Package ‘processx’
July 30, 2017

Title Execute and Control System Processes

Version 2.0.0.1

Author Gébor Csardi

Maintainer Gabor Csardi <csardi.gabor@gmail.com>

Description Portable tools to run system processes in the background.
It can check if a background process is running; wait on a background
process to finish; get the exit status of finished processes; kill
background processes and their children; restart processes. It can read
the standard output and error of the processes, using non-blocking
connections. 'processx' can poll a process for standard output or
error, with a timeout. It can also poll several processes at once.

License MIT + file LICENSE
LazyData true

URL https://github.com/r-pkgs/processxi#readme

BugReports https://github.com/r-pkgs/processx/issues
RoxygenNote 6.0.1.9000

Suggests covr, testthat, withr

Imports assertthat, crayon, debugme, R6, utils

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-07-30 06:34:51 UTC

R topics documented:

POl . e e

Index

https://github.com/r-pkgs/processx#readme
https://github.com/r-pkgs/processx/issues

2 poll

poll Poll for process I/0O or termination

Description

Wait until one of the specified processes produce standard output or error, terminates, or a timeout
occurs.

Usage

poll(processes, ms)

Arguments
processes A list of process objects to wait on. If this is a named list, then the returned list
will have the same names. This simplifies the identification of the processes. If
an empty list, then the
ms Integer scalar, a timeout for the polling, in milliseconds. Supply -1 for an infitite
timeout, and 0 for not waiting at all.
Value

A list of character vectors of length two. There is one list element for each process, in the same
order as in the input list. The character vectors’ elements are named output and error and their
possible values are: nopipe, ready, timeout, closed, silent. See details about these below.

Explanation of the return values

* nopipe means that the stdout or stderr from this process was not captured.

* ready means that stdout or stderr from this process are ready to read from. Note that end-of-
file on these outputs also triggers ready.

* timeout‘: the processes are not ready to read from and a timeout happened.
* closed: the connection was already closed, before the polling started.

* silent: the connection is not ready to read from, but another connection was.

Known issues

You cannot wait on the termination of a process directly. It is only signalled through the closed
stdout and stderr pipes. This means that if both stdout and stderr are ignored or closed for a process,
then you will not be notified when it exits.

process 3

Examples

Different commands to run for windows and unix
Not run:
cmdl <- switch(
.Platform$0S. type,
"unix" = "sleep 1; 1ls”,
"ping -n 2 127.0.0.1 && dir /b"
)
cmd2 <- switch(
.Platform$0S. type,
"unix" = "sleep 2; 1ls 1>&2",
"ping -n 2 127.0.0.1 && dir /b 1>&2"

)

Run them. pl1 writes to stdout, p2 to stderr, after some sleep
pl <- process$new(commandline = cmdl, stdout = "|")

p2 <- process$new(commandline = cmd2, stderr = "|")

Nothing to read initially
poll(list(p1 = pl1, p2 = p2), 0)

Wait until p1 finishes. Now p1 has some output
pl$wait()
poll(list(pl = pl1, p2 = p2), -1)

Close pl1's connection, p2 will have output on stderr, eventually
close(p1$get_output_connection())
poll(list(pl = pl1, p2 = p2), -1)

Close p2's connection as well, no nothing to poll
close(p2%$get_error_connection())

poll(list(pl = p1, p2 = p2), @)

End(Not run)

process External process

Description

Managing external processes from R is not trivial, and this class aims to help with this deficiency.
It is essentially a small wrapper around the system base R function, to return the process id of the
started process, and set its standard output and error streams. The process id is then used to manage
the process.

Usage

p <- process$new(command = NULL, args, commandline = NULL,
stdout = TRUE, stderr = TRUE, cleanup = TRUE,

4 process

echo_cmd = FALSE, windows_verbatim_args = FALSE,
windows_hide_window = FALSE)

p$is_alive()
p$signal(signal)
p$kill(grace = 0.1)
p$wait(timeout = -1)
p$get_pid()
p$get_exit_status()
p$restart()
p$get_start_time()

p$read_output_lines(...)
p$read_error_lines(...)
p$get_output_connection()
p$get_error_connection()
p$is_incomplete_output()
p$is_incomplete_error()
p$read_all_output()
p$read_all_error()
p$read_all_output_lines(...)
p$read_all_error_lines(...)

