hutils
packageMy name is Hugh. I’ve written some miscellaneous functions that don’t seem to belong in a particular package. I’ve usually put these in R/utils.R
when I write a package. Thus, hutils
.
This vignette just goes through each exported function.
library(knitr)
suggested_packages <- c("geosphere", "nycflights13", "dplyr", "ggplot2", "microbenchmark")
opts_chunk$set(eval = all(vapply(suggested_packages, requireNamespace, quietly = TRUE, FUN.VALUE = FALSE)))
tryCatch({
library(geosphere)
library(nycflights13)
library(dplyr, warn.conflicts = FALSE)
library(ggplot2)
library(microbenchmark)
library(data.table, warn.conflicts = FALSE)
library(magrittr)
library(hutils, warn.conflicts = FALSE)
},
# requireNamespace does not detect errors like
# package ‘dplyr’ was installed by an R version with different internals; it needs to be reinstalled for use with this R version
error = function(e) {
opts_chunk$set(eval = FALSE)
})
## Loading required package: sp
These are simple additions to magrittr
‘s aliases, including: capitalized forms of and
and or
that invoke &&
and ||
(the ’long-form’ logical operators) and nor
/ neither
functions.
The main motivation is to make the source code easier to indent. I occasionally find such source code easier to use.
OR(OR(TRUE,
stop("Never happens")), ## short-circuits
AND(FALSE,
stop("Never happens")))
## [1] TRUE
nor
(or neither
which is identical) returns TRUE
if and only if both arguments are FALSE
.
coalesce
and if_else
These are near drop-in replacements for the equivalent functions from dplyr
. They are included here because they are very useful outside of the tidyverse, but may be required in circumstances where importing dplyr
(with all of its dependencies) would be inappropriate.
They attempt to be drop-in replacements but:
hutils::if_else
only works with logical
, integer
, double
, and character
type vectors. Lists and factors won’t work.hutils::coalesce
short-circuits on its first argument; if there are no NA
s in x
then x
is returned, even if the other vectors are the wrong length or type.In addition, hutils::if_else
is generally faster than dplyr::if_else
:
my_check <- function(values) {
all(vapply(values[-1], function(x) identical(values[[1]], x), logical(1)))
}
cnd <- sample(c(TRUE, FALSE, NA), size = 100e3, replace = TRUE)
yes <- sample(letters, size = 100e3, replace = TRUE)
no <- sample(letters, size = 100e3, replace = TRUE)
na <- sample(letters, size = 100e3, replace = TRUE)
microbenchmark(dplyr = dplyr::if_else(cnd, yes, no, na),
hutils = hutils::if_else(cnd, yes, no, na),
check = my_check) %T>%
print %>%
autoplot
## Unit: milliseconds
## expr min lq mean median uq max neval
## dplyr 6.598484 8.017027 10.419082 8.782920 10.618142 74.85812 100
## hutils 3.629482 3.768024 5.899155 4.530152 7.222071 39.73457 100
cnd <- sample(c(TRUE, FALSE, NA), size = 100e3, replace = TRUE)
yes <- sample(letters, size = 1, replace = TRUE)
no <- sample(letters, size = 100e3, replace = TRUE)
na <- sample(letters, size = 1, replace = TRUE)
microbenchmark(dplyr = dplyr::if_else(cnd, yes, no, na),
hutils = hutils::if_else(cnd, yes, no, na),
check = my_check) %T>%
print %>%
autoplot
