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This is vignette covers the particle filter for the dynamichazard package in R.
See https://cran.r-project.org/web/packages/dynamichazard/vignettes/
ddhazard.pdf for more information on the package.

I assume that you are familiar with the setup in the dynamichazard package
and the other estimation methods in the package. Further, some prior knowledge
of particle filters is required. If you lag knowledge of particle filter then Doucet
and Johansen (2009) provides a tutorial on particle filters and Kantas et al.
(2015) covers parameter estimation with particle filters. This vignette relies
heavily on Fearnhead et al. (2010).

1 Method

Model

The model is:

yit ∼ P (yit| θit)
θt = Xtαt

αt = Fαt−1 +Rηt ηt ∼ N (0,Q)
α0 ∼ N (a0,Q0)

,
i = 1, . . . , nt

t = 1, . . . , d
(1)

where I denote the conditional densities as yt ∼ g ( ·|αt) and αt ∼ f ( ·|αt−1).
We are in a survival analysis setting where the simplest model has an indicator
of death of individual i in time t such that yit ∈ {0, 1} where θit is the linear
predictor where we use the logistic function as the link function. For each t =
1, . . . , d, we a have risk set given by Rt ⊆ {1, 2, . . . , n}. The observed outcomes
are denoted by yt = {yit}i∈Rt

. Xt is the design matrix of the covariates and
αt ∈ R

p is the vector of time-varying coefficients. The problems we are looking
at have n≫ p (e.g. n = 100000 and p = 20).

I will use a particle filter and smoother to get smoothed estimates ofα1, . . . ,αd

given the outcomes y1:d = {y1,y2, . . . ,yd} and use an EM-algorithm to esti-
mate Q and a0. One choice of smoother is the generalized two-filter smoothing
in Fearnhead et al. (2010) and Briers et al. (2010). I have included the O (N)
smoother in Fearnhead et al. (2010) shown in algorithm 1. The rest of vignette
is structured as follows: first I cover the particle filter and smoother. Then I
cover the EM-algorithm and other miscellaneous topics. I will end with what is
implemented at this point.
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Considerations

Algorithm 1 shows one of the generalized two-filter smoother from Fearnhead
et al. (2010). It requires that we specify the following importance densities and
re-sampling weights (”optimal” values are given as the right hand side):
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(2)

Further, we need to define a backwards filter distribution approximation:

p̃ (αt|yt:T ) ∝ γt (αt) P (yt:T |αt) (3)

with an artificial prior distribution γt (αt). See Briers et al. (2010) for how to
select γt and examples hereof. Fearnhead et al. (2010) also provide examples.

Given the models of interest we have that:

• Evaluating P (yt|αt) is an expensive operation as n ≫ p and it has a
O (np) computational cost. Any O (n) operation is going to take consid-
erable time.

• Evaluating f (αt|αt−1) and f (αt|αt+1) is cheap and can be done in
closed form and sampling from these distribution can be done in closed
form.

• The second example in Fearnhead et al. (2010) is close to the model here
though with n = 1 and p = 2.

The following sections will closely follow the example shown in Fearnhead
et al. (2010) and the appendix of the paper. The following section uses Q
throughout in the formulas where it should have been RQR⊤.

Forward filter (algorithm 2)

This section will cover some options for algorithm 2. Let N ( ·| ·, ·) denote a
multivariate normal distribution. We can select the proposal density as:

q
(
αt

∣∣∣α(j)
t−1,yt

)
= N

(
αt

∣∣∣Fα(j)
t−1,Q

)
(4)

which we can sample from in O
(
Np2

)
time if we have a pre-computed Cholesky

decomposition of Q. This is often called the bootstrap filter. Another option is
to use normal approximation of yt’s conditional density:
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g (yt|αt) ≃ g̃t (yt|αt)

= N
(
Xtαt

∣∣∣XtFᾱt−1 −Gt (Fᾱt−1)
−1

gt (Fᾱt−1) ,−Gt (Fᾱt−1)
−1
)

(5)
where:

gt (α) =

{
∂ log P(yit|θit)

∂θit

∣∣∣
θit=x⊤

it
α

}

i∈Rt

Gt (α) = diag

({
∂2 log P(yit|θit)