p$poll_io(timeout)
print(p)

Arguments

P A process object.

command Character scalar, the command to run. Note that this argument is not passed to a shell,
so no tilde-expansion or variable substitution is performed on it. It should not be quoted with
shQuote. See normalizePath for tilde-expansion.

args Character vector, arguments to the command. They will be used as is, without a shell. They
don’t need to be escaped.

commandline A character scalar, a full command line. On Unix systems it runs the a shell:
sh -c <commandline>. On Windows it uses the cmd shell: cmd /c <commandline>. If
you want more control, then call your chosen shell directly.

stdout What to do with the standard output. Possible values: FALSE: discard it; a string, redirect it

n,

to this file, TRUE: redirect it to a temporary file, " |": create an R connection for it.

stderr What to do with the standard error. Possible values: FALSE: discard it; a string, redirect it to

this file, TRUE: redirect it to a temporary file, " | ": create an R connection for it.
cleanup Whether to kill the process (and its children) if the process object is garbage collected.
echo_cmd Whether to print the command to the screen before running it.

windows_verbatim_args Whether to omit quoting the arguments on Windows. It is ignored on
other platforms.

process 5

windows_hide_window Whether to hide the application’s window on Windows. It is ignored on
other platforms.

signal An integer scalar, the id of the signal to send to the process. See pskill for the list of
signals.

grace Currently not used.
timeout Timeout in milliseconds, for the wait or the I/O polling.

... Extra arguments are passed to the readLines function.

Details

$new() starts a new process in the background, and then returns immediately.
$is_alive() checks if the process is alive. Returns a logical scalar.

$signal() sends a signal to the process. On Windows only the SIGINT, SIGTERM and SIGKILL
signals are interpreted, and the special O signal, The first three all kill the process. The O signal
return TRUE if the process is alive, and FALSE otherwise. On Unix all signals are supported that the
OS supports, and the 0 signal as well.

$kill () Kkills the process. It also kills all of its child processes, except if they have created a new
process group (on Unix), or job object (on Windows). It returns TRUE if the process was killed, and
FALSE if it was no killed (because it was already finished/dead when processx tried to kill it).

$wait() waits until the process finishes, or a timeout happens. Note that if the process never
finishes, and the timeout is infinite (the default), then R will never regain control. It returns the
process itself, invisibly.

$get_pid() returns the process id of the process.

$get_exit_status returns the exit code of the process if it has finished and NULL otherwise.
$restart() restarts a process. It returns the process itself.

$get_start_time() returns the time when the process was started.

$read_output_lines() reads from standard output connection of the process. If the standard
output connection was not requested, then then it returns an error. It uses a non-blocking text
connection.

$read_error_lines() is similar to $read_output_lines, but it reads from the standard error
stream.

$get_output_connection() returns a connection object, to the standard output stream of the pro-
cess.

$get_error_conneciton() returns a connection object, to the standard error stream of the process.

$is_incomplete_output() return FALSE if the other end of the standard output connection was
closed (most probably because the process exited). It return TRUE otherwise.

$is_incomplete_error() return FALSE if the other end of the standard error connection was
closed (most probably because the process exited). It return TRUE otherwise.

$read_all_output() waits for all standard output from the process. It does not return until the
process has finished. Note that this process involves waiting for the process to finish, polling for
I/O and potentically several readLines() calls. It returns a character scalar.

6 run

$read_all_error() waits for all standard error from the process. It does not return until the
process has finished. Note that this process involves waiting for the process to finish, polling for
I/0 and potentically several readLines() calls. It returns a character scalar.

$read_all_output_lines() waits for all standard output lines from a process. It does not return
until the process has finished. Note that this process involves waiting for the process to finish,
polling for I/O and potentically several readLines() calls. It returns a character vector.

$read_all_error_lines() waits for all standard error lines from a process. It does not return until
the process has finished. Note that this process involves waiting for the process to finish, polling for
I/0 and potentically several readLines() calls. It returns a character vector.

$poll_io() polls the process’s connections for I/O. See more in the Polling section, and see also
the poll function to poll on multiple processes.

print(p) or p$print() shows some information about the process on the screen, whether it is
running and it’s process id, etc.