## Unit: milliseconds
## expr min lq mean median uq max neval
## dplyr 4.616138 4.705588 6.495623 5.383236 7.199332 61.978287 100
## hutils 1.879645 1.919099 2.308569 1.957951 2.341048 6.712329 100
This speed advantage also appears to be true of coalesce
:
x <- sample(c(letters, NA), size = 100e3, replace = TRUE)
A <- sample(c(letters, NA), size = 100e3, replace = TRUE)
B <- sample(c(letters, NA), size = 100e3, replace = TRUE)
C <- sample(c(letters, NA), size = 100e3, replace = TRUE)
microbenchmark(dplyr = dplyr::coalesce(x, A, B, C),
hutils = hutils::coalesce(x, A, B, C),
check = my_check) %T>%
print %>%
autoplot
## Unit: milliseconds
## expr min lq mean median uq max neval
## dplyr 2.456399 2.686648 3.836623 3.366255 3.530245 14.194768 100
## hutils 1.280605 1.373216 2.013082 1.607532 1.659937 5.623876 100
especially during short-circuits:
x <- sample(c(letters), size = 100e3, replace = TRUE)
microbenchmark(dplyr = dplyr::coalesce(x, A, B, C),
hutils = hutils::coalesce(x, A, B, C),
check = my_check) %T>%
print %>%
autoplot
## Unit: microseconds
## expr min lq mean median uq max neval
## dplyr 2243.466 2364.239 3600.4673 2987.6750 4992.1570 7991.729 100
## hutils 161.129 164.744 173.1257 170.0145 177.9955 212.631 100
x <- sample(c(letters, NA), size = 100e3, replace = TRUE)
A <- sample(c(letters), size = 100e3, replace = TRUE)
microbenchmark(dplyr = dplyr::coalesce(x, A, B, C),
hutils = hutils::coalesce(x, A, B, C),
check = my_check) %T>%
print %>%
autoplot
## Unit: microseconds
## expr min lq mean median uq max neval
## dplyr 2451.882 2698.3945 4466.766 3388.842 5639.8385 64588.888 100
## hutils 766.797 810.3165 1032.633 938.467 997.1965 4257.437 100
To drop a column from a data.table
, you set it to NULL
DT <- data.table(A = 1:5, B = 1:5, C = 1:5)
DT[, A := NULL]
There’s nothing wrong with this, but I’ve found the following a useful alias, especially in a magrittr
pipe.
DT <- data.table(A = 1:5, B = 1:5, C = 1:5)
DT %>%
drop_col("A") %>%
drop_col("B")
# or
DT <- data.table(A = 1:5, B = 1:5, C = 1:5)
DT %>%
drop_cols(c("A", "B"))
These functions simple invoke the canonical form, so won’t be any faster.
Additionally, one can drop columns by a regular expression using drop_colr
:
flights <- as.data.table(flights)
flights %>%
drop_colr("time") %>%
drop_colr("arr(?!_delay)", perl = TRUE)
## year month day dep_delay arr_delay flight tailnum origin dest
## 1: 2013 1 1 2 11 1545 N14228 EWR IAH
## 2: 2013 1 1 4 20 1714 N24211 LGA IAH
## 3: 2013 1 1 2 33 1141 N619AA JFK MIA
## 4: 2013 1 1 -1 -18 725 N804JB JFK BQN
## 5: 2013 1 1 -6 -25 461 N668DN LGA ATL
## ---
## 336772: 2013 9 30 NA NA 3393 NA JFK DCA
## 336773: 2013 9 30 NA NA 3525 NA LGA SYR
## 336774: 2013 9 30 NA NA 3461 N535MQ LGA BNA
## 336775: 2013 9 30 NA NA 3572 N511MQ LGA CLE
## 336776: 2013 9 30 NA NA 3531 N839MQ LGA RDU
## distance hour minute
## 1: 1400 5 15
## 2: 1416 5 29
## 3: 1089 5 40
## 4: 1576 5 45
## 5: 762 6 0
## ---
## 336772: 213 14 55
## 336773: 198 22 0
## 336774: 764 12 10
## 336775: 419 11 59
## 336776: 431 8 40
drop_empty_cols
This function drops columns in which all the values are NA
.
planes %>%
as.data.table %>%
.[!complete.cases(.)]
