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1 Introduction

Selective editing is the art of finding influential errors in survey data, i.e., errors
having the potential highest impact on the target estimates. In practice, units
are prioritized according to a score function based on a “risk component” and an
“influence component”(Lawrence and McDavitt, 1994; Lawrence and McKenzie,
2000; Latouche and Berthelot, 1992). SeleMix is an R package R Core Team
(2012) for selective editing based on expliciltly modeling both true data and error
mechanism. True data are modeled through a normal or log-normal distribution,
and the “ intermittent nature” of the error mechanism is captured through a
Bernoullian random variable associated with the error occurrence. Given the
event that some values are not correctly reported in a unit, the error is supposed
to be additive and Gaussian with zero mean and covariance matrix proportional
to the covariance matrix of the true data. The resulting distribution for the
observed data is a mixture of two Gaussian distributions with the same mean
vector but proportional covariance matrices, where the“largest”one corresponds
to contaminated data. For each unit, the probability of belonging to the mixture
component that corresponds to contaminated data is the risk component, while
the influence component for a given variable is obtained as expected difference
between true and observed value of that variable conditioned on the observed
value and on the event that the observation is contaminated. Thus, the scores
can be interpreted as expected values of the errors conditional on the observed
data. Consequently, a set of units can be selected so that the expected residual
error in data is below a prefixed threshold (Buglielli et al., 2010; Di Zio and
Guarnera, 2011, 2013).

2 The contamination model

True data, possibly in log-scale are represented as a n× p matrix Y∗ of n inde-
pendent realizations from a random p-vector assumed to follow a normal distri-
bution whose parameters may depend on some set of q covariates not affected
by error. The resulting regression model is:

Y∗ = XB + U (1)

where X is a n × q matrix whose rows are the measures of the q covariates
on the n units, B is the q × p matrix of the coefficients, and U is the n × p
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matrix of normal residuals:

U ∼ N(·; 0,Σ)

As a particular case, the set of X-variates may be empty, so that variables
Yi, (i = 1 . . . , n) are normally distributed with the same mean vector µ. In the
previous model, it is We assume that the vector Yi of observed items for unit i is
error-free or erroneous according to a Bernoulli r.v. Ii with parameter π, where
Ii = 1 if an error occurs and Ii = 0 otherwise (i = 1, . . . , n). Further, given
that Ii = 1, the error follows an additive mechanism represented by a Gaussian
r.v. ε with zero mean and covariance matrix Σε proportional to Σ, i.e., given
{Ii = 1}:

Yi = Y ∗i + εi, εi ∼ N(0,Σε), Σε = (α− 1)Σ, α > 1.

The error model can be formally expressed through the conditional distribution:

f(yi|y∗i ) = (1− π)δ(yi − y∗i ) + πN(yi; y
∗
i ,Σε). (2)

where π (mixing weight) represents the “a priori” probability of contamina-
tion and δ(t′ − t) is the delta-function with mass at t.

It is crucial the intermittent nature of the error implied by the introduction
of the Bernoullian variables. Due to this assumption, it is conceptually possible
to think of data as partitioned into correct and erroneous, and to estimate, for
each observation, the probability of being correct or corrupted.

The distribution of the observed data is easily derived multiplying the true
data density which leads to formula (1) and the error density (2), and integrating
over Y ∗ :

f(yi) = (1− π)N(yi;µi,Σ) + πN(yi;µi, αΣ), (3)

where µi = B′xi.
Expression (3) represents a mixture of two regression models having the

same coefficient matrix B but different (though proportional) residual variance-
covariance matrices. The last distribution relates to observed data and can be
estimated by maximizing the likelihood based on n sample units via an ECM
algorithm (Meng and Rubin, 1993).

3 Selective editing

Selective editing is based on comparison between observed values and predic-
tions or ’anticipated values’ for true unobserved data. In SeleMix, predictions
are obtained from the distribution f(y∗i |yi) of the true data conditional on the
observed data (possibly including values of error-free covariates X not appearing
in the notation). A straightforward application of the Bayes formula provides:

f(y∗i |yi) = τ1(yi)δ(y
∗
i − yi) + τ2(yi)N(y∗i ; µ̃i, Σ̃) (4)

where:
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µ̃i =
(yi + (α− 1)µi)

α
; Σ̃ =

(
1− 1

α

)
Σ,

δ(y∗i − yi) is the delta function with mass at yi, and τ1(yi) , τ2(yi) are the
posterior probabilities that a unit with observed values (yi) belongs to correct
and erroneous data group respectively:

τ1(yi) = Pr(yi = y∗i |yi) =
(1− π)N(yi;µi,Σ)

(1− π)N(yi;µi,Σ) + πN(yi;µi, αΣ)
,

τ2(yi) = Pr(yi 6= y∗i |yi) = 1− τ1(yi),

i = 1, . . . , n.

