Last updated on 2017-12-20 00:47:09 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.0-4 | 14.79 | 52.03 | 66.82 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 1.0-4 | ERROR | ||||
r-devel-linux-x86_64-fedora-clang | 1.0-4 | 100.20 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 1.0-4 | 97.25 | ERROR | |||
r-devel-windows-ix86+x86_64 | 1.0-4 | 46.00 | 104.00 | 150.00 | ERROR | |
r-patched-linux-x86_64 | 1.0-4 | 13.87 | 76.78 | 90.65 | NOTE | |
r-patched-solaris-x86 | 1.0-4 | 164.10 | NOTE | |||
r-release-linux-x86_64 | 1.0-4 | 13.48 | 76.07 | 89.55 | NOTE | |
r-release-windows-ix86+x86_64 | 1.0-4 | 34.00 | 159.00 | 193.00 | NOTE | |
r-release-osx-x86_64 | 1.0-4 | NOTE | ||||
r-oldrel-windows-ix86+x86_64 | 1.0-4 | 52.00 | 149.00 | 201.00 | NOTE | |
r-oldrel-osx-x86_64 | 1.0-4 | NOTE |
Version: 1.0-4
Check: R code for possible problems
Result: NOTE
WelchSatter: no visible global function definition for ‘qt’
bigcor: no visible binding for global variable ‘cor’
bigcor: no visible binding for global variable ‘cov’
contribution: no visible global function definition for ‘barplot’
counter: no visible global function definition for ‘flush.console’
dsn: no visible global function definition for ‘dnorm’
dsn: no visible global function definition for ‘pnorm’
dst: no visible global function definition for ‘dt’
fitDistr: no visible global function definition for ‘var’
fitDistr: no visible global function definition for ‘sd’
fitDistr: no visible global function definition for ‘density’
fitDistr: no visible global function definition for ‘hist’
fitDistr : fitAIC: no visible global function definition for ‘AIC’
fitDistr: no visible binding for global variable ‘dnorm’
fitDistr: no visible binding for global variable ‘dlnorm’
fitDistr: no visible binding for global variable ‘dlogis’
fitDistr: no visible binding for global variable ‘dunif’
fitDistr: no visible binding for global variable ‘dgamma’
fitDistr: no visible binding for global variable ‘dcauchy’
fitDistr: no visible global function definition for ‘lines’
interval: no visible global function definition for ‘abline’
makeGrad : FUN: no visible global function definition for ‘D’
makeHess : FUN: no visible global function definition for ‘D’
mixCov: no visible global function definition for ‘cov’
plot.propagate: no visible global function definition for ‘par’
plot.propagate: no visible global function definition for ‘quantile’
plot.propagate: no visible global function definition for ‘hist’
plot.propagate: no visible global function definition for ‘density’
plot.propagate: no visible global function definition for ‘lines’
plot.propagate: no visible global function definition for ‘title’
plot.propagate: no visible global function definition for ‘abline’
plot.propagate: no visible global function definition for ‘boxplot’
predictNLS: no visible global function definition for ‘coef’
predictNLS: no visible global function definition for ‘vcov’
predictNLS: no visible global function definition for ‘tail’
predictNLS: no visible global function definition for ‘qt’
predictNLS: no visible global function definition for ‘df.residual’
predictNLS: no visible global function definition for ‘residuals’
propagate : <anonymous>: no visible global function definition for ‘sd’
propagate: no visible global function definition for ‘cov’
propagate: no visible global function definition for ‘quantile’
propagate: no visible global function definition for ‘rnorm’
propagate: no visible global function definition for ‘sd’
propagate: no visible global function definition for ‘median’
propagate: no visible global function definition for ‘mad’
rJSB : erf.inv: no visible global function definition for ‘qnorm’
rJSB: no visible global function definition for ‘runif’
rJSU : erf.inv: no visible global function definition for ‘qnorm’
rJSU: no visible global function definition for ‘runif’
rarcsin: no visible global function definition for ‘runif’
