind_navigator_get,1_bind_navigator_delete, 1_bind_navigator_reorder

1_bind_navigator_delete

Delete a navigator binding

Description

Remove a navigator binding

Usage

1_bind_navigator_delete(widget, id)

1_bind_navigator_get 37

Arguments
widget widget path as a string or as an object handle
id navigator binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

See Also

1_bind_navigator,1_bind_navigator_ids, 1 _bind_navigator_get, 1 _bind_navigator_reorder

1_bind_navigator_get Get the event pattern and callback Tcl code of a navigator binding

Description
This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that machtches the event pattern.

Usage

1_bind_navigator_get(widget, id)

Arguments
widget widget path as a string or as an object handle
id navigator binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value
Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_navigator,1_bind_navigator_ids, 1_bind_navigator_delete, 1_bind_navigator_reorder

38 I_bind_navigator_reorder

1_bind_navigator_ids List navigator binding ids

Description

List all user added navigator binding ids

Usage

1_bind_navigator_ids(widget)

Arguments

widget widget path as a string or as an object handle

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

vector with navigator binding ids

See Also

1_bind_navigator,1_bind_navigator_get, 1_bind_navigator_delete, 1_bind_navigator_reorder

1_bind_navigator_reorder
Reorder the navigator binding evaluation sequence

Description
The order the navigator bindings defines how they get evaluated once an event matches event pat-
terns of multiple navigator bindings.

Usage

1_bind_navigator_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new navigator binding id evaluation order, this must be a rearrangement of the

elements returned by the 1_bind_navigator_ids function.

1 _bind_state 39

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1_bind_navigator,1_bind_navigator_ids,1_bind_navigator_get, 1 _bind_navigator_delete

1_bind_state Add a state change binding

Description
The callback of a state change binding is evaluated when certain states change, as specified at
binding creation.

Usage

1_bind_state(target, event, callback)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
event vector with state names
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

state change binding id

See Also

1_info_states,1_bind_state_ids,1_bind_state_get,1_bind_state_delete,1_bind_state_reorder

40 1 _bind_state_get

1_bind_state_delete Delete a state binding

Description

Remove a state binding

Usage
1_bind_state_delete(target, id)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.1@.plot"), the remaining objects by their ids.
id state binding id
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

See Also

1_bind_state, 1_bind_state_ids, 1_bind_state_get, 1_bind_state_reorder

1_bind_state_get Get the event pattern and callback Tcl code of a state binding

Description

This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that machtches the event pattern.

Usage
1 _bind_state_get(target, id)

Arguments

target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.

id state binding id

1 _bind_state_ids 41

Details
Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value
Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_state, 1_bind_state_ids, 1_bind_state_delete, 1_bind_state_reorder

1_bind_state_ids List state binding ids

Description

List all user added state binding ids

Usage

1_bind_state_ids(target)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with state binding ids

See Also

1 _bind_state, 1_bind_state_get, 1_bind_state_delete, 1_bind_state_reorder

42 I cget

1_bind_state_reorder Reorder the state binding evaluation sequence

Description
The order the state bindings defines how they get evaluated once an event matches event patterns of
multiple state bindings.

Usage

1 _bind_state_reorder(target, ids)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.1@.plot"), the remaining objects by their ids.
ids new state binding id evaluation order, this must be a rearrangement of the ele-
ments returned by the 1_bind_state_ids function.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1_bind_state, 1_bind_state_ids, 1_bind_state_get, 1_bind_state_delete

1_cget Query a Plot State

Description

All of loon’s displays have plot states. Plot states specify what is displayed, how it is displayed and
if and how the plot is linked with other loon plots. Layers, glyphs, navigators and contexts have
states too (also refered to as plot states). This function queries a single plot state.

Usage

1_cget(target, state)

I_configure 43

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
state state name
See Also

1_configure, 1_info_states, 1_create_handle

Examples

p <- 1_plot(iris, color = iris$Species)
1_cget(p, "color")
p['selected']

1_configure Modify one or multiple plot states

Description

All of loon’s displays have plot states. Plot states specify what is displayed, how it is displayed and
if and how the plot is linked with other loon plots. Layers, glyphs, navigators and contexts have
states too (also refered to as plot states). This function modifies one or multiple plot states.

Usage
1_configure(target, ...)
Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.1@.plot"), the remaining objects by their ids.
state=value pairs
See Also

1_cget,1_info_states, 1_create_handle

Examples

p <- 1_plot(iris, color = iris$Species)
1_configure(p, color='red")
pl'size'] <- ifelse(iris$Species == "versicolor”, 2, 8)

44 I_context_add_geodesic2d

1_context_add_context2d
Create a context2d navigator context

Description

A context2d maps every location on a 2d space graph to a list of xvars and a list of yvars such that,
while moving the navigator along the graph, as few changes as possible take place in xvars and
yvars.

Contexts are in more detail explained in the webmanual accessible with 1_help. Please read the
section on context by running 1_help(”learn_R_display_graph.html#contexts").

Usage
1_context_add_context2d(navigator, ...)
Arguments
navigator navigator handle object
arguments passed on to modify context states
Value

context handle

See Also

1_info_states,1_context_ids, 1_context_add_geodesic2d, 1_context_add_slicing2d,1_context_getlLabel,
1_context_relabel

1_context_add_geodesic2d
Create a geodesic2d navigator context

Description

Geodesic2d maps every location on the graph as an orthogonal projection of the data onto a two-
dimensional subspace. The nodes then represent the sub-space spanned by a pair of variates and the
edges either a 3d- or 4d-transition of one scatterplot into another, depending on how many variates
the two nodes connected by the edge share (see Hurley and Oldford 2011). The geodesic2d context
inherits from the context2d context.

Contexts are in more detail explained in the webmanual accessible with 1_help. Please read the
section on context by running 1_help(”learn_R_display_graph.html#contexts").

I _context_add_slicing2d 45

Usage
1_context_add_geodesic2d(navigator, ...)
Arguments
navigator navigator handle object
arguments passed on to modify context states
Value

context handle

See Also

1_info_states,1_context_ids, 1_context_add_context2d,1_context_add_slicing2d,1_context_getlLabel,
1_context_relabel

1_context_add_slicing2d
Create a slicind2d navigator context

Description

The slicing2d context implements slicing using navigation graphs and a scatterplot to condition on
one or two variables.

Contexts are in more detail explained in the webmanual accessible with 1_help. Please read the
section on context by running 1_help(”learn_R_display_graph.html#contexts").

Usage

1_context_add_slicing2d(navigator, ...)

Arguments
navigator navigator handle object
arguments passed on to modify context states
Value

context handle

46 1 _context_delete

Examples

names(oliveAcids) <- c('p','p1','s"','0",'1",'11",'a","'e")

nodes <- apply(combn(names(oliveAcids),?2),2,
function(x)paste(x, collapse=':"))

G <- completegraph(nodes)

g <- 1_graph(G)

nav <- 1_navigator_add(g)

con <- 1_context_add_slicing2d(nav, data=oliveAcids)

symmetric range proportion around nav['proportion']
con['proportion'] <- 0.2

con['conditioning4d'] <- "union”
con['conditioning4d'] <- "intersection”

1_context_delete Delete a context from a navigator

Description

Navigators can have multiple contexts. This function removes a context from a navigator.

Usage

1_context_delete(navigator, id)

Arguments
navigator navigator hanlde
id context id
Details

For more information run: 1_help("learn_R_display_graph.html#contexts")

See Also

1_context_ids, 1_context_add_context2d, 1_context_add_geodesic2d,1_context_add_slicing2d,
1_context_getlLabel, 1_context_relabel

I_context_getLabel 47

1_context_getLabel Query the label of a context

Description
Context labels are eventually used in the context inspector. This function queries the label of a
context.

Usage

1_context_getlLabel (navigator, id)

Arguments
navigator navigator hanlde
id context id
Details

For more information run: 1_help("learn_R_display_graph.html#contexts")

See Also

1_context_getlLabel, 1_context_add_context2d, 1_context_add_geodesic2d, 1_context_add_slicing2d,
1_context_delete

1_context_ids List context ids of a navigator

Description

Navigators can have multiple contexts. This function list the context ids of a navigator.

Usage

1_context_ids(navigator)

Arguments

navigator navigator hanlde

Details

For more information run: 1_help("learn_R_display_graph.html#contexts")

48 1 create_handle

See Also

1_context_delete, 1_context_add_context2d, 1_context_add_geodesic2d,1_context_add_slicing2d,
1_context_getlLabel, 1_context_relabel

1_context_relabel Change the label of a context

Description

Context labels are eventually used in the context inspector. This function relabels a context.

Usage

1_context_relabel(navigator, id, label)

Arguments
navigator navigator hanlde
id context id
label context label shown
Details

For more information run: 1_help("learn_R_display_graph.html#contexts")

See Also

1_context_getlLabel, 1_context_add_context2d,1_context_add_geodesic2d, 1_context_add_slicing2d,
1_context_delete

1_create_handle Create a loon object handle

Description
This function can be used to create the loon object handles from a vector of the widget path name
and the object ids (in the order of the parent-child relationships).

Usage

1_create_handle(target)

Arguments

target loon object specification (e.g. ".10.plot")

1 _currentindex 49

Details

loon’s plot handles are useful to query and modify plot states via the command line.

For more information run: 1_help("”learn_R_intro.html#re-creating-object-handles")
Examples

plot handle

p <- 1 _plot(x=1:3, y=1:3)

p_new <- 1_create_handle(unclass(p))
p_new['showScales']

glyph handle

gl <- 1_glyph_add_text(p, text=LETTERS[1:31)

gl _new <- 1_create_handle(c(as.vector(p), as.vector(gl)))
gl_new['text']

layer handle

1 <- 1_layer_rectangle(p, x=c(1,3), y=c(1,3), color="yellow', index='end')
1_new <- 1_create_handle(c(as.vector(p), as.vector(l)))

1_new['color']

navigator handle

g <- 1_graph(linegraph(completegraph(LETTERS[1:3])))

nav <- 1_navigator_add(g)

nav_new <- 1_create_handle(c(as.vector(g), as.vector(nav)))
nav_new[' from']

context handle

con <- 1_context_add_context2d(nav)

con_new <- 1_create_handle(c(as.vector(g), as.vector(nav), as.vector(con)))
con_new['separator']

1_currentindex Get layer-relative index of the item below the mouse cursor

Description
Checks if there is a visual item below the mouse cursor and if there is, it returns the index of the
visual item’s position in the corresponding variable dimension of its layer.

Usage

1_currentindex(widget)

Arguments

widget widget path as a string or as an object handle

50 I _currenttags

Details

For more details see 1_help(”learn_R_bind.html#item-bindings")

Value

index of the visual item’s position in the corresponding variable dimension of its layer

See Also

1 _bind_item, 1_currenttags

Examples

p <- 1_plot(iris[,1:2], color=iris$Species)

printEntered <- function(W) {
cat(paste('Entered point ', 1_currentindex(W), '\n'))
}

printLeave <- function(W) {
cat(paste('Left point ', 1_currentindex(W), '\n'))
3

1_bind_item(p, tags='model&&point', event='<Enter>',
callback=function(W) {printEntered(W)})

1_bind_item(p, tags='model&&point', event='<Leave>',
callback=function(W) {printLeave(W)3})

1_currenttags Get tags of the item below the mouse cursor

Description
Retrieves the tags of the visual item that at the time of the function evaluation is below the mouse
Cursor.

Usage

1_currenttags(widget)

Arguments

widget widget path as a string or as an object handle

Details

For more details see 1_help(”learn_R_bind.html#item-bindings")

1 data 51

Value

vector with item tags of visual

See Also

1_bind_item, 1_currentindex

Examples
printTags <- function(W) {
print(l_currenttags(W))
3
p <- 1_plot(x=1:3, y=1:3, title='Query Visual Item Tags')

1 _bind_item(p, 'all', '<ButtonPress>', function(W)printTags(W))

1_data Convert an R data.frame to a Tcl dictionary

Description

This is a helper function to convert an R data.frame object to a Tcl data frame object. This function
is useful when changing a data state with 1_configure.

Usage

1_data(data)

Arguments

data a data.frame object

Value

a string that represents with data.frame with a Tcl dictionary data structure.

52 I_export

1_export Export a loon plot as an image

Description

The supported image formats are dependent on the system environment. Plots can always be ex-
ported to the Postscript format. Exporting displays as .pdfs is only possible when the command line
tool epstopdf is installed. Finally, exporting to either png, jpg, bmp, tiff or gif requires the Img Tcl
extension. When choosing one of the formats that depend on the Img extension, it is possible to
export any Tk widget as an image including inspectors.

Usage

1_export(widget, filename, width, height)

Arguments
widget widget path as a string or as an object handle
filename path of output file
width image width in pixels
height image height in pixels
Details

Note that the CTRL-T key combination opens a dialog to export he graphic.

The native export format is to ps as this is what the Tk canvas offers. If the the 1_export fails with
other formats then please resort to a screen capture method for the moment.

Value

path to the exported file

See Also

1_export_valid_formats

I_export_valid_formats 53

1_export_valid_formats
Return a list of the available image formats when exporting a loon plot

Description

The supported image formats are dependent on the system environment. Plots can always be ex-
ported to the Postscript format. Exporting displays as .pdfs is only possible when the command line
tool epstopdf is installed. Finally, exporting to either png, jpg, bmp, tiff or gif requires the Img Tcl
extension. When choosing one of the formats that depend on the Img extension, it is possible to
export any Tk widget as an image including inspectors.

Usage

1_export_valid_formats()

Value

a vector with the image formats available for exporting a loon plot.

1_getColorList Get loon’s color mapping list

Description
The color mapping list is used by loon to convert nominal values to color values, see the documen-
tation for 1_setColorList.

Usage

1_getColorList()

Value

a vector with hex-encoded colors

See Also

1_setColorList

54 I_getLinkedStates

1_getGraph Extract a loongraph or graph object from loon’s graph display

Description
The graph display represents a graph with the nodes, from, to, and isDirected plot states. This
function creates a loongraph or a graph object using these states.

Usage
1_getGraph(widget, asloongraph = TRUE)

Arguments
widget a graph widget handle
asloongraph boolean, if TRUE then the function returns a loongraph object, otherwise the
function returns a graph object defined in the graph R package.
Value

a loongraph or a graph object

See Also

1_graph, loongraph

1_getlLinkedStates Query the States that are Linked with Loon’s Standard Linking Model

Description
Loon’s standard linking model is based on three levels, the 1inkingGroup and 1inkingKey states
and the used linkable states. See the details in the documentation for 1_setLinkedStates.

Usage

1_getlLinkedStates(widget)

Arguments

widget widget path as a string or as an object handle

Value

vector with state names that are linked states

1_glyphs_inspector

See Also

1_setlLinkedStates

55

1_glyphs_inspector Create a Glyphs Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_glyphs_inspector(parent = NULL, ...)

Arguments

parent parent widget path

State arguments

Value

widget handle

See Also

1_create_handle

Examples

i <- 1_glyphs_inspector()

1_glyphs_inspector_image
Create a Image Glyph Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_glyphs_inspector_image(parent = NULL, ...)

56 1_glyphs_inspector_pointrange

Arguments
parent parent widget path
state arguments
Value
widget handle
See Also

1_create_handle

Examples

i <- 1_glyphs_inspector_image()

1_glyphs_inspector_pointrange
Create a Pointrange Glyph Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_glyphs_inspector_pointrange(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

i <- 1_glyphs_inspector_pointrange()

1_glyphs_inspector_serialaxes

57

1_glyphs_inspector_serialaxes
Create a Serialaxes Glyph Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_glyphs_inspector_serialaxes(parent = NULL, ...)

Arguments

parent parent widget path

State arguments

Value

widget handle

See Also

1_create_handle

Examples

i <- 1_glyphs_inspector_serialaxes()

1_glyphs_inspector_text
Create a Text Glyph Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_glyphs_inspector_text(parent = NULL, ...)
Arguments

parent parent widget path

state arguments

58 1 _glyph_add

Value

widget handle

See Also

1_create_handle

Examples

i <- 1_glyphs_inspector_text()

1_glyph_add Add non-primitive glyphs to a scatterplot or graph display

Description
Generic method for adding user-defined glyphs. See details for more information about non-
primitive and primitive glyphs.

Usage
1_glyph_add(widget, type, ...)

Arguments
widget widget path as a string or as an object handle
type object used for method dispatch
arguments passed on to method
Details

The scatterplot and graph displays both have the n-dimensional state 'glyph' that assigns each data
point or graph node a glyph (i.e. a visual representation).

Loon distinguishes between primitive and non-primitive glyphs: the primitive glyphs are always
available for use whereas the non-primitive glyphs need to be first specified and added to a plot
before they can be used.

The primitive glyphs are:

’circle’, ’ocircle’, ’ccircle’
’square’, ’osquare’, ’csquare’
’triangle’, ’otriangle’, ’ctriangle’
>diamond’, ’odiamond’, ’cdiamond’

Note that the letter 'o' stands for outline only, and the letter 'c' stands for contrast and adds an
outline with the 'foreground' color (black by default).

1_glyph_add 59

The non-primitive glyph types and their creator functions are:

Type R creator function

Text 1_glyph_add_text
Serialaxes 1_glyph_add_serialaxes
Pointranges 1_glyph_add_pointrange
Images 1_glyph_add_image
Polygon 1_glyph_add_polygon

When adding non-primitive glyphs to a display, the number of glyphs needs to match the dimension
n of the plot. In other words, a glyph needs to be defined for each observations. See in the examples.

Currently loon does not support compound glyphs. However, it is possible to cunstruct an arbitrary
glyph using any system and save it as a png and then re-import them as as image glyphs using
1_glyph_add_image.

For more information run: 1_help("learn_R_display_plot.html#glyphs")

Value

String with glyph id. Every set of non-primitive glyphs has an id (character).