## tailnum year type manufacturer
## 1: N10156 2004 Fixed wing multi engine EMBRAER
## 2: N102UW 1998 Fixed wing multi engine AIRBUS INDUSTRIE
## 3: N103US 1999 Fixed wing multi engine AIRBUS INDUSTRIE
## 4: N104UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE
## 5: N10575 2002 Fixed wing multi engine EMBRAER
## ---
## 3295: N997AT 2002 Fixed wing multi engine BOEING
## 3296: N997DL 1992 Fixed wing multi engine MCDONNELL DOUGLAS AIRCRAFT CO
## 3297: N998AT 2002 Fixed wing multi engine BOEING
## 3298: N998DL 1992 Fixed wing multi engine MCDONNELL DOUGLAS CORPORATION
## 3299: N999DN 1992 Fixed wing multi engine MCDONNELL DOUGLAS CORPORATION
## model engines seats speed engine
## 1: EMB-145XR 2 55 NA Turbo-fan
## 2: A320-214 2 182 NA Turbo-fan
## 3: A320-214 2 182 NA Turbo-fan
## 4: A320-214 2 182 NA Turbo-fan
## 5: EMB-145LR 2 55 NA Turbo-fan
## ---
## 3295: 717-200 2 100 NA Turbo-fan
## 3296: MD-88 2 142 NA Turbo-fan
## 3297: 717-200 2 100 NA Turbo-fan
## 3298: MD-88 2 142 NA Turbo-jet
## 3299: MD-88 2 142 NA Turbo-jet
planes %>%
as.data.table %>%
.[!complete.cases(.)] %>%
# drops speed
drop_empty_cols
## tailnum year type manufacturer
## 1: N10156 2004 Fixed wing multi engine EMBRAER
## 2: N102UW 1998 Fixed wing multi engine AIRBUS INDUSTRIE
## 3: N103US 1999 Fixed wing multi engine AIRBUS INDUSTRIE
## 4: N104UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE
## 5: N10575 2002 Fixed wing multi engine EMBRAER
## ---
## 3295: N997AT 2002 Fixed wing multi engine BOEING
## 3296: N997DL 1992 Fixed wing multi engine MCDONNELL DOUGLAS AIRCRAFT CO
## 3297: N998AT 2002 Fixed wing multi engine BOEING
## 3298: N998DL 1992 Fixed wing multi engine MCDONNELL DOUGLAS CORPORATION
## 3299: N999DN 1992 Fixed wing multi engine MCDONNELL DOUGLAS CORPORATION
## model engines seats engine
## 1: EMB-145XR 2 55 Turbo-fan
## 2: A320-214 2 182 Turbo-fan
## 3: A320-214 2 182 Turbo-fan
## 4: A320-214 2 182 Turbo-fan
## 5: EMB-145LR 2 55 Turbo-fan
## ---
## 3295: 717-200 2 100 Turbo-fan
## 3296: MD-88 2 142 Turbo-fan
## 3297: 717-200 2 100 Turbo-fan
## 3298: MD-88 2 142 Turbo-jet
## 3299: MD-88 2 142 Turbo-jet
duplicated_rows
There are many useful functions for detecting duplicates in R. However, in interactive use, I often want to not merely see which values are duplicated, but also compare them to the original. This is especially true when I am comparing duplicates across a subset of columns in a a data.table
.
flights %>%
# only the 'second' of the duplicates is returned
.[duplicated(., by = c("origin", "dest"))]
## year month day dep_time sched_dep_time dep_delay arr_time
## 1: 2013 1 1 600 600 0 837
## 2: 2013 1 1 607 607 0 858
## 3: 2013 1 1 608 600 8 807
## 4: 2013 1 1 623 627 -4 933
## 5: 2013 1 1 624 630 -6 840
## ---
## 336548: 2013 9 30 NA 1455 NA NA
## 336549: 2013 9 30 NA 2200 NA NA
## 336550: 2013 9 30 NA 1210 NA NA
## 336551: 2013 9 30 NA 1159 NA NA
## 336552: 2013 9 30 NA 840 NA NA
## sched_arr_time arr_delay carrier flight tailnum origin dest
## 1: 825 12 MQ 4650 N542MQ LGA ATL
## 2: 915 -17 UA 1077 N53442 EWR MIA
## 3: 735 32 MQ 3768 N9EAMQ EWR ORD
## 4: 932 1 UA 496 N459UA LGA IAH
## 5: 830 10 MQ 4599 N518MQ LGA MSP
## ---
## 336548: 1634 NA 9E 3393 NA JFK DCA
## 336549: 2312 NA 9E 3525 NA LGA SYR
## 336550: 1330 NA MQ 3461 N535MQ LGA BNA
## 336551: 1344 NA MQ 3572 N511MQ LGA CLE
## 336552: 1020 NA MQ 3531 N839MQ LGA RDU
## air_time distance hour minute time_hour
## 1: 134 762 6 0 2013-01-01 06:00:00
## 2: 157 1085 6 7 2013-01-01 06:00:00
## 3: 139 719 6 0 2013-01-01 06:00:00
## 4: 229 1416 6 27 2013-01-01 06:00:00
## 5: 166 1020 6 30 2013-01-01 06:00:00
## ---
## 336548: NA 213 14 55 2013-09-30 14:00:00
## 336549: NA 198 22 0 2013-09-30 22:00:00
## 336550: NA 764 12 10 2013-09-30 12:00:00
## 336551: NA 419 11 59 2013-09-30 11:00:00
## 336552: NA 431 8 40 2013-09-30 08:00:00
flights %>%