rbeta2: no visible global function definition for ‘qbeta’
rbeta2: no visible global function definition for ‘runif’
rctrap: no visible global function definition for ‘runif’
rgnorm : invcerf: no visible global function definition for ‘qnorm’
rgnorm: no visible global function definition for ‘runif’
rgtrap: no visible global function definition for ‘runif’
rgumbel: no visible global function definition for ‘runif’
rlaplace: no visible global function definition for ‘runif’
rmises: no visible global function definition for ‘runif’
rsn: no visible global function definition for ‘rnorm’
rst: no visible global function definition for ‘rt’
rtrap: no visible global function definition for ‘runif’
rtriang: no visible global function definition for ‘runif’
rweibull2: no visible global function definition for ‘runif’
summary.propagate: no visible global function definition for
‘shapiro.test’
summary.propagate: no visible global function definition for ‘rnorm’
summary.propagate: no visible global function definition for ‘sd’
summary.propagate: no visible global function definition for ‘ks.test’
Undefined global functions or variables:
AIC D abline barplot boxplot coef cor cov dcauchy density df.residual
dgamma dlnorm dlogis dnorm dt dunif flush.console hist ks.test lines
mad median par pnorm qbeta qnorm qt quantile residuals rnorm rt runif
sd shapiro.test tail title var vcov
Consider adding
importFrom("graphics", "abline", "barplot", "boxplot", "hist", "lines",
"par", "title")
importFrom("stats", "AIC", "D", "coef", "cor", "cov", "dcauchy",
"density", "df.residual", "dgamma", "dlnorm", "dlogis",
"dnorm", "dt", "dunif", "ks.test", "mad", "median", "pnorm",
"qbeta", "qnorm", "qt", "quantile", "residuals", "rnorm",
"rt", "runif", "sd", "shapiro.test", "var", "vcov")
importFrom("utils", "flush.console", "tail")
to your NAMESPACE file.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-patched-linux-x86_64, r-patched-solaris-x86, r-release-linux-x86_64, r-release-windows-ix86+x86_64, r-release-osx-x86_64, r-oldrel-windows-ix86+x86_64, r-oldrel-osx-x86_64
Version: 1.0-4
Check: compiled code
Result: NOTE
File ‘propagate/libs/propagate.so’:
Found no calls to: ‘R_registerRoutines’, ‘R_useDynamicSymbols’
It is good practice to register native routines and to disable symbol
search.
See ‘Writing portable packages’ in the ‘Writing R Extensions’ manual.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-linux-x86_64, r-release-linux-x86_64
Version: 1.0-4
Check: examples
Result: ERROR
Running examples in ‘propagate-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: predictNLS
> ### Title: Confidence intervals for nonlinear models based on uncertainty
> ### propagation
> ### Aliases: predictNLS
> ### Keywords: array algebra multivariate
>
> ### ** Examples
>
> ## Example from ?nls.
> DNase1 <- subset(DNase, Run == 1)
> fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
+ data = DNase1, start = list(Asym = 3, xmid = 0, scal = 1))
>
> ## Using a single predictor value without error.
> PROP1 <- predictNLS(fm3DNase1, newdata = data.frame(conc = 2))
Propagating predictor value #1 ...
> PRED1 <- predict(fm3DNase1, newdata = data.frame(conc = 2))
> PROP1$summary
Prop.Mean.1 Prop.Mean.2 Prop.sd.1 Prop.sd.2 Prop.2.5% Prop.97.5%
1 0.7480472 0.7481514 0.008042515 0.008052591 0.7307548 0.7655479
Sim.Mean Sim.sd Sim.Median Sim.MAD Sim.2.5% Sim.97.5%
1 0.7481505 0.008041165 0.7481565 0.008040288 0.7323719 0.7639674
> PRED1
[1] 0.7480472
> ## => Prop.Mean.1 equal to PRED1
>
> ## Not run:
> ##D ## Using a sequence of predictor values without error.
> ##D CONC <- seq(1, 12, by = 1)
> ##D PROP2 <- predictNLS(fm3DNase1, newdata = data.frame(conc = CONC))
> ##D PRED2 <- predict(fm3DNase1, newdata = data.frame(conc = CONC))
> ##D PROP2$summary
> ##D PRED2
> ##D ## => Prop.Mean.1 equal to PRED2
> ##D
> ##D ## Using a sequence of predictor values with error.