See Also

1_glyph_add_text, make_glyphs

Examples

Simple Example with Text Glyphs

p <- with(olive, 1_plot(stearic, eicosenoic, color=Region))
g <- 1_glyph_add_text(p, text=olive$Area, label="Area")
pL'glyph'] <- g

Not run:
demo("1_glyphs”, package="loon")

End(Not run)

create a plot that demonstrates the primitive glyphs and the text glyphs
p <- 1_plot(x=1:15, y=rep(0,15), size=10, showlLabels=FALSE)

text_glyph <- 1_glyph_add_text(p, text=letters [1:15])

pL'glyph'] <= ¢(

'circle', 'ocircle', 'ccircle',
'square', 'osquare' , 'csquare',
'triangle', 'otriangle', 'ctriangle',
'diamond', 'odiamond', 'cdiamond',

rep(text_glyph, 3)

60 I_glyph_add_image

1_glyph_add.default Default method for adding non-primitive glyphs

Description

Generic function to write new glyph types using loon’s primitive glyphs

Usage
Default S3 method:
1_glyph_add(widget, type, label = "", ...)
Arguments
widget widget path as a string or as an object handle
type loon-native non-primitive glyph type, one of 'text', 'serialaxes', 'image’,

'[polygon', or 'pointrange'
label label of a glyph (currently shown only in the glyph inspector)

state arguments

1_glyph_add_image Add an image glyphs

Description

Image glyphs are useful to show pictures or other sophisticated compound glyphs. Note that images

in the Tk canvas support transparancy.

Usage
1 _glyph_add_image(widget, images, label = "", ...)
Arguments
widget widget path as a string or as an object handle
images Tk image references, see the 1_image_import_array and 1_image_import_files
helper functions.
label label of a glyph (currently shown only in the glyph inspector)
state arguments
Details

For more information run: 1_help("learn_R_display_plot.html#images")

1_glyph_add_pointrange 61

See Also

1_glyph_add, 1_image_import_array, 1_image_import_files, make_glyphs

Examples

Not run:
p <- with(olive, 1_plot(palmitic ~ stearic, color = Region))
img_paths <- list.files(file.path(find.package(package = 'loon'), "images"), full.names = TRUE)
imgs <- setNames(l_image_import_files(img_paths),
tools: :file_path_sans_ext(basename(img_paths)))
i <- pmatch(gsub("*[[:alpha:]]1+-","", olive$Area), names(imgs), duplicates.ok = TRUE)

g <- 1_glyph_add_image(p, imgs[i], label="Flags")
pl'glyph'] <- g

End(Not run)

1_glyph_add_pointrange
Add a Pointrange Glyph

Description

Pointrange glyphs show a filled circle at the x-y location and also a y-range.

Usage
1 _glyph_add_pointrange(widget, ymin, ymax, linewidth = 1, label = "", ...)
Arguments
widget widget path as a string or as an object handle
ymin vector with lower y-yalue of the point range.
ymax vector with upper y-yalue of the point range.
linewidth line with in pixel.
label label of a glyph (currently shown only in the glyph inspector)
state arguments
See Also
1_glyph_add
Examples

p <- 1_plot(x = 1:3, color = c('red', 'blue', 'green'), showScales=TRUE)
g <- 1_glyph_add_pointrange(p, ymin=(1:3)-(1:3)/5, ymax=(1:3)+(1:3)/5)
pl'glyph'] <- g

62 1_glyph_add_polygon

1_glyph_add_polygon Add a Polygon Glyph

Description

Add one polygon per scatterplot point.

Usage
1_glyph_add_polygon(widget, x, y, showArea = TRUE, label = "", ...)
Arguments
widget widget path as a string or as an object handle
X nested list of x-coordinates of polygons (relative to), one list element for each
scatterplot point.
y nested list of y-coordinates of polygons, one list element for each scatterplot
point.
showArea boolean, show a filled polygon or just the outline
label label of a glyph (currently shown only in the glyph inspector)
state arguments
Details

A polygon can be a useful point glyph to visualize arbitrary shapes such as airplanes, animals and
shapes that are not available in the primitive glyph types (e.g. cross). The 1_glyphs demo has an
example of polygon glyphs which we reuse here.

See Also
1_glyph_add

Examples

x_star <-

c(-0.000864304235090734, 0.292999135695765, 0.949870354364736,
0.474503025064823, 0.586862575626621, -0.000864304235090734,
-0.586430423509075, -0.474070872947277, -0.949438202247191,
-0.29256698357822)

y_star <-

c(-1, -0.403630077787381, -0.308556611927398, 0.153846153846154,
0.808556611927398, 0.499567847882455, 0.808556611927398,
0.153846153846154, -0.308556611927398, -0.403630077787381)

X_cross <-

c(-0.258931143762604, -0.258931143762604, -0.950374531835206,
-0.950374531835206, -0.258931143762604, -0.258931143762604,
0.259651397291847, 0.259651397291847, ©.948934024776722,

1 _glyph_add_serialaxes

0.948934024776722, ©.259651397291847, 0.259651397291847)
y_cross <-

c(-0.950374531835206, -0.258931143762604, -0.258931143762604,
0.259651397291847, ©.259651397291847, 0.948934024776722,
0.948934024776722, 0.259651397291847, 0.259651397291847,
-0.258931143762604, -0.258931143762604, -0.950374531835206)

x_hexagon <-

c(0.773552290406223, 0, -0.773552290406223, -0.773552290406223,
0, ©.773552290406223)

y_hexagon <-

c(0.446917314894843, 0.894194756554307, 0.446917314894843,

-0.447637568424085, -0.892754249495822, -0.447637568424085)

p <- 1_plot(1:3, 1:3)

gl <- 1_glyph_add_polygon(p, x = list(x_star, x_cross, x_hexagon),
y = list(y_star, y_cross, y_hexagon))

p['glyph'] <- gl

gl['showArea'] <- FALSE

63

1_glyph_add_serialaxes
Add a Serialaxes Glyph

Description

Serialaxes glyph show either a star glyph or a parralel coordinate glyph for each point.

Usage

1_glyph_add_serialaxes(widget, data, sequence, linewidth = 1,
scaling = "variable"”, axesLayout = "radial”, showAxes = FALSE,
axesColor = "gray70", showEnclosing = FALSE, bboxColor = "gray70",
label = "", ...)

Arguments

widget widget path as a string or as an object handle
data a data frame with numerical data only
sequence vector with variable names that defines the axes sequence

linewidth linewidth of outline

scaling one of ’variable’, *data’, ’observation’ or 'none’ to specify how the data is scaled.

See Details for more information
axeslLayout either "serial” or "parallel”

showAxes boolean to indicate whether axes should be shown or not

64 I_glyph_add_text

axesColor color of axes

showEnclosing boolean, circle (axesLayout=radial) or sqaure (axesLayout=parallel) to show
bounding box/circle of the glyph (or showing unit circle or rectangle with height
1 if scaling=none)

bboxColor color of bounding box/circle
label label of a glyph (currently shown only in the glyph inspector)

state arguments

Examples

p <- with(olive, 1_plot(oleic, stearic, color=Area))
gs <- 1_glyph_add_serialaxes(p, data=olivel[,-c(1,2)], showArea=FALSE)
pL'glyph'] <- gs

1_glyph_add_text Add a Text Glyph

Description

Each text glyph can be a multiline string.

Usage
1 _glyph_add_text(widget, text, label = "", ...)
Arguments
widget widget path as a string or as an object handle
text the text strings for each observartion. If the object is a factor then the labels get
extracted with as.character.
label label of a glyph (currently shown only in the glyph inspector)
state arguments
See Also
1_glyph_add
Examples

p <- 1_plot(iris, color = iris$Species)
g <- 1_glyph_add_text(p, iris$Species, "test_label"”)
pl'glyph'] <- g

1 glyph_delete

65

1_glyph_delete Delete a Glyph

Description

Delete a glyph from the plot.

Usage
1_glyph_delete(widget, id)

Arguments

widget widget path as a string or as an object handle

id glyph id

See Also
1_glyph_add

1_glyph_getLabel Get Glyph Label

Description

Returns the label of a glyph

Usage

1_glyph_getlLabel (widget, id)

Arguments
widget widget path as a string or as an object handle
id glyph id

See Also

1_glyph_add, 1_glyph_ids, 1_glyph_relabel

66

1_glyph_ids

1_glyph_getType Get Glyph Type

Description

Query the type of a glyph

Usage

1_glyph_getType(widget, id)

Arguments

widget widget path as a string or as an object handle

id glyph id

See Also

1_glyph_add

1_glyph_ids List glyphs ids

Description

List all the non-primitive glyph ids attached to display.

Usage

1_glyph_ids(widget)

Arguments

widget widget path as a string or as an object handle

See Also

1_glyph_add

1_glyph_relabel 67

1_glyph_relabel Relabel Glyph

Description

Change the label of a glyph. Note that the label is only displayed in the glyph inspector.

Usage
1 _glyph_relabel(widget, id, label)

Arguments
widget widget path as a string or as an object handle
id glyph id
label new label

See Also

1 _glyph_add, 1_glyph_ids, 1_glyph_getLabel

Examples

p <- 1_plot(iris, color = iris$Species)

g <- 1_glyph_add_text(p, iris$Species, "test_label"”)
pl'glyph'] <- g

1_glyph_relabel(p, g, "Species"”)

1_graph Generic funtction to create an interactive graph display

Description

Interactive graphs in loon are currently most often used for navigation graphs.

Usage
1_graph(nodes = NULL, ...)
Arguments
nodes object for method dispatch

arguments passed on to methods

68 1_graph.default

Details

For more information run: 1_help("learn_R_display_graph.html#graph")

Value

graph handle

See Also

1_graph.graph, 1_graph.loongraph, 1_graph.default

1_graph.default Create a graph display based on node names and from-to edges list

Description

This default method uses the loongraph display states as arguments to create a graph display.

Usage

Default S3 method:

1_graph(nodes = "", from = "", to = "", parent = NULL,
.2
Arguments
nodes vector with nodenames
from vector with node names of the from-to pairs for edges
to vector with node names of the from-to pairs for edges
parent parent widget of graph display

arguments to modify the graph display state

Details

For more information run: 1_help("learn_R_display_graph.html#graph")

Value

graph handle

See Also

loongraph, 1_graph, 1_info_states, 1_graph.graph

1_graph.graph 69

1_graph.graph Create a graph display based on a graph object

Description

Graph objects are defined in the graph R package.

Usage
S3 method for class 'graph'
1_graph(nodes, ...)
Arguments
nodes a graph object created with the functions in the graph R package.

arguments to modify the graph display state

Details

For more information run: 1_help("learn_R_display_graph.html#graph")

Value

graph handle

See Also

1_graph, 1_info_states, 1_graph.loongraph

1_graph.loongraph Create a graph display based on a loongraph object

Description

Loongraphs can be created with the loongraph function.

Usage
S3 method for class 'loongraph'
1_graph(nodes, ...)
Arguments
nodes a loongraph object created with the loongraph function.

arguments to modify the graph display state

70 1_graphswitch
Details

For more information run: 1_help("learn_R_display_graph.html#graph")

Value

graph handle

See Also

loongraph, 1_graph, 1_info_states, 1_graph.graph

1_graphswitch Create a graphswitch widget

Description

The graphswitch provides a graphical user interface for changing the graph in a graph display inter-
actively.

Usage

1_graphswitch(activewidget = "", parent = NULL, ...)

Arguments

activewidget widget handle of a graph display
parent parent widget path

widget states

Details

For more information run: 1_help("learn_R_display_graph.html#graph-switch-widget")

See Also

1_graphswitch_add, 1_graphswitch_ids, 1_graphswitch_delete, 1_graphswitch_relabel
1_graphswitch_getlLabel, 1_graphswitch_move, 1_graphswitch_reorder,1_graphswitch_set
1_graphswitch_get

1_graphswitch_add 71

1_graphswitch_add Add a graph to a graphswitch widget

Description

This is a generic function to add a graph to a graphswitch widget.

Usage
1_graphswitch_add(widget, graph, ...)
Arguments
widget widget path as a string or as an object handle
graph a graph or a loongraph object
arguments passed on to method
Details

For more information run: 1_help("learn_R_display_graph.html#graph-switch-widget")

Value

id for graph in the graphswitch widget

See Also

1_graphswitch

1_graphswitch_add.default
Add a graph that is defined by node names and a from-to edges list

Description
This default method uses the loongraph display states as arguments to add a graph to the graphswitch
widget.

Usage

Default S3 method:
1_graphswitch_add(widget, graph, from, to, isDirected,
label = "", index = "end", ...)

72 1_graphswitch_add.graph

Arguments
widget graphswitch widget handle (or widget path)
graph a vector with the node names, i.e. this argument gets passed on as the nodes
argument to creat a Lloongraph like object
from vector with node names of the from-to pairs for edges
to vector with node names of the from-to pairs for edges
isDirected boolean to indicate whether the from-to-list defines directed or undirected edges
label string with label for graph
index position of graph in the graph list
additional arguments are not used for this methiod
Value

id for graph in the graphswitch widget

See Also

1_graphswitch

1_graphswitch_add.graph
Add a graph to the graphswitch widget using a graph object

Description

Graph objects are defined in the graph R package.

Usage
S3 method for class 'graph'
1_graphswitch_add(widget, graph, label = "", index = "end",
.2)
Arguments
widget graphswitch widget handle (or widget path)
graph a graph object created with the functions in the graph R package.
label string with label for graph
index position of graph in the graph list

additional arguments are not used for this methiod

Value

id for graph in the graphswitch widget

1_graphswitch_add.loongraph 73

See Also

1_graphswitch

1_graphswitch_add. loongraph
Add a graph to the graphswitch widget using a loongraph object

Description

Loongraphs can be created with the loongraph function.

Usage

S3 method for class 'loongraph'
1_graphswitch_add(widget, graph, label = "",

index = "end”, ...)
Arguments
widget graphswitch widget handle (or widget path)
graph a loongraph object
label string with label for graph
index position of graph in the graph list

additional arguments are not used for this methiod

Value

id for graph in the graphswitch widget

See Also

1_graphswitch

74

1_graphswitch_get

1_graphswitch_delete Delete a graph from the graphswitch widget

Description

Remove a a graph from the graphswitch widget

Usage

1_graphswitch_delete(widget, id)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph

See Also

1_graphswitch

1_graphswitch_get Return a Graph as a loongraph Object

Description

Graphs can be extracted from the graphswitch widget as loongraph objects.

Usage

1_graphswitch_get(widget, id)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph

See Also

1_graphswitch, loongraph

1_graphswitch_getLabel 75

1_graphswitch_getlLabel
Query Label of a Graph in the Graphswitch Widget

Description

The graphs in the graphswitch widgets have labels. Use this function to query the label of a graph.

Usage

1_graphswitch_getLabel (widget, id)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph

See Also

1_graphswitch

1_graphswitch_ids List the ids of the graphs in the graphswitch widget

Description

Every graph in the graphswitch widget has an id. This function returns these ids preserving the oder
of how the graphs are listed in the graphswitch.

Usage

1_graphswitch_ids(widget)

Arguments

widget graphswitch widget handle (or widget path)

76 1_graphswitch_relabel

1_graphswitch_move Move a Graph in the Graph List

Description

Change the postion in of a graph in the graphswitch widget.

Usage

1_graphswitch_move(widget, id, index)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph
index position of the graph as a positive integer, "start” and "end” are also valid
keywords.
See Also

1_graphswitch

1_graphswitch_relabel Relabel a Graph in the Graphswitch Widget

Description

The graphs in the graphswitch widgets have labels. Use this function the relabel a graph.

Usage
1_graphswitch_relabel (widget, id, label)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph
label string with label of graph

See Also

1_graphswitch

1_graphswitch_reorder 77

1_graphswitch_reorder Reorder the Positions of the Graphs in the Graph List

Description

Define a new graph order in the graph list.

Usage

1_graphswitch_reorder(widget, ids)

Arguments
widget graphswitch widget handle (or widget path)
ids vector with all graph ids from the graph widget. Use 1_graphswitch_ids to
query the ids.
See Also
1_graphswitch
1_graphswitch_set Change the Graph shown in the Active Graph Widget

Description
The activewidget state holds the widget handle of a graph display. This function replaces the
graph in the activewidget with one of the graphs in the graphswitch widget.

Usage

1_graphswitch_set(widget, id)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph

See Also

1_graphswitch

78 |_graph_inspector_analysis

1_graph_inspector Create a Graph Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_graph_inspector(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

i <- 1_graph_inspector()

1_graph_inspector_analysis
Create a Graph Analysis Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_graph_inspector_analysis(parent = NULL, ...)
Arguments

parent parent widget path

state arguments

1_graph_inspector_navigators

Value

widget handle

See Also

1_create_handle

Examples

i <- 1_graph_inspector_analysis()

79

1_graph_inspector_navigators
Create a Graph Navigator Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_graph_inspector_navigators(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

i <= 1_graph_inspector_navigators()

80 1 hexcolor

1_help Open a browser with loon’s documentation webpage

Description
1_help opens a browser with the relevant page on the official loon documentation website at http:
//waddella.github.io/loon/.

Usage
1_help(page = "index", ...)

Arguments

page relative path to a page, the .html part may be omitted

arguments forwarded to browseURL, e.g. to specify a browser

Examples

Not run:

1_help()

1_help("learn_R_display_hist")

1_help(”"learn_R_bind")

jump to a section
1_help(”"learn_R_bind.html#list-reorder-delete-bindings")

End(Not run)

1_hexcolor Convert color names to their 12 digit hexadecimal color representa-
tion

Description
Color names in loon will be mapped to colors according to the Tk color specifications and are
normalized to a 12 digit hexadecimal color representation.

Usage

1_hexcolor(color)

Arguments

color a vector with color names

http://waddella.github.io/loon/
http://waddella.github.io/loon/

1 hist 81

Value

a character vector with the 12 digit hexadecimal color strings.

Examples

p <- 1_plot(1:2)
p['color'] <- 'red'
pL'color']

1_hexcolor('red")

1_hist Create an Interactive Histogram

Description

Create an interactive histogram display that can be linked with loon’s other displays

Usage
1_hist(x, origin = min(x), binwidth = NULL, parent = NULL, ...)
Arguments
X vector with numerical data to perform the binning on
origin scalar to define the binning origin
binwidth scalar to specify the binwidth, if NULL then it is set to diff (range(x))/30 if
that value is >=0.0001 or 0.0001 otherwise
parent parent widget path
named arguments to modify the histogram plot states
Details

Note that when changing the yshows state form ' frequency' to 'density' you might have to use
1_scaleto_world to show the complete histogram in the plotting region.