∂θ2
it

∣∣∣
θit=x⊤

it
α

}

i∈Rt

) (6)

to get:

q
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)
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)
(7)

Thus, we need to sample from:

q
(
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∣∣∣α(j)
t−1,yt

)
= N (αt|µt,Σt)

Σ−1
t = X⊤

t (−Gt (Fᾱt−1))Xt +Q−1

µt = Σt

(
Q−1Fα

(j)
t−1 +X⊤

t (−Gt (Fᾱt−1))
(
XtFᾱt−1 −Gt (Fᾱt−1)
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(
Q−1Fα

(j)
t−1 +X⊤

t (−Gt (Fᾱt−1)XtFᾱt−1 + gt (Fᾱt−1))
)

(8)
We can select ᾱt−1 as the weighted mean given the particle cloud at time t−1

(that is,
{
α

(1)
t−1,α

(2)
t−1, . . .α

(N)
t−1

}
). This is similar to the second order random

walk example in Fearnhead et al. (2010). They use the mode which is feasible
as the outcome only depends on one element of the state vector. The downside
is an O

(
np2 + p3

)
computational cost though independent of the number of

particles. The total cost of sampling is O
(
np2 + p3 +Np2

)
. Another option is

to set ᾱt−1 = α
(j)
t−1 for each particle j = 1, 2, . . . , N in the particle cloud at time

t − 1. This will improve the Taylor expansion but yields an O
(
N
(
np2 + p3

))

computational cost.
Next, we have the re-sampling weights. A simple solution is not to use an

auxiliary particle filter as in the examples of Fearnhead et al. (2010) and set:

β
(j)
t ∝ w

(j)
t−1 (9)

which has an O (N) cost of sampling. Another options is to set:
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∣∣∣α(j)
t−1,yt

)

(10)

This come at an O
(
Np2

)
computational cost assuming that we are using

(8) already. Otherwise it has the same computational cost as mentioned when
I covered the importance density since we have to make the Taylor expansion
approximation.

Backward filter (algorithm 3)

We need to specify the artificial prior γt (αt). Briers et al. (2010, page 69 and
70) provides recommendation on the selection. This leads to:

γt (αt) = N
(
αt

∣∣∣←−mt,
←−
P t

)

←−mt = Fta0

←−
P t =

{
Q0 t = 0

FPt−1F
⊤ +Q t > 0

(11)

Fearnhead et al. (2010) writes that then we end with:

P (αt|αt+1) = N
(
αt

∣∣∣←−a t,
←−
S t

)

←−
S t =

←−
P tF
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(
F⊤
)−1

←−a t =
←−
P tF

⊤←−P−1
t+1αt+1 +

←−
S t

←−
P−1

t
←−mt

(12)

which simplifies for the first order random walk to:

←−mt = a0

←−
P t = tQ+Q0

←−
S t = (tQ+Q0) ((t+ 1)Q+Q0)

−1
Q

←−a t = (tQ+Q0) ((t+ 1)Q+Q0)
−1

αt+1 +
←−
S t

←−
P−1

t
←−mt

(13)

4



Further, setting Q0 = Q (only in the artificial prior where we may alter γ0 –
see Briers et al. (2010, page 70)) gives us:

←−
S t =

t+ 1

t+ 2
Q

←−a t =
t+ 1

t+ 2
αt+1 +

1

t+ 2
a0

(14)

Further, we get the following backward version of equation (8):
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t

(
−Gt

(
F−1ᾱt+1
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(15)

which is an approximation of:
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)
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The re-sampling weights can be computed similarly to the forward filter
using the backward transition density in equation (12) in the numerator. We
can also use a bootstrap like filter with the importance density by sampling
from (12).