> ##D DAT <- data.frame(conc = CONC, error = rnorm(12, 0, 0.1))
> ##D PROP3 <- predictNLS(fm3DNase1, newdata = DAT)
> ##D PRED3 <- predict(fm3DNase1, newdata = DAT)
> ##D PROP3$summary
> ##D PRED3
> ##D ## => Prop.Mean.1 equal to PRED3
> ##D
> ##D ## Plot predicted and confidence values from
> ##D ## first-/second-order Taylor expansion
> ##D ## and Monte Carlo simulation.
> ##D plot(DNase1$conc, DNase1$density)
> ##D lines(DNase1$conc, fitted(fm3DNase1), lwd = 2, col = 1)
> ##D points(CONC, PROP2$summary[, 1], col = 2, pch = 16)
> ##D lines(CONC, PROP2$summary[, 5], col = 2)
> ##D lines(CONC, PROP2$summary[, 6], col = 2)
> ## End(Not run)
>
> ## Using multiple predictor values
> ## 1: Setup of response values
> ## with gaussian error of 10%.
> x <- seq(1, 10, by = 0.01)
> y <- seq(10, 1, by = -0.01)
> a <- 2
> b <- 5
> c <- 10
> z <- a * exp(b * x)^sin(y/c)
> z <- z + sapply(z, function(x) rnorm(1, x, 0.10 * x))
> ## 2: Fit 'nls' model.
> MOD <- nls(z ~ a * exp(b * x)^sin(y/c),
+ start = list(a = 2, b = 5, c = 10))
> ## 3: newdata without errors and prediction.
> DAT1 <- data.frame(x = 4, y = 3)
> PROP4 <- predictNLS(MOD, newdata = DAT1)
Propagating predictor value #1 ...
> PROP4$summary
Prop.Mean.1 Prop.Mean.2 Prop.sd.1 Prop.sd.2 Prop.2.5% Prop.97.5% Sim.Mean
1 1444.777 1442.775 54.96645 55.04017 1334.753 1550.798 1442.775
Sim.sd Sim.Median Sim.MAD Sim.2.5% Sim.97.5%
1 55.09039 1444.558 54.91878 1329.912 1545.241
> ## 4: newdata with errors and prediction.
> DAT2 <- data.frame(x = 4, y = 3, error.x = 0.2, error.y = 0.1)
> PROP5 <- predictNLS(MOD, newdata = DAT2)
Propagating predictor value #1 ...
Error in `rownames<-`(`*tmp*`, value = make.unique(nameVEC)) :
attempt to set 'rownames' on an object with no dimensions
Calls: predictNLS -> mixCov -> makeCov -> rownames<-
Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc
Version: 1.0-4
Check: examples
Result: ERROR
Running examples in ‘propagate-Ex.R’ failed
The error most likely occurred in:
> ### Name: predictNLS
> ### Title: Confidence intervals for nonlinear models based on uncertainty
> ### propagation
> ### Aliases: predictNLS
> ### Keywords: array algebra multivariate
>
> ### ** Examples
>
> ## Example from ?nls.
> DNase1 <- subset(DNase, Run == 1)
> fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
+ data = DNase1, start = list(Asym = 3, xmid = 0, scal = 1))
>
> ## Using a single predictor value without error.
> PROP1 <- predictNLS(fm3DNase1, newdata = data.frame(conc = 2))
Propagating predictor value #1 ...
> PRED1 <- predict(fm3DNase1, newdata = data.frame(conc = 2))
> PROP1$summary
Prop.Mean.1 Prop.Mean.2 Prop.sd.1 Prop.sd.2 Prop.2.5% Prop.97.5%
1 0.7480472 0.7481514 0.008042515 0.008052591 0.7307548 0.7655479
Sim.Mean Sim.sd Sim.Median Sim.MAD Sim.2.5% Sim.97.5%
1 0.7481505 0.008041165 0.7481565 0.008040288 0.7323719 0.7639674
> PRED1
[1] 0.7480472
> ## => Prop.Mean.1 equal to PRED1
>
> ## Not run:
> ##D ## Using a sequence of predictor values without error.