For more information run: 1_help("learn_R_display_hist")

Value

widget handle

See Also
1 _plot

Examples

h <- 1_hist(iris$Sepal.Length, color=iris$Species)

82 1 _hist_inspector_analysis

1_hist_inspector Create a Histogram Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_hist_inspector(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

i <= 1_hist_inspector()

1_hist_inspector_analysis
Create a Histogram Analysis Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_hist_inspector_analysis(parent = NULL, ...)
Arguments

parent parent widget path

state arguments

[_imageviewer 83

Value

widget handle

See Also

1_create_handle

Examples

i <- 1_hist_inspector_analysis()

1_imageviewer Display Tcl Images in a Simple Image Viewer

Description

Loon provides a simple image viewer to browse through the specified tcl image objects.

The simple GUI supports either the use of the mouse or left and right arrow keys to switch the
images to the previous or next image in the specified image vector.

The images are resized to fill the viewer window.

Usage

1_imageviewer (tclimages)

Arguments

tclimages Vector of tcl image object names.

Value

the tclimages vector is returned
Examples

img2 <- tkimage.create('photo', width=200, height=150)
tcl(img2, 'put', 'yellow', '-to', 0, @, 199, 149)

tcl(img2, 'put', 'green', '-to', 40, 20, 130, 40)
img3 <- tkimage.create('photo', width=500, height=100)
tcl(img3, 'put', 'orange', '-to', 0, 0, 499, 99)
tcl(img3, 'put', 'green', '-to', 40, 80, 350, 95)

1_imageviewer(c(tclvalue(img2), tclvalue(img3)))

84 |_image_import_array

1_image_import_array Import Greyscale Images as Tcl images from an Array

Description

Import image grayscale data (0-255) with each image saved as a row or column of an array.

Usage

1_image_import_array(array, width, height, img_in_row = TRUE,
invert = FALSE, rotate = 0)

Arguments
array of 0-255 grayscale value data.
width of images in pixels.
height of images in pixels.
img_in_row logical, TRUE if every row of the array represents an image
invert logical, for “invert=FALSE’ O=withe, for ’invert=TRUE’ O=black
rotate the image: one of 0, 90, 180, or 270 degrees.

Details

Images in tcl are managed by the tcl interpreter and made accessible to the user via a handle, i.e. a
function name of the form imagel, image2, etc.

For more information run: 1_help("learn_R_display_plot.html#images")

Value

vector of image object names

Examples

Not run:
see
demo("1_ng_images_frey_LLE")

End(Not run)

I_image_import_files 85

1_image_import_files Import Image Files as Tk Image Objects

Description

Note that the supported image file formats depend on whether the Img Tk extension is installed.

Usage

1_image_import_files(paths)

Arguments

paths vector with paths to image files that are supported

Details

For more information run: 1_help("learn_R_display_plot.html#load-images")

Value

vector of image object names

See Also

1_image_import_array, 1_imageviewer

1_info_states Retrieve Information about the States of a Loon Widget

Description
Loon’s built-in object documentation. Can be used with every loon object that has plot states in-
cludin plots, layers, navigators, contexts.

Usage

1_info_states(target, states = "all")

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
states vector with names of states. 'all’ is treated as a keyword and results in return-

ing information on all plot states

86 I_isLoonWidget

Value

a named nested list with one element per state. The list elements are also named lists with type,
dimension, defaultvalue, and description elements containing the respective information.

Examples

p <- 1_plot(iris, linkingGroup="iris")
i <- 1_info_states(p)

names (i)

i$selectBy

1 <- 1_layer_rectangle(p, x=range(iris[,1]), y=range(iris[,2]), color="")

1_info_states(1l)

h <- 1_hist(iris$Sepal.Length, linkingGroup="iris")
1_info_states(h)

1_isLoonWidget Check if a widget path is a valid loon widget

Description

This function can be useful to check whether a loon widget is has been closed by the user.

Usage

1_isloonWidget(widget)

Arguments

widget widget path as a string or as an object handle

Value

boolean, TRUE if the argument is a valid loon widget path, FALSE otherwise

I _layer

87

1_layer

Loon layers

Description

Loon supports layering of visuals and groups of visuals. The 1_layer function is a generic method.

Usage
1_layer(widget, x, ...)
Arguments
widget widget path as a string or as an object handle
X object that should be layered
additional arguments, often state definition for the basic layering function
Details

loon’s displays that use the main graphics model (i.e. histogram, scatterplot and graph displays)
support layering of visual information. The following table lists the layer types and functions for
layering on a display.

Type
group
polygon
text
line
rectangle
oval
points
texts
polygons
rectangles
lines

Description

a group can be a parent of other layers
one polygon

one text string

one line (i.e. connected line segments)
one rectangle

one oval

n points (filled) circle

n text strings

n polygons

n rectangles

n sets of connected line segments

Creator Function
1_layer_group
1_layer_polygon
1_layer_text
1_layer_line
1_layer_rectangle
1_layer_oval
1_layer_points
1_layer_text
1_layer_polygons
1_layer_rectangles
1_layer_lines

Every layer within a display has a unique id. The visuals of the data in a display present the default
layer of that display and has the layer id 'model’. For example, the 'model' layer of a scatterplot
display visualizes the scatterplot glyphs. Functions useful to query layers are

Function Description
1_layer_ids List layer ids
1_layer_getType Get layer type

Layers are arranged in a tree structure with the tree root having the layer id 'root'. The rendering

88 I _layer

order of the layers is according to a depth-first traversal of the layer tree. This tree also maintains a
label and a visibility flag for each layer. The layer tree, layer ids, layer labels and the visibility of
each layer are visualized in the layers inspector. If a layer is set to be invisible then it is not rendered
on the display. If a group layer is set to be invisible then all its children are not rendered; however,
the visibility flag of the children layers remain unchanged. Relevant functions are:

Function Description
1_layer_getParent Get parent layer id of a layer
1_layer_getChildren Get children of a group layer
1_layer_index Get the order index of a layer among its siblings
1_layer_printTree Print out the layer tree
1_layer_move Move a layer
1_layer_lower Switch the layer place with its sibling to the right
1_layer_raise Switch the layer place with its sibling to the left
1_layer_demote Moves the layer up to be a left sibling of its parent
1_layer_promote Moves the layer to be a child of its right group layer sibling
1_layer_hide Set the layers visibility flag to FALSE
1_layer_show Set the layers visibility flag to TRUE
1_layer_isVisible Return visibility flag of layer

1_layer_layerVisibility Returns logical value for whether layer is actually seen
1_layer_groupVisibility Returns all, part or none for expressing which part of the layers children are visible.

1_layer_delete Delete a layer. If the layer is a group move all its children layers to the layers parent.
1_layer_expunge Delete layer and all its children layer.

1_layer_getlLabel Get layer label.

1_layer_relabel Change layer label.

1_layer_bbox Get the bounding box of a layer.

All layers have states that can be queried and modified using the same functions as the ones used
for displays (i.e. 1_cget, 1_configure, *[* and [<-"). The last group of layer types in the above
table have n-dimensional states, where the actual value of n can be different for every layer in a
display.

The difference between the model layer and the other layers is that the model layer has a selected
state, responds to selection gestures and supports linking.

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_info_states, 1_scaleto_layer, 1_scaleto_world

Examples
1_layer is a generic method
newFoo <- function(x, y, ...) {
r <- list(x=x, y=y, ...)

class(r) <- 'foo'

[_layer.density 89

return(r)

3
1_layer.foo <- function(widget, x) {
x$widget <- widget
id <- do.call('l_layer_polygon', x)
return(id)
3
p <- 1_plot()
obj <- newFoo(x=c(1:6,6:2), y=c(3,1,0,0,1,3,3,5,6,6,5), color="yellow')
id <- 1_layer(p, obj)

1_scaleto_world(p)

1_layer.density Layer Method for Kernel Density Estimation

Description

Layer a line that represents a kernel density estimate.

Usage
S3 method for class 'density'
1_layer(widget, x, ...)
Arguments
widget widget path as a string or as an object handle
X object from density of class "density”

additional arguments, often state definition for the basic layering function

Value

layer object handle, layer id

See Also

density, 1_layer

Examples

d <- density(faithful$eruptions, bw = "sj")
h <- 1_hist(x = faithful$eruptions, yshows="density")
1 <- 1_layer.density(h, d, color="steelblue”, linewidth=3)

90

I _layer.Line

1_layer.Line Layer line in Line object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'Line'
1 _layer(widget, x, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the class sp

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio

and Virgilio http://www.springer.com/us/book/9781461476177

See Also

sp, 1_layer

Examples

library(sp)
library(rworldmap)

world <- getMap(resolution = "coarse")

p <- 1_plot()

lmap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)

http://www.springer.com/us/book/9781461476177

I _layer.Lines 91

1_layer.Lines Layer lines in Lines object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'Lines'
1_layer(widget, x, asSinglelLayer = TRUE, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the class sp

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References
Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio http://www.springer.com/us/book/9781461476177

See Also

sp, 1_layer

Examples

library(sp)
library(rworldmap)

world <- getMap(resolution = "coarse")

p <- 1_plot()

Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)

http://www.springer.com/us/book/9781461476177

92 [_layer.map

1_layer.map Add a Map of class map as Drawings to Loon plot

Description

The maps library provides some map data in polygon which can be added as drawings (currently
with polygons) to Loon plots. This function adds map objects with class map from the maps library
as background drawings.

Usage
S3 method for class 'map'
1_layer(widget, x, color = "", linecolor = "black",
linewidth = 1, label, parent = "root”, index = 0,
asSingleLayer = TRUE, ...)
Arguments
widget widget path as a string or as an object handle
X a map object of class map as defined in the maps R package
color fill color, if empty string "", then the fill is transparant
linecolor outline color
linewidth linewidth of outline
label label used in the layers inspector
parent parent widget path
index position among its siblings. valid values are 0, 1, 2, ..., ’end’

asSinglelLayer if TRUE then all the polygons get placed in a n-dimension layer of type polygons.
Otherwise, if FALSE, each polygon gets its own layer.

additional arguments are not used for this methiod

Value

If asSinglelLayer=TRUE then returns layer id of polygons layer, otherwise group layer that contains
polygon children layers.

Examples
library(maps)
canada <- map("world”, "Canada”, fill=TRUE, plot=FALSE)
p <- 1_plot()
1_map <- 1_layer(p, canada, asSinglelLayer=TRUE)
1_map['color'] <- ifelse(grepl("”lake”, canada$names, TRUE), "lightblue”, "")

1_scaleto_layer(p, 1l_map)
1_map['active'] <- FALSE
1_map['active'] <- TRUE
1_map['tag']

I layer.Polygon 93

1_layer.Polygon Layer polygon in Polygon object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'Polygon'
1 _layer(widget, x, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the class sp

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio http://www.springer.com/us/book/9781461476177

See Also

sp, 1_layer

Examples

library(sp)
library(rworldmap)

world <- getMap(resolution = "coarse")

p <- 1_plot()

lmap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)

http://www.springer.com/us/book/9781461476177

94 I layer.Polygons

1_layer.Polygons Layer polygons in Polygons object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'Polygons'
1_layer(widget, x, asSinglelLayer = TRUE, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the class sp

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References
Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio http://www.springer.com/us/book/9781461476177

See Also

sp, 1_layer

Examples

library(sp)
library(rworldmap)

world <- getMap(resolution = "coarse")

p <- 1_plot()

Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)

http://www.springer.com/us/book/9781461476177

I layer.SpatialLines 95

1_layer.SpatiallLines Layer lines in SpatialLines object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'SpatiallLines'
1_layer(widget, x, asSinglelLayer = TRUE, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the class sp

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References
Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio http://www.springer.com/us/book/9781461476177

See Also

sp, 1_layer

Examples

library(sp)
library(rworldmap)

world <- getMap(resolution = "coarse")

p <- 1_plot()

Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)

http://www.springer.com/us/book/9781461476177

96 I layer.SpatialLinesDataFrame

1_layer.SpatiallLinesDataFrame
Layer lines in SpatialLinesDataFrame object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'SpatiallLinesDataFrame'
1_layer(widget, x, asSinglelLayer = TRUE, ...)

Arguments
widget widget widget path as a string or as an object handle
X an object defined in the class sp

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio http://www.springer.com/us/book/9781461476177

See Also

sp, 1_layer

Examples

library(sp)
library(rworldmap)

world <- getMap(resolution = "coarse")

p <- 1_plot()

lmap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)

http://www.springer.com/us/book/9781461476177

I_layer.SpatialPoints 97

1_layer.SpatialPoints Layer points in SpatialPoints object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'SpatialPoints'
1_layer(widget, x, asMainLayer = FALSE, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the class sp
asMainLayer if TRUE and the widget is a scatterplot widget, then points can be chosen to be

added to the 'model’ layer

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio http://www. springer.com/us/book/9781461476177

See Also

sp, 1_layer

Examples

library(sp)
library(rworldmap)

world <- getMap(resolution = "coarse”)

p <- 1_plot()

Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)

http://www.springer.com/us/book/9781461476177

98 I_layer.SpatialPointsDataFrame

1_layer.SpatialPointsDataFrame
Layer points in SpatialPointsDataFrame object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'SpatialPointsDataFrame'
1_layer(widget, x, asMainLayer = FALSE, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the class sp
asMainLayer if TRUE and the widget is a scatterplot widget, then points can be chosen to be

added to the 'model’ layer

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References
Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio http://www.springer.com/us/book/9781461476177

See Also

sp, 1_layer

Examples

library(sp)
library(rworldmap)

world <- getMap(resolution = "coarse")

p <- 1_plot()

Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)

http://www.springer.com/us/book/9781461476177

I layer.SpatialPolygons 99

1_layer.SpatialPolygons
Layer polygons in SpatialPolygons object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'SpatialPolygons'
1_layer(widget, x, asSinglelLayer = TRUE, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the class sp

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio http://www.springer.com/us/book/9781461476177

See Also

sp, 1_layer

Examples

library(sp)
library(rworldmap)

world <- getMap(resolution = "coarse")

p <- 1_plot()

lmap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)

http://www.springer.com/us/book/9781461476177

100 I_layer.SpatialPolygonsDataFrame

1_layer.SpatialPolygonsDataFrame
Layer polygons in SpatialPolygonDataFrame

Description

Methods to plot map data defined in the sp package

Usage

S3 method for class 'SpatialPolygonsDataFrame'
1_layer(widget, x, asSinglelLayer = TRUE,

)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the class sp

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References
Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio http://www.springer.com/us/book/9781461476177

See Also

sp, 1_layer

Examples

library(sp)
library(rworldmap)

world <- getMap(resolution = "coarse")

p <- 1_plot()

Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)

http://www.springer.com/us/book/9781461476177

_layers_inspector 101

1_layers_inspector Create a Layers Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_layers_inspector(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

i <= 1_layers_inspector()

1_layer_bbox Get the bounding box of a layer.

Description
The bounding box of a layer returns the coordinates of the smallest rectangle that encloses all the
elements of the layer.

Usage

1_layer_bbox(widget, layer = "root")

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument

is not used

102 I_layer_contourLines

Value

Numeric vector of length 4 with (xmin, ymin, xmax, ymax) of the bounding box

Examples

p <- with(iris, 1_plot(Sepal.Length ~ Sepal.Width, color=Species))
1_layer_bbox(p, layer='model')

1 <- 1_layer_rectangle(p, x=0:1, y=30:31)
1_layer_bbox(p, 1)

1_layer_bbox(p, 'root')

1_layer_contourLines Layer Contour Lines

Description
This function is a wrapper around contourLines that adds the countourlines to a loon plot which
is based on the cartesian coordinate system.

Usage

1_layer_contourLines(widget, x = seq(@, 1, length.out = nrow(z)), y = seq(9,
1, length.out = ncol(z)), z, nlevels = 10, levels = pretty(range(z, na.rm
= TRUE), nlevels), asSingleLayer = TRUE, parent = "root"”, index = "end",

.2)
Arguments
widget widget path as a string or as an object handle
X locations of grid lines at which the values in z are measured. These must be in
ascending order. By default, equally spaced values from O to 1 are used. If x is
a list, its components x$x and x$y are used for x and y, respectively. If the list
has component z this is used for z.
y see description for the x argument
a matrix containing the values to be plotted (NAs are allowed). Note that x can
be used instead of z for convenience.
nlevels number of contour levels desired iff levels is not supplied.
levels numeric vector of levels at which to draw contour lines.

asSinglelLayer if TRUE a lines layer is used for the line, otherwise if FALSE a group with nested
line layers for each line is created

parent parent widget path
index position among its siblings. valid values are 0, 1, 2, ..., ’end’

argumnets forwarded to 1_layer_line

I _layer_delete 103

Details

For more information run: 1_help(”learn_R_layer.html#countourlines-heatimage-rasterimage")

Value

layer id of group or lines layer

Examples

p <- 1_plot()

x <= 10*1:nrow(volcano)

y <= 10*1:ncol(volcano)

lcl <- 1_layer_contourLines(p, x, y, volcano)
1_scaleto_world(p)

library(MASS)
pl <- with(iris, 1_plot(Sepal.Length~Sepal.Width, color=Species))
lcl <- with(iris, 1_layer_contourLines(p1, MASS::kde2d(Sepal.Width,Sepal.Length)))

p2 <- with(iris, 1_plot(Sepal.Length~Sepal.Width, color=Species))
layers <- sapply(split(cbind(iris, color=p2['color']), iris$Species), function(dat) {
kest <- with(dat, MASS::kde2d(Sepal.Width,Sepal.Length))
1_layer_contourLines(p2, kest, color=as.character(dat$color[1]), linewidth=2,
label=paste@(as.character(dat$Species[1]), " contours”))
»

1_layer_delete Delete a layer

Description
All but the 'model’ and the 'root' layer can be dynamically deleted. If a group layer gets deleted
with 1_layer_delete then all its children layers get moved into their grandparent group layer.
Usage
1_layer_delete(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

0 if success otherwise the function throws an error

104 I _layer_demote

See Also

1_layer,1_info_states

Examples

p <- 1_plot()
11 <- 1_layer_rectangle(p, x
1_layer_delete(11)

0:1, y = 0:1, color="red")

12 <- 1_layer_rectangle(p, x = 0:1, y = 0:1, color="yellow')
1_layer_delete(p,12)

1_layer_demote Moves the layer to be a child of its right group layer sibling

Description
Moves the layer up the layer tree (away from the root layer) if there is a sibling group layer to the
right of the layer.

