Package ‘spacejam’

February 20, 2015
Type Package
Title Sparse conditional graph estimation with joint additive models.
Version 1.1
Date 2012-06-07
Author Arend Voorman
Maintainer Arend Voorman <voorma@uw.edu>
Depends igraph (>= 0.6), splines, Matrix

Description This package provides an extension of conditional
independence (CIG) and directed acyclic graph (DAG) estimation
to the case where conditional relationships are (non-linear)
additive models.

License GPL (>=2)
NeedsCompilation yes

Repository CRAN

Date/Publication 2013-04-16 19:38:01

R topics documented:
spacejam-package . . . . . .. .. e e e e e e e

generate.dag.data . . . . . ... L L
PlOt.SY . o e

Index



2 spacejam-package

spacejam-package Fit sparse conditional independence graphs with joint additive models

Description

This package is called ‘spacejam’, which can be thought to stand for SParse Conditional Estima-
tion with Joint Additive Models. The two main functions of this package, SJ and SJ. dag, estimate
conditional independence graphs and DAGs using flexible node-wise regressions, employing a stan-
dardized group lasso to encourage sparsity. Details of the method are given in Voorman, Shojaie
and Witten (2013). Graph Estimation with Joint Additive Models.

Details

Package: spacejam
Type: Package
Version: 1.1
Date: 2013-04-08
License: GPL >=2

The package includes the following functions:

SJ and SJ.dag: Estimate the conditional independence graph, or directed acyclic graph, based on observed data
rdag: construct a random directed acyclic graph
moralize: Determine the moral graph, which is the conditional independence graph associated with the directed
generate.dag.data: Generate data from a bayesian network
plot.SJ: Plot SJ and SJ.dag objects.

Author(s)

Arend Voorman

Maintainer: Arend Voorman <voorma@uw.edu>

References
Voorman, Shojaie and Witten (2013). Graph Estimation with Joint Additive Models. Submitted to
Biometrika. available on ArXiv or from authors upon request

See Also

spacejam SJ generate.dag.data

Examples

#iHHHHHHHICreate graph and distribution used in Figure 2 of Voorman, Shojaie and Witten (2013):
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p <- 100 #variables
n <- 50 #observations

#Generate Graph

set.seed(20)

g <- rdag(p, 89)

mylayout <- layout.fruchterman.reingold(g)

par(mfrow=c(1,2))

plot(g, layout = mylayout, edge.color = "gray5e",
vertex.color = "red", vertex.size = 3, vertex.label = NA,
edge.arrow.size = 0.4)

plot(moralize(g), layout = mylayout, edge.color = "gray50",
vertex.color = "red", vertex.size = 3, vertex.label = NA,
edge.arrow.size = 0.4)

#create a distribution on the DAG using cubic polynomials with random normal coefficients

#with standard deviations of 1, 0.5 and 0.5, (i.e. giving more weight to linear association than quadratic or cubi
data <- generate.dag.data(g,n,basesd=c(1,0.5,0.5))

X <- data$x

#Fit conditional independence graph at one lambda
fitl <- SJ(X, lambda = 0.6)

#Fit conditional independence graph at 10 (hopefully reasonable) lambdas:
fit2 <- SJ(X, length = 10)

#Fit conditional independence graph using quadratic basis functions:
fit3 <- SJ(X, bfun = function(x){cbind(x,x*2)}, length = 10)

#Fit the DAG using default causal ordering 1:p, and at 10 lambdas
fit4 <- SJ.dag(X, length = 10)
fit4

#plot the DAGs, and the true graph

par(mfrow=c(1,3))

plot(g, layout=mylayout, edge.color = "gray50"”, vertex.color = "red”, vertex.size = 3, vertex.label = NA, edge.ar
plot(fit4, layout = mylayout, which= 4, main= paste@("”lambda = ",round(fit4$lambdal4]1,2) ))

plot(fit4, layout = mylayout, main = "min BIC")

###For additional replications using the same DAG distribution use e.g.
data <- generate.dag.data(g,n,funclist = data$funclist)

#### Screen out edges whose corresponding nodes have low spearman correlation:
# useful for approximating spacejam in high dimesnions

S <- cor(data$X, method = "spearman”)

G.max <- S > 0.1

mean(G.max) #~75% of edges removed

system.time({fit.screen <- SJ(X, G.max = G.max,length=20)})
system.time({fit.noscreen <- SJ(X,length = 20)})
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plot(fit.screen, layout=mylayout)
plot(fit.noscreen, layout=mylayout)

generate.dag.data

Generate nonlinear data from DAGs

Description

These funtions create distributions on directed acyclic graphs. rdag generates a random DAG with a
given number of edges by selecting 'nedges’ at random from (p choose 2) possible edges, moralize
gets the moral graph from a DAG, and generate.dag.data generates non-linear data by assigning
each edge a cubic polynomial basis with random coefficients.