> ##D CONC <- seq(1, 12, by = 1)
> ##D PROP2 <- predictNLS(fm3DNase1, newdata = data.frame(conc = CONC))
> ##D PRED2 <- predict(fm3DNase1, newdata = data.frame(conc = CONC))
> ##D PROP2$summary
> ##D PRED2
> ##D ## => Prop.Mean.1 equal to PRED2
> ##D
> ##D ## Using a sequence of predictor values with error.
> ##D DAT <- data.frame(conc = CONC, error = rnorm(12, 0, 0.1))
> ##D PROP3 <- predictNLS(fm3DNase1, newdata = DAT)
> ##D PRED3 <- predict(fm3DNase1, newdata = DAT)
> ##D PROP3$summary
> ##D PRED3
> ##D ## => Prop.Mean.1 equal to PRED3
> ##D
> ##D ## Plot predicted and confidence values from
> ##D ## first-/second-order Taylor expansion
> ##D ## and Monte Carlo simulation.
> ##D plot(DNase1$conc, DNase1$density)
> ##D lines(DNase1$conc, fitted(fm3DNase1), lwd = 2, col = 1)
> ##D points(CONC, PROP2$summary[, 1], col = 2, pch = 16)
> ##D lines(CONC, PROP2$summary[, 5], col = 2)
> ##D lines(CONC, PROP2$summary[, 6], col = 2)
> ## End(Not run)
>
> ## Using multiple predictor values
> ## 1: Setup of response values
> ## with gaussian error of 10%.
> x <- seq(1, 10, by = 0.01)
> y <- seq(10, 1, by = -0.01)
> a <- 2
> b <- 5
> c <- 10
> z <- a * exp(b * x)^sin(y/c)
> z <- z + sapply(z, function(x) rnorm(1, x, 0.10 * x))
> ## 2: Fit 'nls' model.
> MOD <- nls(z ~ a * exp(b * x)^sin(y/c),
+ start = list(a = 2, b = 5, c = 10))
> ## 3: newdata without errors and prediction.
> DAT1 <- data.frame(x = 4, y = 3)
> PROP4 <- predictNLS(MOD, newdata = DAT1)
Propagating predictor value #1 ...
> PROP4$summary
Prop.Mean.1 Prop.Mean.2 Prop.sd.1 Prop.sd.2 Prop.2.5% Prop.97.5% Sim.Mean
1 1444.777 1442.775 54.96645 55.04017 1334.753 1550.798 1442.775
Sim.sd Sim.Median Sim.MAD Sim.2.5% Sim.97.5%
1 55.09039 1444.558 54.91878 1329.912 1545.241
> ## 4: newdata with errors and prediction.
> DAT2 <- data.frame(x = 4, y = 3, error.x = 0.2, error.y = 0.1)
> PROP5 <- predictNLS(MOD, newdata = DAT2)
Propagating predictor value #1 ...
Error in `rownames<-`(`*tmp*`, value = make.unique(nameVEC)) :
attempt to set 'rownames' on an object with no dimensions
Calls: predictNLS -> mixCov -> makeCov -> rownames<-
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc
Version: 1.0-4
Check: running examples for arch ‘i386’
Result: ERROR
Running examples in 'propagate-Ex.R' failed
The error most likely occurred in:
> ### Name: predictNLS
> ### Title: Confidence intervals for nonlinear models based on uncertainty
> ### propagation
> ### Aliases: predictNLS
> ### Keywords: array algebra multivariate
>
> ### ** Examples
>
> ## Example from ?nls.
> DNase1 <- subset(DNase, Run == 1)
> fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
+ data = DNase1, start = list(Asym = 3, xmid = 0, scal = 1))
>
> ## Using a single predictor value without error.
> PROP1 <- predictNLS(fm3DNase1, newdata = data.frame(conc = 2))
Propagating predictor value #1 ...