Usage

1_layer_demote(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

0 if success otherwise the function throws an error

Examples

p <- 1_plot()

gl <- 1_layer_group(p)
g2 <- 1_layer_group(p, parent=gl)
11 <- 1_layer_oval(p, x=0:1, y=0:1)

1_layer_printTree(p)
1_layer_demote(p, 11)
1_layer_printTree(p)
1_layer_demote(p, 11)
1_layer_printTree(p)

I _layer_expunge 105

1_layer_expunge Delete a layer and all its descendants

Description

Delete a group layer and all it’s descendants. Note that the 'model’' layer cannot be deleted.

Usage

1_layer_expunge(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

0 if success otherwise the function throws an error

See Also

1_layer,1_layer_delete

Examples

p <- 1_plot()

g <- 1_layer_group(p)

11 <- 1_layer_rectangle(p, x=0:1, y=0:1, parent=g, color="", linecolor="orange", linewidth=2)
12 <- 1_layer_line(p, x=c(@,.5,1), y=c(0,1,0), parent=g, color="blue")

nn

1_layer_expunge(p, g)

or 1_layer_expunge(g)

1_layer_getChildren Get children of a group layer

Description

Returns the ids of a group layer’s children.

Usage

1_layer_getChildren(widget, layer = "root")

106 I _layer_getLabel

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

Character vector with ids of the childrens. To create layer handles (i.e. objects of class '1_layer')
use the 1_create_handle function.

See Also
1_layer,1_layer_getParent
Examples
p <- 1_plot()
g <- 1_layer_group(p)
11 <- 1_layer_rectangle(p, x=0:1, y=0:1, parent=g)

12 <- 1_layer_oval(p, x=0:1, y=0:1, color="thistle', parent=g)

1_layer_getChildren(p, g)

1_layer_getlLabel Get layer label.

Description

Layer labels are useful to identify layer in the layer inspector. The layer label can be initially set at
layer creation with the label argument.

Usage
1_layer_getlLabel (widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

Note that the layer label is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).

I _layer_getParent 107

Value

Named vector of length 1 with layer label as value and layer id as name.

See Also

1_layer,1_layer_relabel

Examples

p <- 1_plot()

11 <- 1_layer_rectangle(p, x=0:1, y=0:1, label="a rectangle”)
1_layer_getLabel(p, 'model')

1_layer_getLabel(p, 11)

1_layer_getParent Get parent layer id of a layer

Description

The toplevel parent is the 'root' layer.

Usage

1_layer_getParent(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer"' then the layer argument
is not used
See Also

1_layer,1_layer_getChildren

Examples

p <- with(iris, 1_plot(Sepal.Length ~ Sepal.Width, color=Species))

1_layer_getParent(p, 'model')

108 I _layer_getType

1_layer_getType Get layer type

Description

To see the manual page of 1_layer for all the primitive layer types.

Usage

1_layer_getType(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

For more information run: 1_help("learn_R_layer")

Value

One of: 'group', 'polygon', 'text', 'line', 'rectangle’, 'oval', 'points’', 'texts', 'polygons’,
'rectangles’, 'lines' and 'scatterplot’', 'histogram', 'serialaxes' and 'graph'.

See Also

1_layer

Examples

p <- 1_plot()

1 <- 1_layer_rectangle(p, x=0:1, y=0:1)
1_layer_getType(p, 1)
1_layer_getType(p, 'model')

I layer group 109

1_layer_group layer a group node

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

A group layer can contain other layers. If the group layer is invisible, then so are all its children.

Usage

1_layer_group(widget, label = "group”, parent = "root”, index = @)

Arguments

widget widget path name as a string

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group
Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

p <- 1_plot(x=c(1,10,1.5,7,4.3,9,5,2,8),
y=c(1,10,7,3,4,3.3,8,3,4),
title="Demo Layers")

id.g <- 1_layer_group(p, "A Layer Group")

id.pts <- 1_layer_points(p, x=c(3,6), y=c(4,7), color="red"”, parent=id.g)
1_scaleto_layer(p, id.pts)

1_configure(id.pts, x=c(-5,5,12), y=c(-2,-5,18), color="lightgray")

110 I_layer_group Visibility

1_layer_groupVisibility
Queries visibility status of decendants

Description

Query whether all, part or none of the group layers descendants are visible.

Usage

1_layer_groupVisibility(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

Visibile layers are rendered, invisible ones are not. If any ancestor of a layer is set to be invisible then
the layer is not rendered either. The layer visibility flag can be checked with 1_layer_isVisible
and the actual visibility (i.e. are all the ancesters visibile too) can be checked with 1_layer_layerVisibility.

Note that layer visibility is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).
Value

"all', 'part' or 'none' depending on the visibility status of the descendants.

See Also

1_layer,1_layer_show, 1_layer_hide, 1_layer_isVisible, 1_layer_layerVisibility

Examples

p <- 1_plot()

g <- 1_layer_group(p)
11 <- 1_layer_rectangle(p, x=0:1, y=0:1, parent=g)
12 <- 1_layer_oval(p, x=0:1, y=0:1, parent=g)

1_layer_groupVisibility(p, g)
1_layer_hide(p, 12)
1_layer_groupVisibility(p, g)
1_layer_hide(p, 11)
1_layer_groupVisibility(p, g)

I _layer_heatImage 111

1_layer_hide(p, g)
1_layer_groupVisibility(p, g)

1_layer_heatImage Display a Heat Image

Description

This function is very similar to the image function. It works with every loon plot which is based on
the cartesian coordinate system.

Usage

1_

layer_heatImage(widget, x = seq(@, 1, length.out = nrow(z)), y = seq(o, 1,
length.out = ncol(z)), z, zlim = range(z[is.finite(z)]1), xlim = range(x),
ylim = range(y), col = grDevices::heat.colors(12), breaks,

oldstyle = FALSE, useRaster, index = "end"”, parent = "root"”, ...)
Arguments

widget widget path as a string or as an object handle

X locations of grid lines at which the values in z are measured. These must be
finite, non-missing and in (strictly) ascending order. By default, equally spaced
values from 0 to 1 are used. If x is a list, its components x$x and x$y are used
for x and y, respectively. If the list has component z this is used for z.

y see description for the x argument above
a numeric or logical matrix containing the values to be plotted (NAs are allowed).
Note that x can be used instead of z for convenience.

zlim the minimum and maximum z values for which colors should be plotted, de-
faulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted.

x1lim range for the plotted x values, defaulting to the range of x

ylim range for the plotted y values, defaulting to the range of y

col a list of colors such as that generated by rainbow, heat.colors, topo.colors,
terrain.colors or similar functions.

breaks a set of finite numeric breakpoints for the colours: must have one more break-
point than colour and be in increasing order. Unsorted vectors will be sorted,
with a warning.

oldstyle logical. If true the midpoints of the colour intervals are equally spaced, and
z1im[1] and z1im[2] were taken to be midpoints. The default is to have colour
intervals of equal lengths between the limits.

useRaster logical; if TRUE a bitmap raster is used to plot the image instead of polygons. The

grid must be regular in that case, otherwise an error is raised. For the behaviour
when this is not specified, see ‘Details’.

112 I _layer_hide

index position among its siblings. valid values are 0, 1, 2, ..., ’end’
parent parent widget path
argumnets forwarded to 1_layer_line

Details

For more information run: 1_help(”learn_R_layer.html#countourlines-heatimage-rasterimage")

Value

layer id of group or rectangles layer

Examples

library(MASS)

kest <- with(iris, MASS::kde2d(Sepal.Width,Sepal.Length))
image (kest)

contour(kest, add=TRUE)

p <- 1_plot()

lcl <- 1_layer_contourLines(p, kest, label='contour lines')
limg <- 1_layer_heatImage(p, kest, label='heatmap')
1_scaleto_world(p)

from examples(image)

X <=y <- seq(-4*xpi, 4*pi, len = 27)

r <- sqgrt(outer(x*2, y*2, "+"))

pl <- 1_plot()

1_layer_heatImage(pl, z = z <- cos(r*2)*exp(-r/6), col = gray((0:32)/32))
1_scaleto_world(p1)

image(z = z <- cos(r*2)*exp(-r/6), col = gray((0:32)/32))

1_layer_hide Hide a Layer

Description
A hidden layer is not rendered. If a group layer is set to be hidden then all its descendants are not
rendered either.

Usage
1_layer_hide(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument

is not used

[layer_ids 113

Details

Visibile layers are rendered, invisible ones are not. If any ancestor of a layer is set to be invisible then
the layer is not rendered either. The layer visibility flag can be checked with 1_layer_isVisible

and the actual visibility (i.e. are all the ancesters visibile too) can be checked with 1_layer_layerVisibility.

Note that layer visibility is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).

Value

0 if success otherwise the function throws an error

See Also

1_layer,1_layer_show, 1_layer_isVisible, 1_layer_layerVisibility, 1_layer_groupVisibility

Examples

p <- 1_plot()

1 <- 1_layer_rectangle(p, x=0:1, y=0:1, color="steelblue")
1_layer_hide(p, 1)

1_layer_ids List ids of layers in Plot

Description
Every layer within a display has a unique id. This function returns a list of all the layer ids for a
widget.

Usage

1_layer_ids(widget)

Arguments

widget widget path as a string or as an object handle

Details

For more information run: 1_help("learn_R_layer.html#add-move-delete-layers")

Value

vector with layer ids in rendering order. To create a layer handle object use 1_create_handle.

114 I _layer_index

See Also

1_layer,1_info_states

Examples

set.seed(500)

X <- rnorm(30)

y <= 4 + 3*x + rnorm(30)

fit <= 1Im(y~x)

xseq <- seq(min(x)-1, max(x)+1, length.out = 50)

fit_line <- predict(fit, data.frame(x=range(xseq)))

ci <- predict(fit, data.frame(x=xseq),
interval="confidence"”, level=0.95)

pi <- predict(fit, data.frame(x=xseq),
interval="prediction”, level=0.95)

p <- 1_plot(y~x, color='black', showScales=TRUE, showGuides=TRUE)
glayer <- 1_layer_group(
p, label="simple linear regression”,
parent="root"”, index="end"
)
fitLayer <- 1_layer_line(
p, x=range(xseq), y=fit_line, color="#04327F",
linewidth=4, label="fit", parent=glLayer

)

cilLayer <- 1_layer_polygon(
P,
x = c(xseq, rev(xseq)),
y = c(cil, 'lwr'], rev(cil, 'upr'l)),
color = "#96BDFF", linecolor="",
label = "95 % confidence interval”,
parent = glLayer, index='end'

)

piLayer <- 1_layer_polygon(
P,
x = c(xseq, rev(xseq)),
y = c(pil, 'Iwr'], rev(pil, 'upr'l)),
color = "#E2EDFF", linecolor="",
label = "95 % prediction interval”,
parent = glayer, index='end'

)

1_info_states(piLayer)

1_layer_index Get the order index of a layer among its siblings

I layer_isVisible 115

Description

The index determines the rendering order of the children layers of a parent. The layer with index=0
is rendered first.

Usage

1_layer_index(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

Note that the index for layers is 0 based.

Value

numeric value

See Also

1_layer,1_layer_move

1_layer_isVisible Return visibility flag of layer

Description

Hidden or invisible layers are not rendered. This function queries whether a layer is visible/rendered
or not.

Usage

1_layer_isVisible(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument

is not used

116 I layer_layerVisibility

Details

Visibile layers are rendered, invisible ones are not. If any ancestor of a layer is set to be invisible then
the layer is not rendered either. The layer visibility flag can be checked with 1_layer_isVisible
and the actual visibility (i.e. are all the ancesters visibile too) can be checked with 1_layer_layerVisibility.

Note that layer visibility is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).
Value

TRUE or FALSE depending whether the layer is visible or not.

See Also

1_layer,1_layer_show, 1_layer_hide, 1_layer_layerVisibility, 1_layer_groupVisibility

Examples

p <- 1_plot()

1 <- 1_layer_rectangle(p, x=0:1, y=0:1)
1_layer_isVisible(p, 1)
1_layer_hide(p, 1)
1_layer_isVisible(p, 1)

1_layer_layerVisibility
Returns logical value for whether layer is actually seen

Description

Although the visibility flag for a layer might be set to TRUE it won’t be rendered as on of its ancestor
group layer is set to be invisible. The 1_layer_visibility returns TRUE if the layer and all its
ancestor layers have their visibility flag set to true and the layer is actually rendered.

Usage

1_layer_layerVisibility(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument

is not used

[layer_line 117

Details

Visibile layers are rendered, invisible ones are not. If any ancestor of a layer is set to be invisible then
the layer is not rendered either. The layer visibility flag can be checked with 1_layer_isVisible
and the actual visibility (i.e. are all the ancesters visibile too) can be checked with 1_layer_layerVisibility.

Note that layer visibility is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).

Value

TRUE if the layer and all its ancestor layers have their visibility flag set to true and the layer is
actually rendered, otherwise FALSE.

See Also

1_layer,1_layer_show, 1_layer_hide, 1_layer_isVisible, 1_layer_groupVisibility

1_layer_line Layer a line

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage
1 _layer_line(widget, x, y = NULL, color = "black”, linewidth = 1,
dash = "", label = "line", parent = "root”, index = 0, ...)
Arguments
widget widget path name as a string
X the coordinates of line. Alternatively, a single plotting structure, function or
any R object with a plot method can be provided as x and y are passed on to
Xy .coords
y the y coordinates of the line, optional if X is an appropriate structure.
color color of line
linewidth linewidth of outline
dash dash pattern of line, see https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.
htm#M26
label label used in the layers inspector
parent group layer
index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M26
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M26

118 I _layer_lines

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

p <- 1_plot()
1 <- 1_layer_line(p, x=c(1,2,3,4), y=c(1,3,2,4), color="red', linewidth=2)
1_scaleto_world(p)

object

p <- 1_plot()

1 <- 1_layer_line(p, x=nhtemp)
1_scaleto_layer(l)

1_layer_lines Layer a lines

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage

1_layer_lines(widget, x, y, color = "black”, linewidth = 1,

label = "lines"”, parent = "root"”, index = 0, ...)

Arguments

widget widget path name as a string

X list with vectors with x coordinates

y list with vectors with y coordinates

color color of lines

linewidth vector with line widths

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

I _layer_lower 119

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

s <- Filter(function(df)nrow(df) > 1, split(UsAndThem, UsAndThem$Country))
sUaT <- Map(function(country){country[order(country$Year),]} , s)

xcoords <- Map(function(x)x$Year, sUaT)

ycoords <- Map(function(x)x$LifeExpectancy, sUaT)

region <- sapply(sUaT, function(x)as.character(x$Geographic.Region[1]))

p <- 1_plot(showItemLabels=TRUE)
1 <- 1_layer_lines(p, xcoords, ycoords, itemLabel=names(sUaT), color=region)
1_scaleto_layer(1l)

1_layer_lower Switch the layer place with its sibling to the right

Description

Change the layers position within its parent layer group by increasing the index of the layer by one
if possible. This means that the raised layer will be rendered before (or on below) of its sibling layer
to the right.

Usage

1_layer_lower(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

0 if success otherwise the function throws an error

See Also

1_layer,1_layer_raise, 1_layer_move

120 I_layer_move

Examples

p <- 1_plot()

11 <- 1_layer_rectangle(p, x=0:1, y=0:1)
12 <- 1_layer_oval(p, x=0:1, y=0:1, color="thistle')

1_aspect(p) <- 1

1_layer_lower(p, 12)

1_layer_move Move a layer

Description

The postition of a layer in the layer tree determines the rendering order. That is, the non-group
layers are rendered in order of a Depth-first traversal of the layer tree. The toplevel group layer is
called 'root'.

Usage
1_layer_move(widget, layer, parent, index = "@")
Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
parent if parent layer is not specified it is set to the current parent layer of the layer
index position among its siblings. valid values are 0, 1, 2, ..., ’end’
Value

0 if success otherwise the function throws an error

See Also
1_layer,1_layer_printTree, 1_layer_index
Examples
p <- 1_plot()
1 <- 1_layer_rectangle(p, x=0:1, y=0:1, color="steelblue")
g <- 1_layer_group(p)

1_layer_printTree(p)

1_layer_move(l, parent=g)

I _layer_oval 121

1_layer_printTree(p)

1_layer_move(p, 'model', parent=g)
1_layer_printTree(p)

1_layer_oval Layer a oval

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage

1_layer_oval(widget, x, y, color = "gray8@", linecolor = "black"”,

linewidth = 1, label = "oval"”, parent = "root”, index = 0, ...)

Arguments

widget widget path name as a string

X x coordinates

y y coordinates

color fill color, if empty string "", then the fill is transparant

linecolor outline color

linewidth linewidth of outline

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

p <- 1_plot()
1 <- 1_layer_oval(p, c(1,5), c(2,12), color="'steelblue')
1_configure(p, panX=0, panY=0, deltaX=20, deltaY=20)

122 [_layer_points

1_layer_points Layer a points

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Scatter points layer

Usage
1_layer_points(widget, x, y = NULL, color = "gray60", size = 6,
label = "points"”, parent = "root”, index = 0, ...)
Arguments
widget widget path name as a string
X the coordinates of line. Alternatively, a single plotting structure, function or
any R object with a plot method can be provided as x and y are passed on to
Xy .coords
y the y coordinates of the line, optional if x is an appropriate structure.
color color of points
size size point, as for scatterplot model layer
label label used in the layers inspector
parent group layer
index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

I _layer_polygon 123

1_layer_polygon Layer a polygon

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage

1_layer_polygon(widget, x, y, color = "gray8@", linecolor = "black",

linewidth = 1, label = "polygon”, parent = "root”, index = @, ...)

Arguments

widget widget path name as a string

X x coordinates

y y coordinates

color fill color, if empty string "", then the fill is transparant

linecolor outline color

linewidth linewidth of outline

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

124 I_layer_polygons

Examples

set.seed(500)

x <= rnorm(30)

y <= 4 + 3%*x + rnorm(30)

fit <= Im(y~x)

xseq <- seq(min(x)-1, max(x)+1, length.out = 50)

fit_line <- predict(fit, data.frame(x=range(xseq)))

ci <- predict(fit, data.frame(x=xseq),
interval="confidence"”, level=0.95)

pi <- predict(fit, data.frame(x=xseq),
interval="prediction”, level=0.95)

p <- 1_plot(y~x, color='black', showScales=TRUE, showGuides=TRUE)
glayer <- 1_layer_group(
p, label="simple linear regression”,
parent="root", index="end"
)
fitLayer <- 1_layer_line(
p, x=range(xseq), y=fit_line, color="#04327F",
linewidth=4, label="fit", parent=gLayer

)

cilayer <- 1_layer_polygon(
P,
x = c(xseq, rev(xseq)),
y = c(cil, 'lwr'], rev(cil, 'upr'l)),
color = "#96BDFF", linecolor="",
label = "95 % confidence interval”,
parent = glayer, index='end'

)

piLayer <- 1_layer_polygon(
p,
x = c(xseq, rev(xseq)),
y = c(pil, 'Iwr'], rev(pil, 'upr'l)),
color = "#E2EDFF", linecolor="",
label = "95 % prediction interval”,
parent = glLayer, index='end'

)

1_info_states(piLayer)

1_layer_polygons Layer a polygons

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

I _layer_polygons 125

Usage

1_layer_polygons(widget, x, y, color = "gray80", linecolor = "black”,

linewidth = 1, label = "polygons”, parent = "root"”, index = 0, ...)