Combining / smoothing (algorithm 1)

We need to specify the importance density q̃
(
·
∣∣∣α(j)

t−1,yt, α̃
(k)
t+1

)
(see Fearnhead

et al. (2010, page 453)). Again, we can use a idea similar to those in the
appendix of Fearnhead et al. (2010) and choose:
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F−1
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(j)
t−1 + F−1Q−1α̃

(k)
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t (−Gt (ᾱt)Xtᾱt + gt (ᾱt))
)

(17)

where ᾱt can be a combined mean given the cloud means at time t−1 and t+1
or a mean for each of the two drawn particles in the (ji, ki) pairs. This is to
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approximate:

q̃
(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
∝ g̃ (yt|αt) f

(
αt

∣∣∣α(j)
t−1

) f
(
α̃

(k)
t+1

∣∣∣αt

)

γt+1

(
α̃

(k)
t+1

) (18)

We can also use a bootstrap like filter by sampling from:

q̃
(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
= N

(
αt

∣∣∣ m̃, S̃
)
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(
Q−1 + F−1Q−1

(
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)
(19)
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Algorithm 1 O (N) generalized two filter smoother using the method in Fearn-
head et al. (2010).

Input:
Q,Q0,a0,X1, . . . ,Xd,y1, . . . ,yd, R1, . . . , Rd,S
Importance density which optimally is (see Fearnhead et al. (2010, page
453)):

q̃
(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
= P

(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
(20)

Let α
(i)
t denote particle i at time t, w

(i)
t denote the weight of the particle

and β
(i)
t denote the re-sampling weight.

1: procedure Filter forward
2: Run a forward particle filter to get a particle clouds{

α
(j)
t , w

(j)
t , β

(j)
t+1

}
j=1,...,N

approximating P (αt|y1:t) for t = 0, 1, . . . , d. See

algorithm 2.

3: procedure Filter backwards

4: Run a similar backward filter to get
{
α̃

(k)
t , w̃

(k)
t , β̃

(k)
t−1

}
k=1,...,N

approximating P (αt|yt:d) for t = d+ 1, d, d− 1, . . . , 1. See algorithm 3.

5: procedure Smooth (combine)
6: for t = 1, . . . , d do

Re-sample:
7: i = 1, 2, . . . , Ns pairs of (ji, ki) where each component is

independently sampled using re-sampling weights β
(j)
t and β̃

(k)
t .

Propagate:

8: Sample particles α̂
(i)
t from importance density q̃

(
·
∣∣∣α(ji)

t−1,yt, α̃
(ki)
t+1

)
.

Re-weight:
9: Assign each particle weights:

ŵ
(i)
t ∝

P
(
α̂

(i)
t

∣∣∣α(ji)
t−1

)
P
(
yt

∣∣∣ α̂(i)
t

)
P
(
α̃

(ki)
t+1

∣∣∣ α̂(i)
t

)
w

(ji)
t−1w̃

(ki)
t+1

q̃
(
α̂

(i)
t

∣∣∣α(ji)
t−1,yt, α̃

(ki)
t+1

)
β
(ji)
t β̃

(ki)
t γt+1

(
α̃

(ki)
t+1

) (21)
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Algorithm 2 Forward filter due to Pitt and Shephard (1999). You can compare
with Doucet and Johansen (2009, page 20 and 25). The version and notation
below is from Fearnhead et al. (2010, page 449).

Input:
Importance density and specification of weights are optimally given by:

q
(
αt

∣∣∣α(j)
t−1,yt

)
= P

(
αt

∣∣∣α(j)
t−1,yt

)

β
(j)
t ∝ P

(
yt

∣∣∣α(j)
t−1

)
w

(j)
t−1

(22)

1: Sample α
(1)
0 , . . . ,α

(Nf )
0 particles from N ( ·|a0,Q0) and set the weights

w
(1)
0 , . . . , w

(Nf )
0 to 1/Nf .

2: for t = 1, . . . , d do
3: procedure Re-sample

4: Compute re-sampling weights β
(j)
t and re-sample according to β

(j)
t

to get indices j1, . . . jN .

5: procedure Propagate

6: Sample new particles α
(i)
t using importance density

q
(
αt

∣∣∣α(ji)
t−1,yt

)
.

7: procedure Re-weight
8: Re-weight particles using:

w
(i)
t ∝

P
(
yt

∣∣∣α(i)
t

)
P
(
α

(i)
t

∣∣∣α(ji)
t−1

)
w

(ji)
t−1

q
(
α

(i)
t

∣∣∣α(ji)
t−1,yt

)
β
(ji)
t

(23)

8



Algorithm 3 Backwards filter. See Briers et al. (2010) and Fearnhead et al.
(2010).