Polling

The poll_io() function polls the standard output and standard error connections of a process, with
a timeout. If there is output in either of them, or they are closed (e.g. because the process exits)
poll_io() returns immediately.

In addition to polling a single process, the poll function can poll the output of several processes,
and returns as soon as any of them has generated output (or exited).

Examples

CRAN does not like long-running examples
Not run:

p <- process$new("sleep”, "2")
p$is_alive()

p

p$kill()

p$is_alive()

p$restart()

p$is_alive()
Sys.sleep(3)
p$is_alive()

End(Not run)

run Run external command, and wait until finishes

Description

run provides an interface similar to base: :system() and base::system2(), but based on the
process class. This allows some extra features, see below.

run 7

Usage

run(command = NULL, args = character(), commandline = NULL,
error_on_status = TRUE, echo_cmd = FALSE, echo = FALSE,
spinner = FALSE, timeout = Inf, stdout_line_callback = NULL,
stdout_callback = NULL, stderr_line_callback = NULL,
stderr_callback = NULL, windows_verbatim_args = FALSE,
windows_hide_window = FALSE)

Arguments
command Character scalar, the command to run. It will be escaped via base::shQuote.
args Character vector, arguments to the command. They will be escaped via base::shQuote.
commandline A character scalar, a full command line. No escaping will be performed on it.

error_on_status
Whether to throw an error if the command returns with a non-zero status, or
it is interrupted. The error clases are system_command_status_error and
system_command_timeout_error, respectively, and both errors have class system_command_error

as well.
echo_cmd Whether to print the command to run to the screen.
echo Whether to print the standard output and error to the screen. Note that the order

of the standard output and error lines are not necessarily correct, as standard
output is typically buffered.

spinner Whether to show a reassusing spinner while the process is running.

timeout Timeout for the process, in seconds, or as a difftime object. If it is not finished
before this, it will be killed.

stdout_line_callback
NULL, or a function to call for every line of the standard output. See stdout_callback
and also more below.

stdout_callback
NULL, or a function to call for every chunk of the standard output. A chunk can
be as small as a single character. At most one of stdout_line_callback and
stdout_callback can be non-NULL.

stderr_line_callback
NULL, or a function to call for every line of the standard error. See stderr_callback
and also more below.

stderr_callback
NULL, or a function to call for every chunk of the standard error. A chunk can
be as small as a single character. At most one of stderr_line_callback and
stderr_callback can be non-NULL.

windows_verbatim_args
Whether to omit the escaping of the command and the arguments on windows.
Ignored on other platforms.

windows_hide_window
Whether to hide the window of the application on windows. Ignored on other
platforms.

8 run

Details
run supports
* Specifying a timeout for the command. If the specified time has passed, and the process is
still running, it will be killed (with all its child processes).

* Calling a callback function for each line or each chunk of the standard output and/or error. A
chunk may contain multiple lines, and can be as short as a single character.

Value
A list with components:
» status The exit status of the process. If this is NA, then the process was killed and had no exit
status.
* stdout The standard output of the command, in a character scalar.
¢ stderr The standard error of the command, in a character scalar.

* timeout Whether the process was killed because of a timeout.

Callbacks

Some notes about the callback functions. The first argument of a callback function is a character
scalar (length 1 character), a single output or error line. The second argument is always the process
object. You can manipulate this object, for example you can call $kill() on it to terminate it, as a
response to a message on the standard output or error.

Examples
Different examples for Unix and Windows
Not run:
if (.Platform$0S.type == "unix") {
run(”1s")
system. time(run(commandline = "sleep 10", timeout = 1,

error_on_status = FALSE))
system. time(

run(
commandline = "for i in 1 2 3 4 5; do echo $i; sleep 1; done”,
timeout=2, error_on_status = FALSE
)
)
} else {
run(commandline = "ping -n 1 127.0.0.1")
run(commandline = "ping -n 6 127.0.0.1", timeout = 1,
error_on_status = FALSE)
}

End(Not run)

Index

base: :shQuote, 7
base: :system(), 6
base: :system2(), 6

normalizePath, 4

poll, 2,6
process, 3,6, 8
pskill, 5

readlLines, 5
run, 6

shQuote, 4

	poll
	process
	run
	Index