Usage

rdag(p, nedges)
moralize(g)

generate.dag.data(g, n, basesd = 1, basemean = @, bfuns = function(x){cbind(x, x*2, x*3)},
funclist = NULL, usenorm = T)

Arguments

nedges

bfuns

basesd

basemean

funclist

usenorm

a directed graph, as an ’igraph’ object
number of vertices

number of observations

number of edges

the basis functions for the structural equations. Note that when the basis func-
tions generated, they are centered and scaled to have variance 1, so similar co-
efficients correspond to similar amounts of variance explained. Ignored if ‘fun-
clist is supplied.

standard deviation of the random coefficients assigned to the basis functions.
Ignored if ‘funclist® is supplied.

means of the (random) coefficients assigned to the basis functions. Ignored if
‘funclist® is supplied.

p by p list of functions determining the structural equations. funclist[[i]][[j]1(x)
is the effect of feature j on feature i. If this is omitted, the functions are generated
at random from the bases supplied in bfuns.

logical. whether to use normal or uniform errors
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Details

Multivariate distributions with complicated conditional dependence structures corresponding to a
particular graph are difficult to construct in general. However, constructing complicated distribu-
tions from a DAG is straighforward. These functions are meant to facilitate construction of compli-
cated distributions on a DAG, and obtain the coresponding conditional independence structure.

generate.dag.data generates Normal(basemean,basesd) coefficients for the basis functions core-
sponding to each edge. This gives a function f_ij(x_j), which is standardized to have variance
1. Then data is generated for a feature conditioned on its parents by

x_i =sum_(j in parents(i)) f_ij + noise

where ‘noise’ is by default N(0,1). These data are returned, along with the generated functions
which can be used in subsequent simulations.

Value
‘rdag’ returns an ‘igraph‘ object.

‘generate.dat.data’ returns a list with two elements: an n by p matrix "X’ and a p by p list ‘funclist’,
where funclist[[i]][[j]] is the effect of feature j on feature i.

‘moralize‘ returns an undirected igraph object.

Author(s)

Arend Voorman

References

Voorman, Shojaie and Witten (2013). Graph Estimation with Joint Additive Models. Submitted to
Biometrika. available on ArXiv or from authors upon request

See Also

igraph spacejam SJ plot.SJ

Examples

#ittHHH#H#Create graph and distribution used in Figure 2 of Voorman, Shojaie and Witten (2013):
p <- 100 #variables
n <- 50 #observations

#Generate Graph

set.seed(20)

g <- rdag(p,80)

mylayout <- layout.fruchterman.reingold(g)

par(mfrow=c(1,2))

plot(g, layout = mylayout, edge.color = "gray5e",
vertex.color = "red"”, vertex.size = 3, vertex.label = NA,
edge.arrow.size = 0.4)

plot(moralize(g), layout = mylayout, edge.color = "gray5e0",

”

vertex.color = "red"”, vertex.size = 3, vertex.label = NA,
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edge.arrow.size = 0.4)

#create a distribution on the DAG using cubic polynomials with random normal coefficients

#with standard deviations of 1, 0.5 and 0.5, (i.e. giving more weight to linear association than quadratic or cubi
data <- generate.dag.data(g,n,basesd=c(1,0.5,0.5))

X <- data$X

#Fit conditional independence graph at one lambda
fit1l <- SJ(X, lambda = 0.6)

###For additional replications using the same DAG distribution use e.g.
data <- generate.dag.data(g,n,funclist = data$funclist)

plot.SJ plot an object of class ST or SJ.dag

Description

This function plots an SJ or SJ.dag

Usage
## S3 method for class 'SJ'
plot(x, which = NULL, layout = NULL, ...)
Arguments
X an object of class SJ or SJ.dag
which The index of which to plot. If not specified, the penalty with the smallest BIC is
used.
layout the layout of the graph to use. If not specified, layout. fruchterman.reingold
is used.

additional parameters to be passed to plot.igraph.

Details

This function plots a graph in SJ or SJ.dags ’graph’ field, using some sane degaults for vertex size
and color.

Value

returns the layout used, invisibly.

Author(s)

Arend Voorman



References

Voorman, Shojaie and Witten (2013). Graph Estimation with Joint Additive Models. Submitted to
Biometrika. available on ArXiv or from authors upon request

See Also

plot.igraph spacejam SJ generate.dag.data

Examples

p <- 100 #variables
n <- 50 #observations

#Generate Data

set.seed(20)

g <- rdag(p,890)

data <- generate.dag.data(g,n,basesd=c(1,0.5,0.5))
X <- datas$X

#Fit conditional independence graph for sequence of 10 lambdas
fitl <- SJ(X, length = 10)

par(mfrow=c(1,2))
layout <- plot(fit1l, main = "min BIC")

plot(fitl, which=5, layout = layout, main = paste@("lambda = ",round(fitl1$lambdal5],3)))
SJ Estimate a graph with Spacejam
Description

These functions estimate graphs using flexible node-wise regressions, employing a group-lasso
penalty to encourage sparsity. Details are given in Voorman, Shojaie and Witten (2013).