Input:
A backwards filter distribution approximation:

p̃ (αt|yt:d) ∝ γt (αt) P (yt:d|αt) (24)

with an artificial prior distribution γt (αt). This is introduced as
P (yt:d|αt) is not a density function in αt.
Importance density and specification of weights (Fearnhead et al. (2010, page

451 – look in the example in the appendix)):

q̃
(
αt

∣∣∣yt, α̃
(k)
t+1

)
β̃
(k)
t ≈ γt (αt) P (yt|αt) P

(
α̃

(k)
t+1

∣∣∣αt

) w̃
(k)
t+1

γt+1

(
α̃

(k)
t+1

) (25)

where we want (see Briers et al. (2010, page 74)):

q̃
(
αt

∣∣∣yt, α̃
(k)
t+1

)
∝ P (yt|αt) P

(
α̃

(k)
t+1

∣∣∣αt

)
γt(αt)

γt+1

(
α̃

(k)
t+1

)

β̃
(k)
t ∝ p̃

(
yt

∣∣∣ α̃(k)
t+1

)
w̃

(k)
t+1

(26)

1: Sample α̃
(1)
d+1, . . . , α̃

(Nf )
d+1 particles from γd+1(·) and set the weights

w̃
(1)
d+1, . . . , w

(Nf )
d+1 to 1/Nf .

2: for t = d, . . . , 1 do
3: procedure Re-sample

4: Compute re-sampling weights β̃
(k)
t and re-sample according to β̃

(k)
t

to get indices k1, . . . kN .

5: procedure Propagate

6: Sample new particles α̃
(i)
t using importance density

q̃
(
αt

∣∣∣ α̃(ki)
t+1 ,yt

)
.

7: procedure Re-weight
8: Re-weight particles using (see Briers et al. (2010, page 72) and add the

ratio of prior probability and re-sampling weight):

w̃
(i)
t ∝

P
(
yt

∣∣∣ α̃(i)
t

)
P
(
α̃

(ki)
t+1

∣∣∣ α̃(i)
t

)
w̃

(ki)
t+1γt

(
α̃

(i)
t

)

q
(
α̃

(i)
t

∣∣∣ α̃(ki)
t+1 ,yt

)
β
(ki)
t γt+1

(
α̃

(ki)
t+1

) (27)
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2 Log likelihood evaluation

We can evaluate the log likelihood for a particular value of θ = {Q,Q0,a0}
as described in Doucet and Johansen (2009, page 5) and Malik and Pitt (2011,
page 193) using the forward particle filter shown in algorithm 2.

3 Parameter estimation

We can use the EM-algorithm (Dempster et al., 1977) to estimate Q and a0

elements of θ = {Q,Q0,a0}. We do this by running algorithm 1 for the current
θ. Then we compute the so-called smoothed additive functional or summary
statistics:

t
(θ)
t =

∫

αt

αtPθ (αt|y1:d) ∂αt

≈
Ns∑

i=1

α̂
(i)
t ŵ

(i)
t ≈

Ns∑

i=1

α
(ji)
t ŵ

(i)
t+1 ≈

Ns∑

i=1

α̃
(ki)
t ŵ

(i)
t−1

T
(θ)
t =

∫

α(t−1):t

(αt − Fαt−1) (αt − Fαt−1)
⊤
Pθ

(
α(t−1):t

∣∣y1:d

)
∂α(t−1):t

≈
Ns∑

i=1

(
α̂

(i)
t − Fα

(ji)
t−1

)(
α̂

(i)
t − Fα

(ji)
t−1

)⊤
ŵ

(i)
t

≈
Ns∑

i=1

(
α̃

(ki)
t − Fα̂

(i)
t−1

)(
α̃

(ki)
t − Fα̂

(i)
t−1

)⊤
ŵ

(i)
t−1

(28)

where αs:t = {αs,αs+1, . . .αt} and the subscript in P denotes that it is the

probability given the parameter θ. I use that the normalized weights ŵ
(i)
t and

the pairs
{
α

(ji)
t−1, α̂

(i)
t , α̃

(ki)
t+1

}
form a discrete approximation of Pθ

(
α(t−1):(t+1)

∣∣y1:d

)
.