Predictions are defined in terms of the conditional expected values ỹi =
E(y∗i |yi). From (4) it follows:

ỹi = τ1(yi)yi + τ2(yi)µ̃i, i = 1, . . . , n. (5)

Correspondingly, we can define the “expected error” as

yi − ỹi = τ2(yi)(yi − µ̃i). (6)

The last expression makes it natural to interpret τ2 and yi − µ̃i as “ risk
component”and“influence component”respectively to be considered in the score
function definition. In practice, the method uses the previous formulas with the
MLEs of the involved parameters in place of the true parameters.

The methodology can be easily adapted to the lognormal distribution, which
is most frequently used in case of business surveys. In fact, for i = 1, . . . , n, let
Y ∗i = lnZ∗i , Yi = lnZi, where Z∗i , Zi represent the variables associated to true
and contaminated data respectively. Then, it follows that the distribution of
Z∗i given zi is:

f(z∗i |zi) = τ1(ln(zi))δ(z
∗
i − zi) + τ2(ln(zi))LN(z∗i ; µ̃i, Σ̃),

where LN(·;µ,Σ) denotes the lognormal density with parameters µ and Σ.

In the following, the MLE of the model parameters will be denoted by
π̂, B̂, Σ̂, λ̂, analogously τ̂1(yi) and ˆ̃µi will denote the corresponding estimates
of the posterior probabilities and of the mean vectors µ̃i respectively.

In SeleMix the score function is defined in terms of the estimated expected
error (see formula 6), so that the threshold value can be directly linked to the
level of accuracy of the estimates of interest. The units will be selected in a such
a way that the estimated residual error is below a prefixed level of accuracy η
that is actually the threshold value.

Let us suppose the target aggregate to estimate is the total of the variable
Yj , i.e., T ∗j =

∑n
i=1 wiy

∗
ij . The relative individual error for the ith unit with

respect to the variable Yj is defined as the ratio between the (weighted) expected

error and an estimate of the target paprameter T̂j , that is

rij =
wi(yij − ŷij)

T̂j
. (7)
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Note that, the estimated expected error is yi − ŷi = τ̂2(yi)(yi − ˆ̃µi) , and
τ̂2 and yi − ˆ̃µi can be thought of as an estimate of the“ risk component” and
“influence component” respectively.

The local score function for the variable Yj used in SeleMix is Sij = |rij |.
Different local scores are combined togheter in a single “global score” GSi =
maxjSij .

In order to illustrate the stopping criterion for selections of inlfluential errors,
define Rij as the absolute value of the expected residual relative error for the
variable Yj remaining in data after removing errors in the first i units, that is

Rij =
∣∣ n∑
k≥i

rkj
∣∣.

Once an “accuracy level” (threshold) η is chosen, the selective editing proce-
dure consists of:

1. order the observations with respect to GSi (decreasing order);

2. find k̄ such that k̄ = min {k∗ ∈ (1, . . . , n) | maxjRkj < η, ∀k > k∗, },
i.e., select the first k̄ units such that, all the residual errors Rkj computed
from the (k̄ + 1)th to the last observation are below η.

This algorithm ensures that the expected error is below η for all the totals
of all the variables Yj . Moreover, it is easy to show that Skj ≤ 2η ∀k >
k̄, j = 1, . . . , J , so that the expected error on each not revised unit is kept under
control.

The reference estimate T ∗j to be used in the score definition can be obtained
by using the preditions ŷij :

T ∗j =
∑
i

wiŷij .

This is in fact the default choice in SeleMix.

4 Practical steps in an application of selective
editing

The operations required to individuate the influential errors using SeleMix can
be summarised with these steps:

� analysis of data in order to choose the response variables Y and verify if
auxiliary information is available;

� estimation of model parameters;

� identification of critical units corresponding to the most influential errors;

� interactive editing of critical units and automatic editing of npn-critical
ones.
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4.1 Example Data

These examples refer to the data frame Labour contained in the package Ecdat
(Croissant, 2012).
By typing the following statements in the R environment

> library(Ecdat)

> data (Labour)

data frame is loaded.
It contains 569
observations on Belgian firms for 1996 (see Labour help pages for details).

The variables are:

� capital: total fixed assets, end of 1995 (million).

� labor: number of workers (employment).

� output: value added (million).

� wage: wage costs per worker (thousand).

The following Scatterplot shows that log-normality assumption seems to be
plausible.

> pairs (log(Labour))
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In the next paragraph, SeleMix is applied on variables capital and output

to detect possible influential errors.