Usage

SJ(X, bfun = bs, lambda=NULL, length =NULL, verbose = FALSE, b@ = NULL, maxit = 100,
tol = .Machine$double.eps*@.25,G.max = NULL)

SJ.dag(X, bfun = bs, lambda=NULL, length =NULL, ord = 1:p, verbose = FALSE, b@ = NULL,

maxit = 100, tol = .Machine$double.eps*0.25)

Arguments
X an n by p matrix of observations
bfun a function to generate bases for each of the p features (e.g. *bs’ or function(x){cbind(x,x"*2)}).

The default is bs, which generates cubic polynomials (i.e. spacejam in 3 dimen-
sions)



lambda

length
verbose

bo

maxit

tol

ord

G.max

Details

SJ

penalty terms. These should be between 0 and k, where k is the number of basis
functions. If none are specified, the ‘length’ argument specifies the number of
penalty terms to choose automatically (default is 10).

number of penalty terms. This is ignored if lambda is specified.
logical. whether to print progress indicator.

a p*k by p matrix of coefficients to be used as initial values. Typically obtained
from the ‘betas‘ value of an SJ object.

maximum number of iterations

Tolerance for convergence. This is the maximum change in coefficients in sub-
sequent iterations.

for SJ.dag: The causal ordering of the variables, according to the columns of X.
If none is given, assumed to be 1:ncol(X) i.e. the first column of X is first in the
causal ordering, and the final column is last in the causal ordering.

An adjacency matrix of dimension ncol(X) by ncol(X) specifying all potential
edges to be considered. This is a Useful for screening rules, where many edges
are not considered, or incorporating known structures of the graph.

This implements the method described in Voorman, Shojaie and Witten ‘Graph estimation with joint
additive models‘, which regresses each feature on the others using generalized additive models,
subject to sparsity inducing penalties.

The function is designed to estimate the graph for a sequence of tuning parameters, using warm
starts to improve speed. In addition, an ‘active set’ approach is used as described in Friedman et al

(2010).

Value

an object of class ’SJ’ or ’SJ.dag’.

Among some internal variables, these objects include the elements

graphs
lambda
bic

dfs

rss

Author(s)

Arend Voorman

a list of the estimates, each of class igraph
a vector of the corresponding tuning parameters
a vector of estimated BIC criteria.

a p x length matrix of the estimated degrees of freedom for each feature and
tuning parameter.

a p x length matrix of the residual sum of squares for each feature and tuning
parameter.
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References

Voorman, Shojaie and Witten (2013). Graph Estimation with Joint Additive Models. Submitted to
Biometrika. available on ArXiv or from authors upon request

Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for General-
ized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. URL
http://www.jstatsoft.org/v33/i01/.

See Also

spacejam generate.dag.data plot.SJ

Examples

#iHHHHHH#Create graph and distribution used in Figure 2 of Voorman, Shojaie and Witten (2013):
p <- 100 #variables
n <- 50 #observations

#Generate Graph

set.seed(20)

g <- rdag(p,80)

mylayout <- layout.fruchterman.reingold(g)

par(mfrow=c(1,2))

plot(g, layout = mylayout, edge.color = "gray50",
vertex.color = "red"”, vertex.size = 3, vertex.label
edge.arrow.size = 0.4)

plot(moralize(g), layout = mylayout, edge.color = "gray50",
vertex.color = "red"”, vertex.size = 3, vertex.label = NA,
edge.arrow.size = 0.4)

NA,

#create a distribution on the DAG using cubic polynomials with random normal coefficients

#with standard deviations of 1, 0.5 and 0.5, (i.e. giving more weight to linear association than quadratic or cubi
data <- generate.dag.data(g,n,basesd=c(1,0.5,0.5))

X <- data$x

#Fit conditional independence graph at one lambda , using the default basis functions (cubic polynomials).
fitl <- SJ(X, lambda = 0.6)

#Fit conditional independence graph at 10 (hopefully reasonable) lambdas:
fit2 <- SJ(X, length = 10)

#Fit conditional independence graph using quadratic basis functions:
fit3 <- SJ(X, bfun = function(x){cbind(x,x*2)3}, length = 10)

#Fit the DAG using default causal ordering 1:p, and at 10 lambdas
fit4 <- SJ.dag(X, length = 10)
fit4

#plot the DAGs, and the true graph
par(mfrow=c(1,3))
plot(g, layout=mylayout, edge.color = "gray50"”, vertex.color = "red”, vertex.size = 3, vertex.label = NA, edge.ar
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SJ

plot(fit4, layout = mylayout, which= 4, main= paste@("lambda = ",round(fit4$lambdal[4],2) ))

plot(fit4, layout = mylayout, main = "min BIC")

###For additional replications using the same DAG distribution use e.g.
data <- generate.dag.data(g,n,funclist = data$funclist)

#### Screen out edges whose corresponding nodes have low spearman correlation:
# useful for approximating spacejam in high dimesnions

S <- cor(data$X, method = "spearman")

G.max <- S > 0.1

mean(G.max) #~75% of edges removed

system.time({fit.screen <- SJ(X, G.max = G.max,length=20)3})
system.time({fit.noscreen <- SJ(X,length = 20)})

plot(fit.screen, layout=mylayout)
plot(fit.noscreen, layout=mylayout)
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