That is,

Pθ

(
α(t−1):t+1

∣∣y1:d

)

≈
Ns∑

i=1

ŵ
(i)
t δ

(
αt−1 −α

(ji)
t−1

)
δ
(
αt − α̂

(i)
t

)
δ
(
αt+1 − α̃

(ki)
t+1

) (29)

where δ (·) is the Dirac delta function. The update of a0 and Q given the
summary statistics is:

a0 = t
(θ)
0 Q =

1

d

d∑

t=1

R⊤T
(θ)
t R (30)
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We then repeat with the new a0 and Q for a given number of iterations or
till a convergence criteria is satisfied. See Kantas et al. (2015), Del Moral et al.
(2010) and Schön et al. (2011) for further details on parameter estimation with
particle filters.

We can do parts of the probability estimates exact at time 1 by using:

Pθ (α1,α0|y1:d)

= Pθ (α0|α1,y1:d) Pθ (α1|y1:d)

=
Pθ (α1,y1:d|α0) Pθ (α0)

Pθ (α1,y1:d)
Pθ (α1|y1:d)

=
Pθ (y1:d|α1,α0) fθ (α1|α0) Pθ (α0)

Pθ (α1) Pθ (y1:d|α1)
Pθ (α1|y1:d)

=
fθ (α1|α0) Pθ (α0)

Pθ (α1)
Pθ (α1|y1:d)

= Pθ (α0|α1) Pθ (α1|y1:d)

= N (α0|mθ (α1) ,Sθ) Pθ (α1|y1:d)

≈
Ns∑

i=1

N
(
α0

∣∣∣mθ

(
α̂

(i)
1

)
,Sθ

)
ŵ

(i)
t δ

(
α1 − α̂

(i)
1

)

(31)

where we use that Pθ (y1:d|α1,α0) = Pθ (y1:d|α1) and have:

S−1
θ

= Q−1
0 + F−1Q−1

(
F−1

)⊤

mθ (α) = Sθ

(
Q−1

0 a0 + F−1Q−1a
) (32)

Thus, we end with:

T
(θ)
1 ≈

Ns∑

i=1

ŵ
(i)
1

(
α̂

(i)
1

(
α̂

(i)
1

)⊤

− Fmθ

(
α̂

(i)
1

)(
α̂

(i)
1

)⊤
− α̂

(i)
1 mθ

(
α̂

(i)
1

)⊤
F⊤

+Fmθ

(
α̂

(i)
1

)
mθ

(
α̂

(i)
1

)⊤
F⊤

)
+ Sθ

(33)

4 Other options

The O
(
N2
)
two-filter smoother in Fearnhead et al. (2010) is going to be compu-

tationally expensive as an approximation is going to be needed for equation (8)
in the article. For instance, only the Taylor expansion approximation around
a single point to approximate g would be feasible. The non-auxiliary version
in Briers et al. (2010) is more feasible as it only requires evaluation of f in the

11



smoothing part of two-filter smoother (see equation (46) in the paper). Similar
conclusions applies to the forward smoother in Del Moral et al. (2010) and the
backward smoother as presented in Kantas et al. (2015). Both have a O

(
N2
)

computational cost.
Despite the O

(
N2
)
cost of the method in Briers et al. (2010) and Del Moral

et al. (2010) they are still worthy candidates as the computational cost is inde-
pendent of the number of observations, n. Further, the computational cost can
be reduced to O (N log(N)) with the approximations in Klaas et al. (2006).

The method in Malik and Pitt (2011, see particularly section 6.2 on page
203) can be used to do continuous likelihood evaluation. I am not sure how well
these method scale with higher state dimension, p.

Kantas et al. (2015) show empirically that it may be worth just using a
forward filter. However, the example is with a univariate outcome (n = 1 – not
to be confused with the number of periods d). The cost here of the forward
filter is at least O (dNnp). Every new particle yields an O (dnp) cost which is
expensive due to the large number of outcomes, n. Thus, the considerations are
different and a O

(
dNnp+N2

)
method will not make a big difference unless N

is large.
Another alternative is to add noise to θt and use the methods in Andrieu

and Doucet (2002).