Arguments

widget widget path name as a string

X list with vectors with X coordinates

y list with vectors with y coordinates

color vector with fill colors, if empty string "", then the fill is transparant

linecolor vector with outline colors

linewidth vector with line widths

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

p <- 1_plot()

1 <- 1_layer_polygons(
pY
x = list(c(1,2,1.5), c(3,4,6,5,2), c(1,3,5,3)),
y = list(c(1,1,2), c(1,1.5,1,4,2), ¢(3,5,6,4)),
color = c('red', 'green', 'blue'),
linecolor = ""

)
1_scaleto_world(p)

1_info_states(l, "color")

126 I _layer_promote

1_layer_printTree Print the layer tree

Description
Prints the layer tree (i.e. the layer ids) to the prompt. Group layers are prefixed with a '+'. The
"root' layer is not listed.

Usage

1_layer_printTree(widget)

Arguments

widget widget path as a string or as an object handle

Value

empty string

See Also

1_layer,1_layer_getChildren, 1_layer_getParent

Examples

p <- 1_plot()
1_layer_rectangle(p, x=0:1, y=0:1)
g <- 1_layer_group(p)

1_layer_oval(p, x=0:1, y=0:1, parent=g)
1_layer_line(p, x=0:1, y=0:1, parent=g)
1_layer_printTree(p)
1_layer_promote Moves the layer up to be a left sibling of its parent

Description

Moves the layer down the layer tree (towards the root layer) if the parent layer is not the root layer.

Usage

1_layer_promote(widget, layer)

[layer_raise 127

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

0 if success otherwise the function throws an error

Examples

p <- 1_plot()

gl <- 1_layer_group(p)
g2 <- 1_layer_group(p, parent=gl)
11 <- 1_layer_oval(p, x=0:1, y=0:1, parent=g2)

1_layer_printTree(p)
1_layer_promote(p, 11)
1_layer_printTree(p)
1_layer_promote(p, 11)
1_layer_printTree(p)

1_layer_raise Switch the layer place with its sibling to the left

Description

Change the layers position within its parent layer group by decreasing the index of the layer by one
if possible. This means that the raised layer will be rendered after (or on top) of its sibling layer to
the left.

Usage

1_layer_raise(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

0 if success otherwise the function throws an error

128 I layer_rasterImage

See Also

1_layer,1_layer_lower, 1_layer_move

Examples

p <- 1_plot()

11 <- 1_layer_rectangle(p, x=0:1, y=0:1)
12 <- 1_layer_oval(p, x=0:1, y=0:1, color="thistle')

1_aspect(p) <- 1

1_layer_raise(p, 11)

1_layer_rasterImage Layer a Raster Image

Description

This function is very similar to the rasterImage function. It works with every loon plot which is
based on the cartesian coordinate system.

Usage
1_layer_rasterImage(widget, image, xleft, ybottom, xright, ytop, angle = 0,
interpolate = FALSE, parent = "root”, index = "end”, ...)
Arguments
widget widget path as a string or as an object handle
image a raster object, or an object that can be coerced to one by as.raster.
xleft a vector (or scalar) of left x positions.
ybottom a vector (or scalar) of bottom y positions.
xright a vector (or scalar) of right x positions.
ytop a vector (or scalar) of top y positions.
angle angle of rotation (in degrees, anti-clockwise from positive x-axis, about the

bottom-left corner).

interpolate a logical vector (or scalar) indicating whether to apply linear interpolation to the
image when drawing.

parent parent widget path
index position among its siblings. valid values are 0, 1, 2, ..., ’end’

argumnets forwarded to 1_layer_line

I _layer_rectangle 129

Details

For more information run: 1_help(”learn_R_layer.html#countourlines-heatimage-rasterimage")

Value

layer id of group or rectangles layer

Examples

plot(1,1, xlim = c(0,1), ylim=c(0,1))
mat <- matrix(c(0,90,0,0, 1,1), ncol=2)
rasterImage(mat, 0,0,1,1, interpolate = FALSE)

p <- 1_plot()
1_layer_rasterImage(p, mat, 0,0,1,1)
1_scaleto_world(p)

from examples(rasterImage)

set up the plot region:
op <- par(bg = "thistle")
plot(c(100, 250), c(300, 450), type = "n", xlab = "", ylab = "")
image <- as.raster(matrix(@:1, ncol = 5, nrow = 3))
rasterImage(image, 100, 300, 150, 350, interpolate = FALSE)
rasterImage(image, 100, 400, 150, 450)
rasterImage(image, 200, 300, 200 + 10, 300 + 10,

interpolate = FALSE)

p <- 1_plot(showScales=TRUE, background="thistle"”, uselLoonInspector=FALSE)
1_layer_rasterImage(p, image, 100, 300, 150, 350, interpolate = FALSE)
1_layer_rasterImage(p, image, 100, 400, 150, 450)
1_layer_rasterImage(p, image, 200, 300, 200 + 10, 300 + 10,

interpolate = FALSE)
1_scaleto_world(p)

1_layer_rectangle Layer a rectangle

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage

1_layer_rectangle(widget, x, y, color = "gray80", linecolor = "black"”,
linewidth = 1, label = "rectangle"”, parent = "root”, index = 0, ...)

130 I_layer_rectangles

Arguments

widget widget path name as a string

X x coordinates

y y coordinates

color fill color, if empty string "", then the fill is transparant

linecolor outline color

linewidth linewidth of outline

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

p <- 1_plot()
1 <- 1_layer_rectangle(p, x=c(2,3), y=c(1,10), color='steelblue')
1_scaleto_layer(l)

1_layer_rectangles Layer a rectangles

Description
Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage

1_layer_rectangles(widget, x, y, color = "gray8@", linecolor = "black”,
linewidth = 1, label = "rectangles”, parent = "root"”, index = 0, ...)

I _layer_rectangles 131

Arguments

widget widget path name as a string

X list with vectors with x coordinates

y list with vectors with y coordinates

color vector with fill colors, if empty string "", then the fill is transparant

linecolor vector with outline colors

linewidth vector with line widths

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

p <- 1_plot()

1 <- 1_layer_rectangles(
P,
x = list(c(0,1), c(1,2), c(2,3), c(5,6)),
y = list(c(0,1), c(1,2), c(0,1), c(3,4)),
color = c('red', 'blue', 'green', 'orange'),
linecolor = "black”

)

1_scaleto_world(p)

1_info_states(1l)

132 I _layer_relabel

1_layer_relabel Change layer label

Description

Layer labels are useful to identify layer in the layer inspector. The layer label can be initially set at
layer creation with the label argument.

Usage

1_layer_relabel(widget, layer, label)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer"' then the layer argument
is not used
label new label of layer
Details

Note that the layer label is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).
Value

0 if success otherwise the function throws an error

See Also

1_layer,1_layer_getlabel

Examples

p <- 1_plot()

1 <- 1_layer_rectangle(p, x=0:1, y=0:1, label="A rectangle")
1_layer_getLabel(p, 1)

1_layer_relabel(p, 1, label="A relabelled rectangle”)
1_layer_getlLabel(p, 1)

I _layer_show 133

1_layer_show Show or unhide a Layer

Description

Hidden or invisible layers are not rendered. This function unhides invisible layer so that they are
rendered again.

Usage

1_layer_show(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

Visibile layers are rendered, invisible ones are not. If any ancestor of a layer is set to be invisible then
the layer is not rendered either. The layer visibility flag can be checked with 1_layer_isVisible
and the actual visibility (i.e. are all the ancesters visibile too) can be checked with 1_layer_layerVisibility.

Note that layer visibility is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).

Value

0 if success otherwise the function throws an error

See Also

1_layer,1_layer_hide,1_layer_isVisible,1_layer_layerVisibility, 1_layer_groupVisibility

Examples

p <- 1_plot()

1 <- 1_layer_rectangle(p, x=0:1, y=0:1, color="steelblue")
1_layer_hide(p, 1)

1_layer_show(p, 1)

134 I _layer_text

1_layer_text Layer a text

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

layer a single character string

Usage

1_layer_text(widget, x, y, text, color = "gray60"”, size = 6, angle = 0,

label = "text"”, parent = "root"”, index = 0, ...)

Arguments

widget widget path name as a string

X coordinate

y coordinate

text character string

color color of text

size size of the font

angle rotation of text

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

Details

As a side effect of Tcl’s text-based design, it is best to use 1_layer_text if one would like to layer
a single character string (and not 1_layer_texts with n=1).

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples
p <- 1_plot()
1 <- 1_layer_text(p, 0, @, "Hello World")

I _layer_texts 135

1_layer_texts Layer a texts

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage
1_layer_texts(widget, x, y, text, color = "gray60", size = 6, angle = 0,
label = "texts"”, parent = "root"”, index = 0, ...)
Arguments
widget widget path name as a string
X the coordinates of line. Alternatively, a single plotting structure, function or
any R object with a plot method can be provided as x and y are passed on to
Xy .coords
y the y coordinates of the line, optional if x is an appropriate structure.
text vector with text strings
color color of line
size font size
angle text rotation
label label used in the layers inspector
parent group layer
index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

p <- 1_plot()
1 <- 1_layer_texts(p, x=1:3, y=3:1, text=c("This is"”, "a", "test"), size=20)
1_scaleto_world(p)

136 1_move_grid

1_loon_inspector Create a loon linspector

Description

The loon inspector is a singleton widget that provids an overview to view and modify the active
plot.

Usage
1_loon_inspector(parent = NULL, ...)
Arguments
parent parent widget path
state arguments, see 1_info_states.
Details

For more information run: 1_help("learn_R_display_inspectors”)

Value

widget handle

Examples

i <= 1_loon_inspector()

1_move_grid Arrange Points or Nodes on a Grid

Description
Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage

1_move_grid(widget, which = "selected")

Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected’', 'active', 'all', or a boolean vector with a value

for each point.

1_move_halign 137

Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either @ or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in x or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shift keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist, 1_move_hdist,1_move_grid, 1_move_jitter,
1_move_reset

1_move_halign Horizontally Align Points or Nodes

Description
Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage

1_move_halign(widget, which = "selected")

Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all', or a boolean vector with a value

for each point.

138 1_move_hdist

Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either @ or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in x or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shift keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist, 1_move_hdist,1_move_grid, 1_move_jitter,
1_move_reset

1_move_hdist Horizontally Distribute Points or Nodes

Description
Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage

1_move_hdist(widget, which = "selected")

Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all', or a boolean vector with a value

for each point.

1_move_jitter 139

Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either @ or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in X or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shift keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign, 1_move_halign, 1_move_vdist,1_move_hdist, 1_move_grid, 1_move_jitter,
1_move_reset

1_move_jitter Jitter Points Or Nodes

Description

Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage
1_move_jitter(widget, which = "selected”, factor = 1, amount = "")
Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all', or a boolean vector with a value
for each point.
factor numeric.
amount numeric; if positive, used as amount (see below), otherwise, if = @ the default is

factor x z/50.

Default (NULL): factor * d/5 where d is about the smallest difference between
x values.

140 1 move_reset

Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either @ or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in x or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shift keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist, 1_move_hdist,1_move_grid, 1_move_jitter,
1_move_reset

1_move_reset Reset Temporary Point or Node Locations to the x and y states

Description

Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage
1_move_reset(widget, which = "selected")
Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all', or a boolean vector with a value

for each point.

I_move_valign 141

Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either @ or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in x or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shift keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist, 1_move_hdist,1_move_grid, 1_move_jitter,
1_move_reset

1_move_valign Vertically Align Points or Nodes

Description

Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage
1_move_valign(widget, which = "selected")
Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all', or a boolean vector with a value

for each point.

142 1_move_vdist

Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either @ or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in x or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shift keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist, 1_move_hdist,1_move_grid, 1_move_jitter,
1_move_reset

1_move_vdist Vertically Distribute Points or Nodes

Description

Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage
1_move_vdist(widget, which = "selected")
Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all', or a boolean vector with a value

for each point.

1_navgraph 143

Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either @ or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in X or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shift keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist,1_move_hdist, 1_move_grid, 1_move_jitter,
1_move_reset

1_navgraph Explore a dataset with the canonical 2d navigation graph setting

Description

Creates a navigation graph, a graphswitch, a navigator and a geodesic2d context added, and a scat-

terplot.
Usage
1_navgraph(data, separator = ":", graph = NULL, ...)
Arguments
data a data.frame with numeric variables only
separator string the separates variable names in 2d graph nodes
graph optional, graph or loongraph object with navigation graph. If the graph argument
is not used then a 3d and 4d transition graph and a complete transition graph is
added.
arguments passed on to modify the scatterplot plot states
Details

For more information run: 1_help("learn_R_display_graph.html#1_navgraph")

144 I_navigator_add

Value
named list with graph handle, plot, handle, graphswitch handle, navigator handle, and context
handle.

Examples

ng <- 1l_navgraph(oliveAcids, color=olive$Area)
ng2 <- 1l_navgraph(oliveAcids, separator='-', color=olive$Area)

1_navigator_add Add a Navigator to a Graph

Description

To turn a graph into a navigation graph you need to add one or more navigators. Navigator have
their own set of states that can be queried and modified.

Usage
1_navigator_add(widget, from = "", to = "", proportion = 0,
color = "orange", ...)
Arguments
widget graph widget
from The position of the navigator on the graph is defined by the states from, to and

proportion. The states from and to hold vectors of node names of the graph.
The proportion state is a number between and including @ and 1 and defines
how far the navigator is between the last element of from and the first element
of to. The to state can also be an empty string ' ' if there is no further node to
go to. Hence, the concatenation of from and to define a path on the graph.

to see descriptoin above for from
proportion see descriptoin above for from
color of navigator

named arguments passed on to modify navigator states

Details

For more information run: 1_help("learn_R_display_graph.html#navigators")

Value

navigator handle with navigator id

See Also

1_navigator_delete, 1_navigator_ids, 1_navigator_walk_path, 1_navigator_walk_forward,
1_navigator_walk_backward, 1_navigator_relabel, 1_navigator_getlLabel

I_navigator_delete

145

1_navigator_delete Delete a Navigator

Description

Removes a navigator from a graph widget

Usage

1_navigator_delete(widget, id)

Arguments

widget graph widget

id navigator handle or navigator id
See Also

1_navigator_add

1_navigator_getLabel Query the Label of a Navigator

Description

Returns the label of a navigator

Usage

1_navigator_getLabel(widget, id)

Arguments
widget graph widget handle
id navigator id

See Also

1_navigator_add

146

I_navigator._relabel

1_navigator_ids List Navigators

Description

Lists all navigatora that belong to a graph

Usage

1_navigator_ids(widget)

Arguments

widget graph widget

See Also

1_navigator_add

1_navigator_relabel Modify the Label of a Navigator

Description

Change the navigator label

Usage

1_navigator_relabel (widget, id, label)

Arguments
widget graph widget handle
id navigator id
label new label of navigator
See Also

1_navigator_add

I_navigator_walk_backward 147

1_navigator_walk_backward
Have the Navigator Walk Backward on the Current Path

Description

Animate a navigator by having it walk on a path on the graph

Usage
1_navigator_walk_backward(navigator, to = "")
Arguments
navigator navigator handle
to node name that is part of the active path backward where the navigator should
stop.
Details

Note that navigators have the states animationPause and animationProportionIncrement to
control the animation speed. Further, you can stop the animation when clicking somewhere on the
graph display or by using the mouse scroll wheel.

See Also

1_navigator_add

1_navigator_walk_forward
Have the Navigator Walk Forward on the Current Path

Description

Animate a navigator by having it walk on a path on the graph

Usage
1_navigator_walk_forward(navigator, to = "")
Arguments
navigator navigator handle
to node name that is part of the active path forward where the navigator should

stop.

148 1 _nestedTclList2Rlist

Details

Note that navigators have the states animationPause and animationProportionIncrement to
control the animation speed. Further, you can stop the animation when clicking somewhere on the
graph display or by using the mouse scroll wheel.

See Also

1_navigator_add

1_navigator_walk_path Have the Navigator Walk a Path on the Graph

Description

Animate a navigator by having it walk on a path on the graph

Usage

1_navigator_walk_path(navigator, path)

Arguments

navigator navigator handle

path vector with node names of the host graph that form a valid path on that graph
See Also

1_navigator_add

1_nestedTclList2Rlist Convert a Nested Tcl List to an R List

Description

Helper function to work with R and Tcl

Usage

1 _nestedTclList2Rlist(tclobj, transform = function(x) { as.numeric(x) })
Arguments

tclobj a tcl object as returned by tcl and . Tcl

transform a function to transfrom the string output to another data type

1_ng_plots 149

Value

a nested R list

See Also

1_Rlist2nestedTclList

Examples

tclobj <- .Tcl('set a {{1 2 3} {23 4 4} {353 3}})
1_nestedTclList2Rlist(tclobj)

1_ng_plots 2d navigation graph setup with with dynamic node fitering using a
scatterplot matrix

Description

Generic function to create a navigation graph environment where user can filter graph nodes by
selecting 2d spaces based on 2d measures displayed in a scatterplot matrix.