> PRED1 <- predict(fm3DNase1, newdata = data.frame(conc = 2))
> PROP1$summary
Prop.Mean.1 Prop.Mean.2 Prop.sd.1 Prop.sd.2 Prop.2.5% Prop.97.5%
1 0.7480472 0.7481514 0.008042515 0.008052591 0.7307548 0.7655479
Sim.Mean Sim.sd Sim.Median Sim.MAD Sim.2.5% Sim.97.5%
1 0.7481507 0.008043127 0.7481808 0.008074998 0.7323472 0.7637585
> PRED1
[1] 0.7480472
> ## => Prop.Mean.1 equal to PRED1
>
> ## Not run:
> ##D ## Using a sequence of predictor values without error.
> ##D CONC <- seq(1, 12, by = 1)
> ##D PROP2 <- predictNLS(fm3DNase1, newdata = data.frame(conc = CONC))
> ##D PRED2 <- predict(fm3DNase1, newdata = data.frame(conc = CONC))
> ##D PROP2$summary
> ##D PRED2
> ##D ## => Prop.Mean.1 equal to PRED2
> ##D
> ##D ## Using a sequence of predictor values with error.
> ##D DAT <- data.frame(conc = CONC, error = rnorm(12, 0, 0.1))
> ##D PROP3 <- predictNLS(fm3DNase1, newdata = DAT)
> ##D PRED3 <- predict(fm3DNase1, newdata = DAT)
> ##D PROP3$summary
> ##D PRED3
> ##D ## => Prop.Mean.1 equal to PRED3
> ##D
> ##D ## Plot predicted and confidence values from
> ##D ## first-/second-order Taylor expansion
> ##D ## and Monte Carlo simulation.
> ##D plot(DNase1$conc, DNase1$density)
> ##D lines(DNase1$conc, fitted(fm3DNase1), lwd = 2, col = 1)
> ##D points(CONC, PROP2$summary[, 1], col = 2, pch = 16)
> ##D lines(CONC, PROP2$summary[, 5], col = 2)
> ##D lines(CONC, PROP2$summary[, 6], col = 2)
> ## End(Not run)
>
> ## Using multiple predictor values
> ## 1: Setup of response values
> ## with gaussian error of 10%.
> x <- seq(1, 10, by = 0.01)
> y <- seq(10, 1, by = -0.01)
> a <- 2
> b <- 5
> c <- 10
> z <- a * exp(b * x)^sin(y/c)
> z <- z + sapply(z, function(x) rnorm(1, x, 0.10 * x))
> ## 2: Fit 'nls' model.
> MOD <- nls(z ~ a * exp(b * x)^sin(y/c),
+ start = list(a = 2, b = 5, c = 10))
> ## 3: newdata without errors and prediction.
> DAT1 <- data.frame(x = 4, y = 3)
> PROP4 <- predictNLS(MOD, newdata = DAT1)
Propagating predictor value #1 ...
> PROP4$summary
Prop.Mean.1 Prop.Mean.2 Prop.sd.1 Prop.sd.2 Prop.2.5% Prop.97.5% Sim.Mean
1 1444.777 1442.775 54.96645 55.04017 1334.753 1550.798 1442.775
Sim.sd Sim.Median Sim.MAD Sim.2.5% Sim.97.5%
1 55.09039 1444.558 54.91878 1329.912 1545.241
> ## 4: newdata with errors and prediction.
> DAT2 <- data.frame(x = 4, y = 3, error.x = 0.2, error.y = 0.1)
> PROP5 <- predictNLS(MOD, newdata = DAT2)
Propagating predictor value #1 ...
Error in `rownames<-`(`*tmp*`, value = make.unique(nameVEC)) :
attempt to set 'rownames' on an object with no dimensions
Calls: predictNLS -> mixCov -> makeCov -> rownames<-
Execution halted
Flavor: r-devel-windows-ix86+x86_64
Version: 1.0-4
Check: running examples for arch ‘x64’
Result: ERROR
Running examples in 'propagate-Ex.R' failed
The error most likely occurred in:
> ### Name: predictNLS
> ### Title: Confidence intervals for nonlinear models based on uncertainty
> ### propagation
> ### Aliases: predictNLS
> ### Keywords: array algebra multivariate
>
> ### ** Examples
>
> ## Example from ?nls.