# Both rows are returned and (by default)
# duplicates are presented adjacently
duplicated_rows(by = c("origin", "dest"))
## year month day dep_time sched_dep_time dep_delay arr_time
## 1: 2013 1 1 1315 1317 -2 1413
## 2: 2013 1 1 1655 1621 34 1804
## 3: 2013 1 1 2056 2004 52 2156
## 4: 2013 1 2 1332 1327 5 1419
## 5: 2013 1 2 1746 1621 85 1835
## ---
## 336767: 2013 9 27 1516 1520 -4 1739
## 336768: 2013 9 29 1754 1755 -1 2019
## 336769: 2013 9 30 719 725 -6 916
## 336770: 2013 9 30 1519 1520 -1 1726
## 336771: 2013 9 30 1747 1755 -8 1941
## sched_arr_time arr_delay carrier flight tailnum origin dest
## 1: 1423 -10 EV 4112 N13538 EWR ALB
## 2: 1724 40 EV 3260 N19554 EWR ALB
## 3: 2112 44 EV 4170 N12540 EWR ALB
## 4: 1433 -14 EV 4316 N14153 EWR ALB
## 5: 1724 71 EV 3260 N14153 EWR ALB
## ---
## 336767: 1740 -1 MQ 3532 N724MQ LGA XNA
## 336768: 2015 4 MQ 3713 N725MQ LGA XNA
## 336769: 945 -29 MQ 3547 N735MQ LGA XNA
## 336770: 1740 -14 MQ 3532 N725MQ LGA XNA
## 336771: 2015 -34 MQ 3713 N720MQ LGA XNA
## air_time distance hour minute time_hour
## 1: 33 143 13 17 2013-01-01 13:00:00
## 2: 36 143 16 21 2013-01-01 16:00:00
## 3: 31 143 20 4 2013-01-01 20:00:00
## 4: 33 143 13 27 2013-01-02 13:00:00
## 5: 31 143 16 21 2013-01-02 16:00:00
## ---
## 336767: 160 1147 15 20 2013-09-27 15:00:00
## 336768: 160 1147 17 55 2013-09-29 17:00:00
## 336769: 150 1147 7 25 2013-09-30 07:00:00
## 336770: 148 1147 15 20 2013-09-30 15:00:00
## 336771: 146 1147 17 55 2013-09-30 17:00:00
To emphasize the miscellany of this package, I now present haversine_distance
which simply returns the distance between two points on the Earth, given their latitutde and longitude.
I prefer this to other packages’ implementations. Although the geosphere
package can do a lot more than calculate distances between points, I find the interface for distHaversine
unfortunate as it cannot be easily used inside a data.frame
. In addition, I’ve found the arguments clearer in hutils::haversine_distance
rather than trying to remember whether to use byrow
inside the matrix
function while passing to distHaversine
.
DT1 <- data.table(lat_orig = runif(1e5, -80, 80),
lon_orig = runif(1e5, -179, 179),
lat_dest = runif(1e5, -80, 80),
lon_dest = runif(1e5, -179, 179))
DT2 <- copy(DT1)
microbenchmark(DT1[, distance := haversine_distance(lat_orig, lon_orig,
lat_dest, lon_dest)],
DT2[, distance := distHaversine(cbind(lon_orig, lat_orig),
cbind(lon_orig, lat_orig))])
## Unit: milliseconds
## expr
## DT1[, `:=`(distance, haversine_distance(lat_orig, lon_orig, lat_dest, lon_dest))]
## DT2[, `:=`(distance, distHaversine(cbind(lon_orig, lat_orig), cbind(lon_orig, lat_orig)))]
## min lq mean median uq max neval
## 18.57599 18.98935 19.94903 19.06239 19.20695 33.4722 100
## 45.43946 46.35925 53.35370 52.05270 57.25839 122.0170 100
rm(DT1, DT2)
mutate_other
There may be occasions where a categorical variable in a data.table
may need to modified to reduce the number of distinct categories. For example, you may want to plot a chart with a set number of facets, or ensure the smooth operation of randomForest
, which accepts no more than 32 levels in a feature.
mutate_other
keeps the n most common categories and changes the other categories to Other
.