Usage
1_ng_plots(measures, ...)
Arguments
measures object with measures are stored
argument passed on to methods
Details

For more information run: 1_help("learn_R_display_graph.html#l_ng_plots")

See Also

1_ng_plots.default,1_ng_plots.measures,1_ng_plots.scagnostics, measuresld, measures2d,
scagnostics2d, 1_ng_ranges

150 1_ng_plots.default

1_ng_plots.default Select 2d spaces with variable associated measures displayed in scat-
terplot matrix

Description

Measures object is a matrix or data.frame with measures (columns) for variable pairs (rows) and
rownames of the two variates separated by separator

Usage
Default S3 method:
1_ng_plots(measures, data, separator = ":", ...)
Arguments
measures matrix or data.frame with measures (columns) for variable pairs (rows) and row-
names of the two variates separated by separator
data data frame for scatterplot
separator a string that separates the variable pair string into the individual variables

arguments passed on to configure the scatterplot

Details

For more information run: 1_help("learn_R_display_graph.html#l_ng_plots")

Value

named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also

1_ng_plots,1_ng_plots.measures,1_ng_plots.scagnostics, measuresld, measures2d, scagnostics2d
1_ng_ranges

Examples

n <- 100

dat <- data.frame(
A = rnorm(n), B
D = rnorm(n), E

)

m2d <- data.frame(
cov = with(dat, c(cov(A,B), cov(A,C), cov(B,D), cov(D,E), cov(A,E))),
measure_1 = c(1, 3, 2, 1, 4),
row.names = c('A:B', 'A:C', 'B:D', 'D:E', 'A:E")

rnorm(n), C = rnorm(n),
rnorm(n)

1_ng_plots.measures 151

or m2d <- as.matrix(m2d)
nav <- 1_ng_plots(measures=m2d, data=dat)

only one measure

m <- m2d[,1]

names(m) <- row.names(m2d)

nav <- 1_ng_plots(measures=m, data=dat)

m2dlc(1,2),1]

one d measures

mld <- data.frame(
mean = sapply(dat, mean),
median = sapply(dat, median),
sd = sapply(dat, sd),
ql = sapply(dat, function(x)quantile(x, probs=9.25)),
g3 = sapply(dat, function(x)quantile(x, probs=0.75)),
row.names = names(dat)

)
nav <- 1_ng_plots(mid, dat)

more involved
gl <- function(x)as.vector(quantile(x, probs=0.25))

be carful that the vector names are correct
nav <- 1_ng_plots(sapply(oliveAcids, q1), oliveAcids)

1_ng_plots.measures 2d Navigation Graph Setup with dynamic node fitering using a scat-
terplot matrix

Description

Measures object is of class measures. When using measure objects then the measures can be dy-
namically re-calculated for a subset of the data.

Usage
S3 method for class 'measures'
1_ng_plots(measures, ...)
Arguments
measures object of class measures, see measuresid, measures2d.

arguments passed on to configure the scatterplot

152 I_ng_plots.scagnostics

Details

Note that we provide the scagnostics2d function to create a measures object for the scagnostics
measures.

For more information run: 1_help("learn_R_display_graph.html#l_ng_plots")

Value

named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also

measuresld, measures2d, scagnostics2d, 1_ng_plots, 1_ng_ranges

Examples

Not run:

2d measures

scags <- scagnostics2d(oliveAcids, separator='xx")
scags()

ng <- 1l_ng_plots(scags, color=olive$Area)

1d measures

scale@1 <- function(x){(x-min(x))/diff(range(x))}

mld <- measuresld(sapply(iris[,-5], scale0l),
mean=mean, median=median, sd=sd,
gl=function(x)as.vector(quantile(x, probs=0.25)),
g3=function(x)as.vector(quantile(x, probs=0.75)))

mid()
nav <- 1_ng_plots(mld, color=iris$Species)

with only one measure
nav <- 1_ng_plots(measuresld(oliveAcids, sd))

with two measures
nav <- 1_ng_plots(measuresld(oliveAcids, sd=sd, mean=mean))

End(Not run)

1_ng_plots.scagnostics

2d Navigation Graph Setup with dynamic node fitering based on
scagnostic measures and by using a scatterplot matrix

I _ng_ranges 153

Description

This method is useful when working with objects from the scagnostics function from the scagnos-
tics R package. In order to dynamically re-calcultate the scagnostic measures for a subset of the
data use the scagnostics2d measures creature function.

Usage
S3 method for class 'scagnostics'
1_ng_plots(measures, data, separator = ":", ...)
Arguments
measures objects from the scagnostics function from the scagnostics R package
data data frame for scatterplot
separator a string that separates the variable pair string into the individual variables

arguments passed on to configure the scatterplot

Value

named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also

1_ng_plots,1_ng_plots.default,1_ng_plots.measures, measuresld, measures2d, scagnostics2d,
1_ng_ranges

Examples

library(scagnostics)
scags <- scagnostics(oliveAcids)

1_ng_plots(scags, oliveAcids, color=olive$Area)

1_ng_ranges 2d navigation graph setup with with dynamic node fitering using a
slider

Description
Generic function to create a navigation graph environment where user can filter graph nodes using
as slider to select 2d spaces based on 2d measures.

Usage

1_ng_ranges(measures, ...)

154 I_ng_ranges.default

Arguments
measures object with measures are stored
argument passed on to methods
Details

For more information run: 1_help("learn_R_display_graph.html#1_ng_ranges")

See Also

1_ng_ranges.default, 1_ng_ranges.measures, 1_ng_ranges.scagnostics, measuresld, measures2d,
scagnostics2d, 1_ng_ranges

1_ng_ranges.default Select 2d spaces with variable associated measures using a slider

Description

Measures object is a matrix or data.frame with measures (columns) for variable pairs (rows) and
rownames of the two variates separated by separator

Usage
Default S3 method:
1_ng_ranges(measures, data, separator = ":", ...)
Arguments
measures matrix or data.frame with measures (columns) for variable pairs (rows) and row-
names of the two variates separated by separator
data data frame for scatterplot
separator a string that separates the variable pair string into the individual variables

arguments passed on to configure the scatterplot

Details

For more information run: 1_help("learn_R_display_graph.html#1l_ng_ranges")

Value
named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also

1_ng_ranges, 1_ng_ranges.measures, 1_ng_ranges.scagnostics, measuresld, measures2d,
scagnostics2d, 1_ng_ranges

I _ng_ranges.measures 155

Examples

Simple example with generated data

n <- 100

dat <- data.frame(
A = rnorm(n), B = rnorm(n), C = rnorm(n),
D = rnorm(n), E = rnorm(n)

)

m2d <- data.frame(
cor = with(dat, c(cor(A,B), cor(A,C), cor(B,D), cor(D,E), cor(A,E))),
my_measure = c(1, 3, 2, 1, 4),
row.names = c('A:B', 'A:C', 'B:D', 'D:E', 'A:E')

)

or m2d <- as.matrix(m2d)
nav <- 1_ng_ranges(measures=m2d, data=dat)

With 1d measures

mld <- data.frame(
mean = sapply(dat, mean),
median = sapply(dat, median),
sd = sapply(dat, sd),
ql sapply(dat, function(x)quantile(x, probs=0.25)),
g3 = sapply(dat, function(x)quantile(x, probs=0.75)),
row.names = names(dat)

nav <- 1_ng_ranges(mld, dat)

1_ng_ranges.measures 2d Navigation Graph Setup with dynamic node fitering using a slider

Description

Measures object is of class measures. When using measure objects then the measures can be dy-
namically re-calculated for a subset of the data.

Usage
S3 method for class 'measures’
1_ng_ranges(measures, ...)
Arguments
measures object of class measures, see measuresid, measures2d.

arguments passed on to configure the scatterplot

156 1_ng_ranges.scagnostics

Details

Note that we provide the scagnostics2d function to create a measures object for the scagnostics
measures.

For more information run: 1_help("learn_R_display_graph.html#1_ng_ranges")

Value

named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also

measuresld, measures2d, scagnostics2d, 1_ng_ranges, 1_ng_plots

Examples

2d measures
s <- scagnostics2d(oliveAcids)
nav <- 1l_ng_ranges(s, color=olive$Area)

1d measures

scaled1 <- function(x){(x-min(x))/diff(range(x))}

mld <- measuresld(sapply(iris[,-5], scale01l),
mean=mean, median=median, sd=sd,
gl=function(x)as.vector(quantile(x, probs=0.25)),
g3=function(x)as.vector(quantile(x, probs=0.75)))

m1dQ)

nav <- 1_ng_ranges(mld, color=iris$Species)

1_ng_ranges.scagnostics
2d Navigation Graph Setup with dynamic node fitering based on
scagnostic measures and using a slider

Description

This method is useful when working with objects from the scagnostics function from the scagnos-
tics R package. In order to dynamically re-calcultate the scagnostic measures for a subset of the
data use the scagnostics2d measures creature function.

Usage

S3 method for class 'scagnostics'
1_ng_ranges(measures, data, separator = ":", ...)

_pairs 157

Arguments
measures objects from the scagnostics function from the scagnostics R package
data data frame for scatterplot
separator a string that separates the variable pair string into the individual variables
arguments passed on to configure the scatterplot
Details

For more information run: 1_help("learn_R_display_graph.html#l_ng_ranges")

Value

named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also

1_ng_ranges,1_ng_ranges.default, 1_ng_ranges.measures, measuresld, measures2d, scagnostics2d,
1_ng_ranges

Examples

library(scagnostics)
s <- scagnostics(oliveAcids)
ng <- 1l_ng_ranges(s, oliveAcids, color=olive$Area)

1_pairs Scatterplot Matrix in Loon

Description

Function creates a scatterplot matrix using loon’s scatterplot widgets

Usage
1_pairs(data, parent = NULL, ...)
Arguments
data a data.frame with numerical data to create the scatterplot matrix
parent parent widget path
named arguments to modify the scatterplot states
Value

a list with scatterplot handles

158 I plot

See Also
1_plot

Examples

p <- 1_pairs(iris[,-5], color=iris$Species)

1_plot Create an interactive loon plot widget

Description

1_plot is a generic function for creating interactive visualization environments for R objects.

Usage

1 plot(x, vy, ...)

Arguments
X the coordinates of points in the plot. Alternatively, a single plotting structure,
function or any R object with a plot method can be provided.
y the y coordinates of points in the plot, optional if x is an appropriate structure.
named arguments to modify plot states
Details

To get started with loon it is recommended to read loons website which can be accessed via the
1_help() function call.

Value

widget handle

See Also

1_info_states

Examples

ordinary use
p <- with(iris, 1_plot(Sepal.Width, Petal.Length, color=Species))

link another plot with the previous plot
pL'linkingGroup'] <- "iris_data"
p2 <- with(iris, 1_plot(Sepal.Length, Petal.Width, linkingGroup="iris_data"))

Use with other tk widgets

I_plot.default 159

library(tcltk)

tt <- tktoplevel()

pl <- 1_plot(parent=tt, x=c(1,2,3), y=c(3,2,1))
p2 <- 1_plot(parent=tt, x=c(4,3,1), y=c(6,8,4))

tkgrid(pl, row=0, column=0, sticky="nesw")
tkgrid(p2, row=0, column=1, sticky="nesw")
tkgrid.columnconfigure(tt, @, weight=1)
tkgrid.columnconfigure(tt, 1, weight=1)
tkgrid.rowconfigure(tt, @, weight=1)

tktitle(tt) <- "Loon plots with custom layout”

1_plot.default Create an interactive 2d scatterplot display

Description

Creates an interactive 2d scatterplot. Also, if no loon inspector is open then the 1_plot call will
also open a loon inspector.

Usage
Default S3 method:
1 _plot(x, y = NULL, parent = NULL, ...)
Arguments
X the x and y arguments provide the x and y coordinates for the plot. Any reason-

able way of defining the coordinates is acceptable. See the function xy . coords
for details. If supplied separately, they must be of the same length.

y please read in the argument description for the x argument above.

parent a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

named arguments to modify plot states.

Details

The scatterplot displays a number of direct interactions with the mouse and keyboard, these include:
zooming towards the mouse cursor using the mouse wheel, panning by right-click dragging and
various selection methods using the left mouse button such as sweeping, brushing and individual
point selection. See the documentation for 1_plot for more details about the interaction gestures.

160 I_plot.map

Examples
pl <- with(iris, 1_plot(Sepal.Length, Sepal.Width, color=Species))
p2 <- with(iris, 1_plot(Petal.Length ~ Petal.Width, color=Species))
link the two plots pl1 and p2

1_configure(pl, linkingGroup="iris", sync="push")
1_configure(p2, linkingGroup="iris", sync="push")

p1['selected'] <- iris$Species == "setosa"
1_plot.map Create an plot with a map layered
Description

Creates a scatterplot widget and layers the map in front.

Usage
S3 method for class 'map'
1_plot(x, ...)
Arguments
X object of class map (defined in the maps library)

arguments forwarded to 1_layer.map

Value

Scatterplot widget plot handle

See Also

1_layer, 1_layer.map, map

Examples

library(maps)
p <- 1_plot(map('world', fill=TRUE, plot=FALSE))

I _plot_inspector

161

1_plot_inspector Create a Scatterplot Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_plot_inspector(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

i <= 1_plot_inspector()

1 _plot_inspector_analysis
Create a Scatterplot Analysis Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_plot_inspector_analysis(parent = NULL, ...)
Arguments

parent parent widget path

state arguments

162 1 redraw

Value

widget handle

See Also

1_create_handle

Examples

i <- 1_plot_inspector_analysis()

1_redraw Force a Content Redraw of a Plot

Description

Force redraw the plot to make sure that all the visual elements are placed correctly.

Usage

1_redraw(widget)

Arguments

widget widget path as a string or as an object handle

Details

Note that this function is intended for debugging. If you find that the display does not display the
data according to its plot states then please contact loon’s package maintainer.

Examples

p <- 1_plot(iris)
1_redraw(p)

1 resize 163

1l_resize Resize Plot Widget

Description

Resizes the toplevel widget to a specific size.

Usage
1_resize(widget, width, height)

Arguments
widget widget path as a string or as an object handle
width width in pixels
height in pixels

See Also

1_size, 1_size<-
Examples
p <- 1l_plot(iris)

1_resize(p, 300, 300)
1_size(p) <- c(500, 500)

1_Rlist2nestedTclList Convert an R list to a nested Tcl list

Description

This is a helper function to create a nested Tcl list from an R list (i.e. a list of vectors).

Usage
1_Rlist2nestedTclList(x)

Arguments

X a list of vectors

Value

a string that represents the tcl nested list

164 I_scaleto_layer

See Also

1_nestedTclList2Rlist

Examples

x <- list(c(1,3,4), c(4,3,2,1), c(4,3,2,5,6))
1_Rlist2nestedTclList(x)

1_scaleto_active Change Plot Region to Display All Active Data

Description

The function modifies the zoomX, zoomY, panX, and panY so that all active data points are displayed.

Usage

1_scaleto_active(widget)

Arguments
widget widget path as a string or as an object handle
1_scaleto_layer Change Plot Region to Display All Elements of a Particular Layer
Description

The function modifies the zoomX, zoomY, panX, and panY so that all elements of a particular layer
are displayed.

Usage

1_scaleto_layer(target, layer)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
layer layer id
See Also

1_layer_ids

I _scaleto_plot 165

1_scaleto_plot Change Plot Region to Display the All Data of the Model Layer

Description
The function modifies the zoomX, zoomY, panX, and panY so that all elements in the model layer of
the plot are displayed.

Usage

1_scaleto_plot(widget)

Arguments

widget widget path as a string or as an object handle

1_scaleto_selected Change Plot Region to Display All Selected Data

Description
The function modifies the zoomX, zoomY, panX, and panY so that all selected data points are dis-
played.

Usage

1_scaleto_selected(widget)

Arguments
widget widget path as a string or as an object handle
1_scaleto_world Change Plot Region to Display All Plot Data
Description

The function modifies the zoomX, zoomY, panX, and panY so that all elements in the plot are dis-
played.

Usage

1_scaleto_world(widget)

Arguments

widget widget path as a string or as an object handle

166 1 _serialaxes

1_serialaxes Create a Serialaxes Widget

Description

The seerialaxes widget displays multivariate data either as a stacked star glyph plot, or as a parallel
coordinate plot.

Usage
1_serialaxes(data, sequence, scaling = "variable"”, axesLayout = "radial”,
showAxes = TRUE, parent = NULL, ...)
Arguments
data a data frame with numerical data only
sequence vector with variable names that defines the axes sequence
scaling one of "variable’, ’data’, ’observation’ or "none’ to specify how the data is scaled.
See Details for more information
axeslLayout either "serial” or "parallel”
showAxes boolean to indicate whether axes should be shown or not
parent parent widget path
state arguments, see 1_info_states.
Details

The scaling state defines how the data is scaled. The axes display O at one end and 1 at the other.
For the following explanation assume that the data is in a nxp dimensional matrix. The scaling
options are then

variable per column scaling
observation per row scaling

data whole matrix scaling
none do not scale

Value

plot handle object

Examples

s <- 1_serialaxes(data=oliveAcids, color=olive$Area, title="olive data")
s['axesLayout'] <- 'parallel'

states <- 1_info_states(s)

names(states)

1_serialaxes_inspector 167

1_serialaxes_inspector
Create a Serialaxes Analysis Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_serialaxes_inspector(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

i <- 1_serialaxes_inspector()

1_setAspect Set the aspect ratio of a plot

Description

The aspect ratio is defined by the ratio of the number of pixels for one data unit on the y axis and
the number of pixels for one data unit on the x axes.

Usage

1_setAspect(widget, aspect, x, y)

168 1 _setColorList

Arguments
widget widget path as a string or as an object handle
aspect aspect ratio, optional, if omitted then the x and y arguments have to be specified.
X optional, if the aspect argument is missing then x and y can be specified and
the aspect ratio is calculted usding y/x.
y see description for x argument above
Examples

p <- with(iris, 1_plot(Sepal.Length ~ Sepal.Width, color=Species))

1_aspect(p)
1_setAspect(p, x = 1, y = 2)

1_setColorList Use custom colors for mapping nominal values to distinct colors

Description

Modify loon’s color mapping list to a set of custom colors.

Usage

1_setColorList(colors)

Arguments

colors vecor with valid color names or hex-encoded colors

Details

There are two commonly used mapping schemes of data values to colors: one scheme maps numeric
values to colors on a color gradient and the other maps nominal data to colors that can be well
differentiated visually (e.g. to highlight the different groups). Presently, loon always uses the latter
approach for its color mappings. You can use specialized color pallettes to map continuous values
to color gradients as shown in the examples below.

When assigning values to a display state of type color then loon maps those values using the fol-
lowing rules

1. if all values already represent valid Tk colors (see tkcolors) then those colors are taken

2. if the number of distinct values are less than number of values in loon’s color mapping list
then they get mapped according to the color list, see 1_setColorList and 1_getColorList.