> DNase1 <- subset(DNase, Run == 1)
> fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
+ data = DNase1, start = list(Asym = 3, xmid = 0, scal = 1))
>
> ## Using a single predictor value without error.
> PROP1 <- predictNLS(fm3DNase1, newdata = data.frame(conc = 2))
Propagating predictor value #1 ...
> PRED1 <- predict(fm3DNase1, newdata = data.frame(conc = 2))
> PROP1$summary
Prop.Mean.1 Prop.Mean.2 Prop.sd.1 Prop.sd.2 Prop.2.5% Prop.97.5%
1 0.7480472 0.7481514 0.008042515 0.008052591 0.7307548 0.7655479
Sim.Mean Sim.sd Sim.Median Sim.MAD Sim.2.5% Sim.97.5%
1 0.7481505 0.008041165 0.7481565 0.008040288 0.7323719 0.7639674
> PRED1
[1] 0.7480472
> ## => Prop.Mean.1 equal to PRED1
>
> ## Not run:
> ##D ## Using a sequence of predictor values without error.
> ##D CONC <- seq(1, 12, by = 1)
> ##D PROP2 <- predictNLS(fm3DNase1, newdata = data.frame(conc = CONC))
> ##D PRED2 <- predict(fm3DNase1, newdata = data.frame(conc = CONC))
> ##D PROP2$summary
> ##D PRED2
> ##D ## => Prop.Mean.1 equal to PRED2
> ##D
> ##D ## Using a sequence of predictor values with error.
> ##D DAT <- data.frame(conc = CONC, error = rnorm(12, 0, 0.1))
> ##D PROP3 <- predictNLS(fm3DNase1, newdata = DAT)
> ##D PRED3 <- predict(fm3DNase1, newdata = DAT)
> ##D PROP3$summary
> ##D PRED3
> ##D ## => Prop.Mean.1 equal to PRED3
> ##D
> ##D ## Plot predicted and confidence values from
> ##D ## first-/second-order Taylor expansion
> ##D ## and Monte Carlo simulation.
> ##D plot(DNase1$conc, DNase1$density)
> ##D lines(DNase1$conc, fitted(fm3DNase1), lwd = 2, col = 1)
> ##D points(CONC, PROP2$summary[, 1], col = 2, pch = 16)
> ##D lines(CONC, PROP2$summary[, 5], col = 2)
> ##D lines(CONC, PROP2$summary[, 6], col = 2)
> ## End(Not run)
>
> ## Using multiple predictor values
> ## 1: Setup of response values
> ## with gaussian error of 10%.
> x <- seq(1, 10, by = 0.01)
> y <- seq(10, 1, by = -0.01)
> a <- 2
> b <- 5
> c <- 10
> z <- a * exp(b * x)^sin(y/c)
> z <- z + sapply(z, function(x) rnorm(1, x, 0.10 * x))
> ## 2: Fit 'nls' model.
> MOD <- nls(z ~ a * exp(b * x)^sin(y/c),
+ start = list(a = 2, b = 5, c = 10))
> ## 3: newdata without errors and prediction.
> DAT1 <- data.frame(x = 4, y = 3)
> PROP4 <- predictNLS(MOD, newdata = DAT1)
Propagating predictor value #1 ...
> PROP4$summary
Prop.Mean.1 Prop.Mean.2 Prop.sd.1 Prop.sd.2 Prop.2.5% Prop.97.5% Sim.Mean
1 1444.777 1442.775 54.96645 55.04016 1334.753 1550.798 1442.775
Sim.sd Sim.Median Sim.MAD Sim.2.5% Sim.97.5%
1 55.09055 1444.517 54.85169 1329.825 1545.365
> ## 4: newdata with errors and prediction.
> DAT2 <- data.frame(x = 4, y = 3, error.x = 0.2, error.y = 0.1)
> PROP5 <- predictNLS(MOD, newdata = DAT2)
Propagating predictor value #1 ...
Error in `rownames<-`(`*tmp*`, value = make.unique(nameVEC)) :
attempt to set 'rownames' on an object with no dimensions
Calls: predictNLS -> mixCov -> makeCov -> rownames<-
Execution halted
Flavor: r-devel-windows-ix86+x86_64