5



4.2 Two Y variables

As a first example, consider variables capital and output assuming that both
are subject to measurement error. Thus, both variables are considered as Y vari-
ables, and what is to be modeled is the their joint distribution. For simplicity,
variables capital and output will be denoted by Y1 and Y2 respectively.
The first step is to estimate the parameters of the contamination model using
ml.est function, that in this case are:

B: the mean vector of the Gaussian distribution of (Y1, Y2) (returned in matrix
form);

Σ: the covariance matrix;

λ: the variance inflaction factor;

w: the mixing proportion of the contamination model (a priori probability of
being erroneous).

Input data are obtained by subsetting the two columns of data frame Labour

corresponding to capital and output. The input parameters of ml.est are set
to their default values.

> library (SeleMix) # Load the library

> y.names<- c("capital", "output" ) # vector of y variables

> est1 <- ml.est(y=Labour[,y.names]) # model estimation

The ml.est function returns, for each unit, a prediction for each Y variable.

> head(est1$ypred) # predicted values

capital.p output.p

1 2.661581 9.223937

2 1.386256 3.742292

3 20.678225 27.072279

4 10.126059 4.513060

5 1.231076 2.986418

6 10.414401 16.810403

Outlier analysis can be performed based on the vector of posterior probabilities:

> head(est1$tau,5) # vector of posterior probability to be contaminated

[1] 0.02750480 0.02238539 0.09053905 0.12298131 0.02410082

units with posterior probability greater than the input parameter t.outl are
flagged as outliers. Default value is 0.5.

> head(est1$outlier) # vector of flag: 1=outlier

[1] 0 0 0 0 0 1

> n.outlier <-sum(est1$outlier) # numbers of outliers

> n.outlier
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[1] 37

Two control parameters for checking the convergence of EM algorithm are also
returned. Convergence is not attained if after max.iter iterations change in
log-likelihood is greater than the input parameter eps.

> est1$is.conv # TRUE convergence is reached

[1] TRUE

> est1$n.iter # number of iterations

[1] 50

In order to evaluate goodness of fit, BIC and CAIC are computed both for
the contamination model and for the simple Gaussian model (λ = 0). This
parameter should be used to prevent overfitting.

> est1$bic.aic # bic and aic

BIC.norm BIC.mix AIC.norm AIC.mix

3497.839 2329.403 1743.060 1156.498

Both the scores show that the contamination model fits data better than the
simple Gaussian model.

The second step is to identify influential errors using function sel.edit.
As a reference estimate to evaluate relative residual error in data after selec-
tive editing, the sum of (possibly weighted) predicted values is used (default
option). Influential errors are detected by computing differences between ob-
served (y=Labour[,y.names]) and predicted (ypred=est1$ypred) values. It
is possible to take into account unequal sample weigths in the differences and
in the reference estimate using parameter wgt. The stopping criterion for the
units to be selected as influential is determined by parameter t.sel (0.02 in the
example).

> sel1 <- sel.edit(y=Labour[,y.names], ypred=est1$ypred, t.sel=0.02)

> (n.sel <-sum(sel1[,"sel"])) # number of influential observations

[1] 22

> head(sel1,3) # first lines of result matrix

capital output capital.p output.p weights capital.score

1 2.606563 9.250759 2.661581 9.223937 1 1.845072e-05

2 1.323237 3.664310 1.386256 3.742292 1 2.113381e-05

3 22.093692 28.781516 20.678225 27.072279 1 4.746874e-04

output.score global.score capital.reserr output.reserr

1 5.527027e-06 1.845072e-05 -0.0008634218 -0.0006099649

2 1.606899e-05 2.113381e-05 -0.0014026767 -0.0010770438

3 3.522043e-04 4.746874e-04 -0.0084922430 -0.0057397998

capital.sel output.sel rank sel

1 0 0 469 0

2 0 0 439 0

3 0 0 74 0
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non influential influential errors Sum
non outliers 525 7 532

n.outl 22 15 37
Sum 547 22 569

Table 1: Outliers vs Influential Errors

> sel.pairs (Labour[,y.names], est1$outlier, sel1[,"sel"])

−6 −4 −2 0 2 4 6 8
capital

Only Outlier           
Only Influential       
Outlier and Influential

−4 −2 0 2 4 6

−
6

−
2

0
2

4
6

8

output

ca
pi

ta
l

−6 −4 −2 0 2 4 6 8

−
4

−
2

0
2

4
6

−4 −2 0 2 4 6
output

Selective Editing − outliers and influential errors

Figure 1: Outliers vs Influential Errors

Table 1 shows the number of outliers units versus the number of units that are
flagged as influential.
The scatterplot in Figure 1 shows the same results in a graphical way.
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