3. if there are more distinct values as there are colors in loon’s color mapping list then loon’s own
color mapping algorithm is used. See loon_palette and for more details about the algorithm
below in this documentation.

1 _setColorList 169

Loon’s default color list is composed of the first 11 colors from the hcl color wheel (displayed
below in the html version of the documentation). The letters in hcl stand for hue, chroma and
luminance, and the hcl wheel is useful for finding "balanced colors" with the same chroma (radius)
and luminance but with different hues (angles), see Ross Thaka (2003) "Colour for presentation
graphics”, Proceedings of DSC, p. 2 (https://www.stat.auckland.ac.nz/~ihaka/courses/
787/color.pdf).

The colors in loon’s internal color list are also the default ones listed as the "modify color ac-
tions" in the analysis inspectors. To query and modify loon’s color list use 1_getColorList and
1_setColorList.

In the case where there are more unique data values than colors in loon’s color list then the colors
for the mapping are taken from different locations distributed on the hcl color wheel (see above).

One of the advantages of using the hcl color wheel is that one can obtain any number of "balanced
colors" with distinct hues. This is useful in encoding data with colors for a large number of groups;
however, it should be noted that the more groups we have the closer the colors sampled from the
wheel become and, therefore, the more similar in appearance.

A common way to sample distinct "balanced colors" on the hcl wheel is to choose evenly spaced
hues distributed on the wheel (i.e. angles on the wheel). However, this approach leads to color sets
where most colors change when the sample size (i.e. the number of sampled colors from the wheel)
increases by one. For loon, it is desirable to have the first m colors of a color sample of size m+1 to
be the same as the colors in a color sample of size m, for all positive natural numbers m. Hence, we
prefer to have a sequence of colors. This way, the colors on the inspectors stay relevant (i.e. they
match with the colors of the data points) when creating plots that encode with color a data variable
with different number of groups.

We implemented such a color sampling scheme (or color sequence generator) that also makes sure
that neighboring colors in the sequence have different hues. In you can access this color sequence
generator with loon_palette. The color wheels below show the color generating sequence twice,
once for 16 colors and once for 32 colors.

Note, for the inspector: If there are more unique colors in the data points than there are on the
inspectors then it is possible to add the next five colors in the sequence of the colors with the +5
button. Alternatively, the + button on the modify color part of the analysis inspectors allows the
user to pick any additional color with a color menu. Also, if you change the color mapping list and
close and re-open the loon inspector these new colors show up in the modify color list.

When other color mappings of data values are required (e.g. numerical data to a color gradient) then
the functions in the scales R package provide various mappings including mappings for qualitative,
diverging and sequential values.

See Also

1_setColorList,1_getColorList,1_setColorList_ColorBrewer,1_setColorList_hcl,1_setColorList_baseR

Examples

1 _plot(1:3, color=1:3) # loon's default mapping

cols <- 1_getColorList()
1_setColorList(c("red”, "blue"”, "green", "orange"))

https://www.stat.auckland.ac.nz/~ihaka/courses/787/color.pdf
https://www.stat.auckland.ac.nz/~ihaka/courses/787/color.pdf

170 1 setColorList_ColorBrewer

close and reopen inspector

1_plot(1:3, color=1:3) # use the new color mapping
1_plot(1:10, color=1:10) # use loons default color mapping as color list is too small

reset to default
1_setColorList(cols)

Not run:
you can also perform the color mapping yourself, for example with
the col_numeric function provided in the scales package
library(scales)
p_custom <- with(olive, 1_plot(stearic ~ oleic,

color = col_numeric("Greens"”, domain = NULL) (palmitic)))

End(Not run)

1_setColorList_baseR Setloon’s color mapping list to the colors from base R

Description

Loon’s color list is used to map nominal values to colors. See the documentation for 1_setColorList.

Usage

1_setColorList_baseR()

See Also

1_setColorList,1_setColorList_ColorBrewer,1_setColorList_hcl,1_setColorList_baseR

1_setColorList_ColorBrewer
Set loon’s color mapping list to the colors from ColorBrewer

Description

Loon’s color list is used to map nominal values to colors. See the documentation for 1_setColorList.

Usage

1_setColorList_ColorBrewer(palette = c("Set1"”, "Set2", "Set3", "Pasetl1”,
"Pastel2”, "Paired”, "Dark2", "Accent"))

1 _setColorList_hcl 171

Arguments
palette one of the following RColorBrewer palette name: Setl, Set2, Set3, Pasetll,
Pastel2, Paired, Dark2, or Accent
Details

Only the following palettes in ColorBrewer are available: Setl, Set2, Set3, Pasetl1, Pastel2, Paired,
Dark2, and Accent. See the examples below.

See Also

1_setColorList,1_setColorList_ColorBrewer,1_setColorList_hcl, 1_setColorList_baseR

Examples

Not run:
library(RColorBrewer)
display.brewer.all()

End(Not run)

1_setColorList_ColorBrewer("Set1")
p <- 1_plot(iris)

1_setColorList_hcl Set loon’s color mapping list to the colors from hcl color wheen

Description

Loon’s color list is used to map nominal values to colors. See the documentation for 1_setColorList.

Usage

1_setColorList_hcl(chroma = 56, luminance = 51, hue_start = 231)

Arguments
chroma The chroma of the color. The upper bound for chroma depends on hue and
luminance.
luminance A value in the range [0,100] giving the luminance of the colour. For a given
combination of hue and chroma, only a subset of this range is possible.
hue_start The start hue for sampling. The hue of the color specified as an angle in the

range [0,360]. 0 yields red, 120 yields green 240 yields blue, etc.

172 1 _setLinkedStates

Details

Samples equally distant colors from the hcl color wheel. See the documentation for hcl for more
information.

See Also

1_setColorList,1_setColorList_ColorBrewer,1_setColorList_hcl, 1_setColorList_baseR

1_setlLinkedStates Modify States of a Plot that are Linked in Loon’s Standard Linking
Model

Description
Loon’s standard linking model is based on three levels, the 1inkingGroup and 1inkingKey states
and the used linkable states. See the details below.

Usage

1_setlLinkedStates(widget, states)

Arguments
widget widget path as a string or as an object handle
states used linkable state names, see in details below
Details

Loon’s standard linking model is based on two states, 1inkingGroup and linkingKey. The full
capabilities of the standard linking model are described here. However, setting the 1inkingGroup
states for two or more displays to the same string is generally all that is needed for linking displays
that plot data from the same data frame. Changing the linking group of a display is also the only
linking-related action available on the analysis inspectors.

The first linking level is as follows: loon’s displays are linked if they share the same string in their
linkingGroup state. The default linking group 'none' is a keyword and leaves a display un-linked.

The second linking level is as follows. All n-dimensional states can be linked between displays. We
call these states linkable. Further, only linkable states with the same name can be linked between
displays. One consequence of this shared state name rule is that, with the standard linking model,
the linewidth state of a serialaxes display cannot be linked with the size state of a scatterplot
display. Also, each display maintains a list that defines which of its linkable states should be used
for linking; we call these states the used linkable states. The default used linkable states are as
follows

Display Default used linkable states
scatterplot selected, color, active, size
histogram selected, color, active
serialaxes selected, color, active
graph selected, color, active, size

1 _size 173

If any two displays are set to be linked (i.e. they share the same linking group) then the intersection
of their used linkable states are actually linked.

The third linking level is as follows. Every display has a n-dimensional 1inkingKey state. Hence,
every data point has an associated linking key. Data points between linked plots are linked if they
share the same linking key.

1_size Query Size of a Plot Display

Description

Get the width and height of a plot in pixels

Usage

1_size(widget)

Arguments

widget widget path as a string or as an object handle

Value

Vector width width and height in pixels

See Also

l_resize, 1_size<-

1_size<- Resize Plot Widget

Description

Resizes the toplevel widget to a specific size. This setter function uses 1_resize.

Usage

1_size(widget) <- value

Arguments

widget widget path as a string or as an object handle

value numeric vector of length 2 with width and height in pixels

174 I_throwErrorlfNotLoonWidget

See Also

l_resize, 1_size

Examples

p <- 1l_plot(iris)

1_resize(p, 300, 300)
1_size(p) <- c(500, 500)

1_subwin Create a child widget path

Description

This function is similar to . Tk.subwin except that does not the environment of the "tkwin" object
to keep track of numbering the subwidgets. Instead it creates a widget path (parent).looni, where i
is the smallest integer for which no widget exists yet.

Usage
1_subwin(parent, name = "w")
Arguments
parent parent widget path
name child name
Value

widget path name as a string

1_throwErrorIfNotLoonWidget
Throw an error if string is not associated with a loon widget

Description

Helper function to ensure that a widget path is associated with a loon widget.

Usage

1_throwErrorIfNotLoonWidget (widget)

I toR 175

Arguments

widget widget path name as a string

Value

TRUE if the string is associated with a loon widget, otherwise an error is thrown.

1_toR Convert a Tcl Object to some other R object

Description
Return values from .Tcl and tcl are of class tc10bj and often need to be mapped to a different
data structure in R. This function is a helper class to do this mapping.

Usage

1_toR(x, cast = as.character)

Arguments

X a tclObj object

cast a function to conver the object to some other R object
Value

A object that is returned by the function specified with the cast argument.

1_widget Dummy function to be used in the Roxygen documentation

Description

Dummy function to be used in the Roxygen documentation

Usage
1_widget(widget)

Arguments

widget widget path name as a string

Value

widget path name as a string

176 1 zoom

1_worldview Create a Worldview Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage
1 _worldview(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

i <= 1_worldview()

1_zoom Zoom from and towards the center

Description

This function changes the plot states panX, panY, zoomX, and zoomY to zoom towards or away from
the center of the current view.

Usage

1_zoom(widget, factor = 1.1)

Arguments

widget widget path as a string or as an object handle

factor a zoom factor

make_glyphs 177

make_glyphs Make arbitrary glyphs with R graphic devices

Description

Loon’s primitive glyph types are limited in terms of compound shapes. With this function you can
create each point glyph as a png and re-import it as a tk img object to be used as point glyphs in
loon. See the examples.

Usage
make_glyphs(data, draw_fun, width = 50, height = 50, ...)

Arguments
data list where each element contains a data object used for the draw_fun
draw_fun function that draws a glyph using R base graphics or the grid (including ggplot2
and lattice) engine
width width of each glyph in pixel
height height of each glyph in pixel
additional arguments passed on to the png function
Value

vector with tk img object references

Examples

Not run:
data(minority)
p <- 1_plot(minority$long, minority$lat)

library(maps)

canada <- map("world”, "Canada"”, fill=TRUE, plot=FALSE)
1_map <- 1_layer(p, canada, asSinglelLayer=TRUE)
1_scaleto_world(p)

img <- make_glyphs(lapply(1:nrow(minority), function(i)minority[i,]), function(m) {
par(mar=c(1,1,1,1)*.5)
mat <- as.matrix(m[1,1:10]/max(m[1:10]))
barplot(height = mat,
beside = FALSE,
ylim = c(90,1),
axes= FALSE,
axisnames=FALSE)
}, width=120, height=120)

1_imageviewer(img)

178 measuresld

g <- 1_glyph_add_image(p, img, "barplot”)
pl'glyph'] <- g

with grid
1i <- make_glyphs(runif(6), function(x) {
if(any(x>1 | x<0@))
stop("out of range")
pushViewport(plotViewport(unit(c(1,1,1,1)*0, "points")))
grid.rect(gp=gpar(fill=NA))
grid.rect(@, @, height = unit(x, "npc”), just = c("left”, "bottom"),
gp=gpar(col=NA, fill="steelblue"))
»

End(Not run)

measuresid Closure of One Dimensional Measures

Description

Function creates a 1d measures object that can be used with 1_ng_plots and 1_ng_ranges.

Usage
measuresld(data, ...)
Arguments
data a data.frame with the data used to calculate the measures
named arguments, name is the function name and argument is the function to
calculate the measure for each variable.
Details

For more information run: 1_help("learn_R_display_graph.html#measures")

Value

a measures object

See Also

1_ng_plots, 1_ng_ranges, measures2d

measures2d 179

Examples

ml <- measuresid(oliveAcids, mean=mean, median=median,
sd=sd, qgl=function(x)as.vector(quantile(x, probs=0.25)),
g3=function(x)as.vector(quantile(x, probs=0.75)))

ml

m1 ()
m1(olive$palmitoleic>100)
ml('data')

m1('measures')

measures2d Closure of Two Dimensional Measures

Description

Function creates a 2d measures object that can be used with 1_ng_plots and 1_ng_ranges.

Usage
measures2d(data, ...)
Arguments
data a data.frame with the data used to calculate the measures
named arguments, name is the function name and argument is the function to
calculate the measure for each variable.
Details

For more information run: 1_help("learn_R_display_graph.html#measures")

Value

a measures object

See Also

1_ng_plots, 1_ng_ranges, measures2d

Examples

m <- measures2d(oliveAcids, separator='x', cov=cov, cor=cor)
m

m(Q)

m(keep=olive$palmitic>1360)

m('data')

m('grid')

m('measures')

180 ndtransitiongraph

minority Canadian Visible Minority Data 2006

Description

This data contains information about the visible minority populations distributed across major cen-
sus metropolitan areas of Canada. These data are from the 2006 Canadian census, publicly available
from Statistics Canada Statistics Canada (2006). For each of the 33 Canadian census metropoli-
tan areas, we have the total population and the population Implemen- tation of all its "visible
minorities”. These self-declared visible minorities are: "Arab", "Black”, "Chinese", "Filipino",
"Japanese", "Korean", "Latin American", "Multiple visible minority", "South Asian", "Southeast
Asian", "Visible minority (not included elsewhere)", and "West Asian". For each metropolitan
area, we also obtained the approximate latitude and longitude coordinates using the Google Maps
Geocoding API and added them to the data set.

Usage

minority

Format

A data frame with 33 rows and 18 variates

Source

http://www.statcan.gc.ca

ndtransitiongraph Create a n-d transition graph

Description

A n-d transition graph has k-d nodes and all edges that connect two nodes that from a n-d subspace

Usage

ndtransitiongraph(nodes, n, separator = ":")
Arguments

nodes node names of graph

n integer, dimension an edge should represent

separator character that separates spaces in node names

http://www.statcan.gc.ca

oliveAcids 181

Details

For more information run: 1_help("learn_R_display_graph.html.html#graph-utilities"”)

Value

graph object of class loongraph

Examples

g <- ndtransitiongraph(nodes=c('A:B', 'A:F', 'B:C', 'B:F'), n=3, separator=':")

olive Fatty Acid Composition of Italian Olive Oils

Description

This data set records the percentage composition of 8 fatty acids (palmitic, palmitoleic, stearic,
oleic, linoleic, linolenic, arachidic, eicosenoic) found in the lipid fraction of 572 Italian olive oils.
The oils are samples taken from three Italian regions varying number of areas within each region.
The regions and their areas are recorded as shown in the following table:

Region Area

North North-Apulia, South-Apulia, Calabria, Sicily
South East-Liguria, West-Liguria, Umbria

Sardinia Coastal-Sardinia, Inland-Sardinia

Usage

olive

Format

A data frame containing 572 cases and 10 variates.

References

Forina, M., Armanino, C., Lanteri, S., and Tiscornia, E. (1983) "Classification of Olive Oils from
their Fatty Acid Composition", in Food Research and Data Analysis (Martens, H., Russwurm, H.,
eds.), p. 189, Applied Science Publ., Barking.

oliveAcids Fatty Acid Composition of Italian Olive Oils

Description

This is the olive data set minus the Region and Area variables.

182 plot.loongraph
Usage

oliveAcids

Format

A data frame containing 572 cases and 8 variates.

See Also

olive

plot.loongraph Plot a loon graph object with base R graphics

Description

This function converts the loongraph object to one of class graph and the plots it with its respective
plot method.

Usage

S3 method for class 'loongraph'

plot(x, ...)
Arguments

X object of class loongraph

arguments forwarded to method

Examples

library(Rgraphviz)

g <- loongraph(letters[1:4], letters[1:3], letters[2:4], FALSE)
plot(g)

print.1_layer

183

print.1_layer Print a summary of a loon layer object

Description

Prints the layer label and layer type

Usage
S3 method for class 'l_layer'
print(x, ...)

Arguments

X an 1_layer object

additional arguments are not used for this methiod

See Also

1_layer

print.measuresid Print function names from measureld object

Description

Prints the function names of a measureld object using print.default.

Usage
S3 method for class 'measuresid’
print(x, ...)

Arguments
X measures 1d object

arguments passed on to print.default

184 scagnostics2d

print.measures2d Print function names from measure2d object

Description

Prints the function names of a measure2d object using print.default.

Usage

S3 method for class 'measures2d’

print(x, ...)
Arguments

X measures2d object

arguments passed on to print.default
scagnostics2d Closure of Two Dimensional Scagnostic Measures

Description

Function creates a 2d measures object that can be used with 1_ng_plots and 1_ng_ranges.

Usage
scagnostics2d(data, scagnostics = c("Clumpy”, "Monotonic”, "Convex",
"Stringy"”, "Skinny”, "Outlying", "Sparse"”, "Striated”, "Skewed"),
separator = ":")
Arguments
data a data.frame with the data used to calculate the measures
scagnostics vector with valid scanostics meausure names, i.e "Clumpy", "Monotonic", "Con-
vex", "Stringy", "Skinny", "Outlying", "Sparse", "Striated", "Skewed". Also the
prefix "Not" can be added to each measure which equals 1-measure.
separator string the separates variable names in 2d graph nodes
Details

For more information run: 1_help("learn_R_display_graph.html#measures")

Value

a measures object

tkcolors 185

See Also

1_ng_plots, 1_ng_ranges, measures2d

Examples

m <- scagnostics2d(oliveAcids, separator='xx")
m

m()

m(olive$palmitoleic > 80)

m('data')

m('grid")

m('measures')

tkcolors List the valid Tk color names

Description

The core of Loon is implemented in Tcl and Tk. Hence, when defining colors using color names,
Loon uses the Tcl color representation and not those of R. The colors are taken from the Tk sources:
doc/colors.n.

If you want to make sure that the color names are represented exactly as they are in R then you can
convert the color names to hexencoded color strings, see the examples below.