set.seed(1)
DT <- data.table(Fruit = sample(c("apple", "pear", "orange", "tomato", "eggplant"),
size = 20,
prob = c(0.45, 0.25, 0.15, 0.1, 0.05),
replace = TRUE),
Price = rpois(20, 10))
kable(mutate_other(DT, "Fruit", n = 3)[])
Fruit | Price |
---|---|
apple | 14 |
apple | 11 |
pear | 8 |
Other | 2 |
apple | 8 |
Other | 10 |
Other | 7 |
pear | 12 |
pear | 11 |
apple | 12 |
apple | 12 |
apple | 10 |
pear | 3 |
apple | 11 |
Other | 13 |
pear | 7 |
Other | 8 |
Other | 11 |
apple | 14 |
Other | 9 |
ngrep
This is a ‘dumb’ negation of grep
. In recent versions of R, the option invert = FALSE
exists. A slight advantage of ngrep
is that it’s shorter to type. But if you don’t have arthritis, best use invert = FALSE
or !grepl
.
notin
ein
enotin
pin
These functions provide complementary functionality to %in%
:
%notin%
%notin%
is the negation of %in%
, but also uses the package fastmatch
to increase the speed of the operation
%ein%
and %enotin%
The functions %ein%
and %enotin%
are motivated by a different sort of problem. Consider the following statement:
iris <- as.data.table(iris)
iris[Species %in% c("setosa", "versicolour")] %$%
mean(Sepal.Length / Sepal.Width)
## [1] 1.470188
On the face of it, this appears to give the average ratio of Iris setosa and Iris versicolour irises. However, it only gives the average ratio of setosa irises, as the correct spelling is Iris versicolor not -our. This particular error is easy to make, (in fact when I wrote this vignette, the first hit of Google for iris dataset
made the same spelling error), but it’s easy to imagine similar mistakes, such as mistaking the capitalization of a value. The functions %ein%
and %enotin%
strive to reduce the occurence of this mistake. The functions operate exactly the same as %in%
and %enotin%
but error if any of the table of values to be matched against is not present in any of the values:
iris <- as.data.table(iris)
iris[Species %ein% c("setosa", "versicolour")] %$%
mean(Sepal.Length / Sepal.Width)
## Error in Species %ein% c("setosa", "versicolour"): Not all y are in x, so stopping, as requested. First absent y: versicolour
The e
stands for ‘exists’; i.e. they should be read as “exists and in” and “exists and not in”.
%pin%
This performs a partial match (i.e grepl
) but with a possibly more readable or intuitive syntax
identical(iris[grep("v", Species)],
iris[Species %pin% "v"])
## [1] TRUE
If the RHS has more than one element, the matching is done on alternation (i.e. OR):
iris[Species %pin% c("ver", "vir")] %>%
head
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1: 7.0 3.2 4.7 1.4 versicolor
## 2: 6.4 3.2 4.5 1.5 versicolor
## 3: 6.9 3.1 4.9 1.5 versicolor
## 4: 5.5 2.3 4.0 1.3 versicolor
## 5: 6.5 2.8 4.6 1.5 versicolor
## 6: 5.7 2.8 4.5 1.3 versicolor
There is an important qualification: if the RHS is NULL
, then the result will be TRUE
along the length of x
, contrary to the behaviour of %in%
. This is not entirely unexpected as NULL
could legitimately be interpreted as \(\varepsilon\), the empty regular expression, which occurs in every string.
provide.dir
This is the same as dir.create
but checks whether the target exists or not and does nothing if it does. Motivated by \providecommand
in , which creates a macro only if it does not exist already.
select_which
This provides a similar role to dplyr::select_if
but was originally part of package:grattan
so has a different name. It simply returns the columns whose values return TRUE
when Which
is applied. Additional columns (which may or not may satisfy Which
) may be incldued bny using .and.dots
. (To remove columns, you can use drop_col
).
library(data.table)
DT <- data.table(x = 1:5,
y = letters[1:5],
AB = c(NA, TRUE, FALSE))
select_which(DT, anyNA, .and.dots = "y")
set_cols_first
Up to and including data.table 1.10.4
, one could only reorder the columns by supplying all the columns. You can use set_cols_first
and set_cols_last
to put columns first or last without supplying all the columns.
In some circumstances, you need to know that the key
of a data.table
is unique. For example, you may expect a join to be performed later, without specifying mult='first'
or permitting Cartesian joins. data.table
does not require a key
to be unique and does not supply tools to check the uniqueness of keys. hutils
supplies two simple functions: has_unique_key
which when applied to a data.table
returns TRUE
if and only if the table has a key and it is unique.
set_unique_key
does the same as setkey
but will error if the resultant key is not unique.