Usage

tkcolors()

Examples

check if R colors names and TK color names are the same
setdiff(tolower(colors()), tolower(tkcolors()))
setdiff(tolower(tkcolors()), tolower(colors()))

hence there are currently more valid color names in Tk than there are in R

Lets compare the colors of the R color names in R and Tk
tohex <- function(x) {
sapply(x, function(xi) {
crgb <- as.vector(col2rgh(xi))
rgb(crgb[1], crgb[2], crgb[3], maxColorValue = 255)
»
3

df <- data.frame(
R_col = tohex(colors()),
Tcl_col = loon:::hex12tohex6(1l_hexcolor(colors())),
row.names = colors(),
stringsAsFactors = FALSE

186 UsAndThem

)
df_diff <- df[df$R_col != df$Tcl_col,]

library(grid)
grid.newpage()
pushViewport(plotViewport())

x_col <- unit(@, "npc")
X_R <= unit(6, "lines")
x_Tcl <- unit(10, "lines")

grid.text('color', x=x_col, y=unit(1, "npc"), just='left', gp=gpar(fontface='bold'))
grid.text('R', x=x_R, y=unit(1, "npc"), just='center', gp=gpar(fontface='bold"'))
grid.text('Tcl', x=x_Tcl, y=unit(1, "npc"), just='center', gp=gpar(fontface='bold"'))
for (i in T:nrow(df_diff)) {
y <= unit(1, "npc") - unit(i*1.2, "lines")
grid.text(rownames(df_diff)[i], x=x_col, y=y, just='left')
grid.rect(x=x_R, y=y, width=unit(3, "line"),
height=unit(1, "line"), gp=gpar(fill=df_diff[i,1]))
grid.rect(x=x_Tcl, y=y, width=unit(3, "line"),
height=unit(1, "line"), gp=gpar(fill=df_diff[i,2]))

UsAndThem Data to re-create Hans Rosling’s fameous "Us and Them" animation

Description
This data was sourced from https://www.gapminder.org/ and contains Population, Life Ex-
pectancy, Fertility, Income, and Geographic.Region information between 1962 and 2013 for 198
countries.

Usage
UsAndThem

Format

A data frame with 9855 rows and 8 variables

Source

http://www.gapminder.org/

https://www.gapminder.org/
http://www.gapminder.org/

Index

+Topic datasets
minority, 180
olive, 181
oliveAcids, 181
UsAndThem, 186

.Tcl, 148,175

[.loon (1_cget), 42

[<-.1loon (1_configure), 43

as.character, 64
as.graph, 6, 14
as.loongraph, 7
as.raster, 128

col_factor, 8
col_numeric, 8
color_loon, 8
complement, 9, 14
complement.loongraph, 10
completegraph, 10, /4
contourLines, 102

density, 89
graphreduce, 11

hel, 172
heat.colors, 111

image, 111

1_after_idle, 16

1_aspect, 16

1_aspect<-, 17
1_bind_canvas, 17, 19-22
1_bind_canvas_delete, I8, 19, 20-22
1_bind_canvas_get, I8, 19, 19, 21, 22
1_bind_canvas_ids, 18-20, 20, 21, 22
1_bind_canvas_reorder, 18-21, 21
1_bind_context, 22, 23-25
1_bind_context_delete, 22, 23, 24, 25

1_bind_context_get, 22, 23, 23, 24, 25
1_bind_context_ids, 22-24, 24, 25
1_bind_context_reorder, 22-24, 25
1_bind_glyph, 25, 26-28
1_bind_glyph_delete, 26, 26, 27, 28
1_bind_glyph_get, 26, 27, 28
1_bind_glyph_ids, 26, 27,27, 28
1_bind_glyph_reorder, 26-28, 28
1_bind_item, 29, 30-32, 50, 51
1_bind_item_delete, 29, 30, 31, 32
1_bind_item_get, 29, 30, 30, 31, 32
1_bind_item_ids, 29-31, 31, 32
1_bind_item_reorder, 29-31, 32
1_bind_layer, 32, 33-35
1_bind_layer_delete, 33, 33, 34, 35
1_bind_layer_get, 33,34, 35
1_bind_layer_ids, 33, 34, 34, 35
1_bind_layer_reorder, 33-35, 35
1_bind_navigator, 36, 37-39
1_bind_navigator_delete, 36, 36, 37-39
1_bind_navigator_get, 36, 37, 37, 38, 39
1_bind_navigator_ids, 36-38, 38, 39
1_bind_navigator_reorder, 3638, 38
1_bind_state, 39, 4042
1_bind_state_delete, 39, 40, 41, 42
1_bind_state_get, 39, 40, 40, 41, 42
1_bind_state_ids, 39-41,41, 42
1_bind_state_reorder, 3941, 42
1_cget, 42,43, 88
1_configure, 43,43, 51, 88
1_context_add_context2d, 44, 4548
1_context_add_geodesic2d, 44, 44, 4648
1_context_add_slicing2d, 44, 45, 45,
4648
1_context_delete, 46, 47, 48
1_context_getlLabel, 44—47,47, 48
1_context_ids, 44—46, 47
1_context_relabel, 4446, 48, 48
1_create_handle, 43, 48, 55-58, 78, 79, 82,

188

83,101,106, 113,161, 162, 167, 176
1_currentindex, 49, 51
1_currenttags, 50, 50
1_data, 51
1_export, 52
1_export_valid_formats, 52, 53
1_getColorList, 8, 9, 53, 168, 169
1_getGraph, 54
1_getlinkedStates, 54
1_glyph_add, 58, 61, 62, 64—67
1_glyph_add.default, 60
1_glyph_add_image, 59, 60
1_glyph_add_pointrange, 59, 61
1_glyph_add_polygon, 59, 62
1_glyph_add_serialaxes, 59, 63
1_glyph_add_text, 59, 64
1_glyph_delete, 65
1_glyph_getLabel, 65, 67
1_glyph_getType, 66
1_glyph_ids, 65, 66, 67
1_glyph_relabel, 65, 67
1_glyphs_inspector, 55
1_glyphs_inspector_image, 55
1_glyphs_inspector_pointrange, 56
1_glyphs_inspector_serialaxes, 57
1_glyphs_inspector_text, 57
1_graph, 54, 67, 68-70
1_graph.default, 68
1_graph.graph, 68, 69, 70
1_graph.loongraph, 68, 69, 69
1_graph_inspector, 78
1_graph_inspector_analysis, 78
1_graph_inspector_navigators, 79
1_graphswitch, 70, 71-77
1_graphswitch_add, 70, 71
1_graphswitch_add.default, 71
1_graphswitch_add.graph, 72
1_graphswitch_add. loongraph, 73
1_graphswitch_delete, 70, 74
1_graphswitch_get, 70, 74
1_graphswitch_getLabel, 70, 75
1_graphswitch_ids, 70, 75,77
1_graphswitch_move, 70, 76
1_graphswitch_relabel, 70, 76
1_graphswitch_reorder, 70, 77
1_graphswitch_set, 70, 77
1_help, 44, 45, 80
1_hexcolor, 80

INDEX

1_hist, 81
1_hist_inspector, 82
1_hist_inspector_analysis, 82
1_image_import_array, 60, 61, 84, 85
1_image_import_files, 60, 61, 85
1_imageviewer, 83, 85
1_info_states, 39, 43—45, 68-70, 85, 88,
104,109, 114, 117-119, 121-123,
125,130, 131, 134-136, 158, 166
1_isLoonWidget, 86
1_layer, 87, 89-91, 93-100, 104-110,
113-123, 125, 126, 128, 130-135,
160, 183
1_layer.density, 89
1_layer.Line, 90
1_layer.Lines, 91
1_layer.map, 92, 160
1_layer.Polygon, 93
1_layer.Polygons, 94
1_layer.Spatiallines, 95
1_layer.SpatiallLinesDataFrame, 96
1_layer.SpatialPoints, 97
1_layer.SpatialPointsDataFrame, 98
1_layer.SpatialPolygons, 99
1_layer.SpatialPolygonsDataFrame, 100
1_layer_bbox, 88, 101
1_layer_contourLines, 102
1_layer_delete, 88, 103, 105
1_layer_demote, 88, 104
1_layer_expunge, 88, 105
1_layer_getChildren, 88, 105, 107, 126
1_layer_getLabel, 88, 106, 132
1_layer_getParent, 88, 106, 107, 126
1_layer_getType, 87, 108
1_layer_group, 87, 109
1_layer_groupVisibility, 88, 110, 113,
116,117,133
1_layer_heatlImage, 111
1_layer_hide, 88, 110,112,116, 117, 133
1_layer_ids, 87, 113, 164
1_layer_index, 88, 114, 120
1_layer_isVisible, 88, 110, 113,115, 116,
117,133
1_layer_layerVisibility, 88, 110, 113,
116,116,117,133
1_layer_line, 87,102, 112,117,128
1_layer_lines, 87,118
1_layer_lower, 88, 119, 128

INDEX

1_layer_move, 88, 115, 119, 120, 128
1_layer_oval, 87,121
1_layer_points, 87, 122
1_layer_polygon, 87, 123
1_layer_polygons, 87, 124
1_layer_printTree, 88, 120, 126
1_layer_promote, 88, 126
1_layer_raise, 88, 119, 127
1_layer_rasterImage, 128
1_layer_rectangle, 87, 129
1_layer_rectangles, 87, 130
1_layer_relabel, 88, 107, 132
1_layer_show, 88, 110,113,116, 117,133
1_layer_text, 87, 134
1_layer_texts, 134,135
1_layers_inspector, 101
1_loon_inspector, 136
1_move_grid, 136, 137—-143
1_move_halign, 137,137, 138-143
1_move_hdist, 137, 138, 138, 139-143
1_move_jitter, 137-139, 139, 140-143
1_move_reset, 137-140, 140, 141-143
1_move_valign, 137-141, 141, 142, 143
1_move_vdist, 137-142, 142, 143
1_navgraph, 143
1_navigator_add, 144, 145-148
1_navigator_delete, 144, 145
1_navigator_getlLabel, 144, 145
1_navigator_ids, 144, 146
1_navigator_relabel, 144, 146
1_navigator_walk_backward, 144, 147
1_navigator_walk_forward, 144, 147
1_navigator_walk_path, /44, 148
1_nestedTclList2R1ist, 148, 164
1_ng_plots, 149, 150, 152, 153, 156, 178,
179, 184, 185
1_ng_plots.default, 7149, 150, 153
1_ng_plots.measures, 149, 150, 151, 153
1_ng_plots.scagnostics, 149, 150, 152
1_ng_ranges, 149, 150, 152, 153, 153, 154,
156, 157,178, 179, 184, 185
1_ng_ranges.default, 154, 154, 157
1_ng_ranges.measures, 154, 155, 157
1_ng_ranges.scagnostics, 154, 156
1_pairs, 157
1_plot, 81, 158, 158, 159
1_plot.default, 159
1_plot.map, 160

189

1_plot_inspector, 161
1_plot_inspector_analysis, 161
1_redraw, 162
1_resize, 163, 173, 174
1_Rlist2nestedTclList, /49, 163
1_scaleto_active, 164
1_scaleto_layer, 88, 164
1_scaleto_plot, 165
1_scaleto_selected, 165
1_scaleto_world, 81, 88, 165
1_serialaxes, 166
1_serialaxes_inspector, 167
1_setAspect, 167
1_setColorlList, 8 9, 15, 53, 168, 168,
169-172
1_setColorlList_baseR, 169, 170, 170, 171,
172
1_setColorList_ColorBrewer, 169, 170
170, 171, 172
1_setColorList_hcl, 169-171,171, 172
1_setlLinkedStates, 54, 55, 172
1_size, 163,173, 174
1_size<-, 173
1_subwin, 174
1_throwErrorIfNotLoonWidget, 174
1_toR, 175
1_widget, 175
1_worldview, 176
1_zoom, 176
linegraph, 12, 14
linegraph.loongraph, 12
loon, 13
loon-package (loon), 13
loon_palette, 8, 9, 15, 168, 169
loongraph, 14, 54, 68-70, 72-74

make_glyphs, 59,61, 177

map, 92, 160

measuresld, /149-157, 178
measures2d, 149-157, 178, 179, 179, 185
minority, 180

ndtransitiongraph, 180

olive, 181, 181, 182
oliveAcids, 181

plot.loongraph, 182
png, 177

190 INDEX

print.1_layer, 183
print.measuresid, 183
print.measures2d, 184

rainbow, /11
rasterImage, 128

scagnostics, 153, 156, 157

scagnostics2d, 149, 150, 152-154, 156, 157,
184

scales, 169

sp, 90, 91, 93—100

tcl, 148, 175
terrain.colors, 111
tkcolors, 8, 168, 185
tkpack, 159
tkplace, 159
topo.colors, 111

UsAndThem, 186

xy.coords, 117,122, 135, 159

	as.graph
	as.loongraph
	color_loon
	complement
	complement.loongraph
	completegraph
	graphreduce
	linegraph
	linegraph.loongraph
	loon
	loongraph
	loon_palette
	l_after_idle
	l_aspect
	l_aspect<-
	l_bind_canvas
	l_bind_canvas_delete
	l_bind_canvas_get
	l_bind_canvas_ids
	l_bind_canvas_reorder
	l_bind_context
	l_bind_context_delete
	l_bind_context_get
	l_bind_context_ids
	l_bind_context_reorder
	l_bind_glyph
	l_bind_glyph_delete
	l_bind_glyph_get
	l_bind_glyph_ids
	l_bind_glyph_reorder
	l_bind_item
	l_bind_item_delete
	l_bind_item_get
	l_bind_item_ids
	l_bind_item_reorder
	l_bind_layer
	l_bind_layer_delete
	l_bind_layer_get
	l_bind_layer_ids
	l_bind_layer_reorder
	l_bind_navigator
	l_bind_navigator_delete
	l_bind_navigator_get
	l_bind_navigator_ids
	l_bind_navigator_reorder
	l_bind_state
	l_bind_state_delete
	l_bind_state_get
	l_bind_state_ids
	l_bind_state_reorder
	l_cget
	l_configure
	l_context_add_context2d
	l_context_add_geodesic2d
	l_context_add_slicing2d
	l_context_delete
	l_context_getLabel
	l_context_ids
	l_context_relabel
	l_create_handle
	l_currentindex
	l_currenttags
	l_data
	l_export
	l_export_valid_formats
	l_getColorList
	l_getGraph
	l_getLinkedStates
	l_glyphs_inspector
	l_glyphs_inspector_image
	l_glyphs_inspector_pointrange
	l_glyphs_inspector_serialaxes
	l_glyphs_inspector_text
	l_glyph_add
	l_glyph_add.default
	l_glyph_add_image
	l_glyph_add_pointrange
	l_glyph_add_polygon
	l_glyph_add_serialaxes
	l_glyph_add_text
	l_glyph_delete
	l_glyph_getLabel
	l_glyph_getType
	l_glyph_ids
	l_glyph_relabel
	l_graph
	l_graph.default
	l_graph.graph
	l_graph.loongraph
	l_graphswitch
	l_graphswitch_add
	l_graphswitch_add.default
	l_graphswitch_add.graph
	l_graphswitch_add.loongraph
	l_graphswitch_delete
	l_graphswitch_get
	l_graphswitch_getLabel
	l_graphswitch_ids
	l_graphswitch_move
	l_graphswitch_relabel
	l_graphswitch_reorder
	l_graphswitch_set
	l_graph_inspector
	l_graph_inspector_analysis
	l_graph_inspector_navigators
	l_help
	l_hexcolor
	l_hist
	l_hist_inspector
	l_hist_inspector_analysis
	l_imageviewer
	l_image_import_array
	l_image_import_files
	l_info_states
	l_isLoonWidget
	l_layer
	l_layer.density
	l_layer.Line
	l_layer.Lines
	l_layer.map
	l_layer.Polygon
	l_layer.Polygons
	l_layer.SpatialLines
	l_layer.SpatialLinesDataFrame
	l_layer.SpatialPoints
	l_layer.SpatialPointsDataFrame
	l_layer.SpatialPolygons
	l_layer.SpatialPolygonsDataFrame
	l_layers_inspector
	l_layer_bbox
	l_layer_contourLines
	l_layer_delete
	l_layer_demote
	l_layer_expunge
	l_layer_getChildren
	l_layer_getLabel
	l_layer_getParent
	l_layer_getType
	l_layer_group
	l_layer_groupVisibility
	l_layer_heatImage
	l_layer_hide
	l_layer_ids
	l_layer_index
	l_layer_isVisible
	l_layer_layerVisibility
	l_layer_line
	l_layer_lines
	l_layer_lower
	l_layer_move
	l_layer_oval
	l_layer_points
	l_layer_polygon
	l_layer_polygons
	l_layer_printTree
	l_layer_promote
	l_layer_raise
	l_layer_rasterImage
	l_layer_rectangle
	l_layer_rectangles
	l_layer_relabel
	l_layer_show
	l_layer_text
	l_layer_texts
	l_loon_inspector
	l_move_grid
	l_move_halign
	l_move_hdist
	l_move_jitter
	l_move_reset
	l_move_valign
	l_move_vdist
	l_navgraph
	l_navigator_add
	l_navigator_delete
	l_navigator_getLabel
	l_navigator_ids
	l_navigator_relabel
	l_navigator_walk_backward
	l_navigator_walk_forward
	l_navigator_walk_path
	l_nestedTclList2Rlist
	l_ng_plots
	l_ng_plots.default
	l_ng_plots.measures
	l_ng_plots.scagnostics
	l_ng_ranges
	l_ng_ranges.default
	l_ng_ranges.measures
	l_ng_ranges.scagnostics
	l_pairs
	l_plot
	l_plot.default
	l_plot.map
	l_plot_inspector
	l_plot_inspector_analysis
	l_redraw
	l_resize
	l_Rlist2nestedTclList
	l_scaleto_active
	l_scaleto_layer
	l_scaleto_plot
	l_scaleto_selected
	l_scaleto_world
	l_serialaxes
	l_serialaxes_inspector
	l_setAspect
	l_setColorList
	l_setColorList_baseR
	l_setColorList_ColorBrewer
	l_setColorList_hcl
	l_setLinkedStates
	l_size
	l_size<-
	l_subwin
	l_throwErrorIfNotLoonWidget
	l_toR
	l_widget
	l_worldview
	l_zoom
	make_glyphs
	measures1d
	measures2d
	minority
	ndtransitiongraph
	olive
	oliveAcids
	plot.loongraph
	print.l_layer
	print.measures1d
	print.measures2d
	scagnostics2d
	tkcolors
	UsAndThem
	Index