5 Briers et al. (2010)

TheO
(
N2
)
smother from Briers et al. (2010) is also implemented as it is feasible

for a moderate number of particles (though, we can use the approximations in
Kantas et al. (2015) to reduce the computational complexity). It is shown in
algorithm 4. The weights in equation (37) comes from the two-filter formula:

P (αt|y1:d) =
P (αt|y1:t−1) P (yt:d|αt)

P (yt:d|y1:t−1)

∝ P (αt|y1:t−1) P (yt:d|αt)

= P (αt|y1:t−1)
P (αt|yt:d) P (yt:d)

P (αt)

∝ P (αt|y1:t−1)
P (αt|yt:d)

P (αt)

= P (αt|yt:d)

[∫
αt−1

P (αt−1|y1:t−1) f (αt|αt−1) ∂αt−1

]

P (αt)

≈
N∑

i=1

w̃
(i)
t δ

(
αt − α̃

(i)
t

)
[∑N

j=1 w
(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)]

γt

(
α̃

(i)
t

)

(34)

Similar arguments leads to:
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P (αt,αt−1|y1:d)

∝ P (αt|yt:d)
P (αt−1|y1:t−1) f (αt|αt−1)

P (αt)

≈
N∑

i=1

N∑

j=1

w̃
(i)
t δ

(
αt − α̃

(i)
t

)
[∑N

j=1 w
(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)]

γt

(
α̃

(i)
t

)
w

(j)
t−1δ

(
αt−1 −α

(j)
t−1

)
f
(
α̃

(i)
t

∣∣∣α(j)
t−1

)

[∑N
j=1 w

(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)]

=

N∑

i=1

N∑

j=1

ŵ
(i,j)
t δ

(
αt − α̃

(i)
t

)
δ
(
αt−1 −α

(j)
t−1

)

(35)

where

ŵ
(i,j)
t = ŵ

(i)
t

w
(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)

[∑N
j=1 w

(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)] (36)

The above is what we need for the EM-algorithm.

Algorithm 4O
(
N2
)
generalized two filter smoother using the method in Briers

et al. (2010).

Input:
Q,Q0,a0,X1, . . . ,Xd,y1, . . . ,yd, R1, . . . , Rd,S

1: procedure Filter forward
2: Run a forward particle filter to get a particle clouds{

α
(j)
t , w

(j)
t , β

(j)
t+1

}
j=1,...,N

approximating P (αt|y1:t) for t = 0, 1, . . . , d. See

algorithm 2.

3: procedure Filter backwards

4: Run a similar backward filter to get
{
α̃

(k)
t , w̃

(k)
t , β̃

(k)
t−1

}
k=1,...,N

approximating P (αt|yt:d) for t = d+ 1, d, d− 1, . . . , 1. See algorithm 3.

5: procedure Smooth (combine)
6: for t = 1, . . . , d do
7: Assign each backward filter particle a smoothing weight given by:

ŵ
(i)
t ∝ w̃

(i)
t

[∑N
j=1 w

(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)]

γt

(
α̃

(i)
t

) (37)
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6 Implementation

The PF_EM method in the dynamichazard package contains an implementation
of the above described method. You specify the number of particles by the
N_first, N_fw_n_bw and N_smooth argument for respectively the Nf , N and
Ns in the algorithm 1-3. We may want more particle in the smoothing step,
Ns > N , as pointed out in the discussion in Fearnhead et al. (2010, page 460
and 461). Further, selecting Nf > N may be preferable to ensure coverage of
the state space at time 0 and d+ 1.

The method argument specify how the filters are set up. The argument can
take the following values:

• "bootstrap_filter" for a bootstrap filter.

• "PF_normal_approx_w_cloud_mean" and "AUX_normal_approx_w_cloud_mean"
for the Taylor expansion normal approximation of the conditional density
of yt made around the weighted mean of the previous cloud. The PF and
AUX prefix specifies whether or not the auxiliary version should be used.

• "PF_normal_approx_w_particles" and "AUX_normal_approx_w_particles"
for the Taylor expansion normal approximation of the conditional density
of yt made around the parent (or/and child) particle. The PF_ and AUX_

prefix specifies whether or not the auxiliary version should be used.

The smoother is selected with the smoother argument. "Fearnhead_O_N"

gives the smoother in algorithm 1 and "Brier_O_N_square" gives the smoother
in algorithm 4.

The Systematic Resampling (Kitagawa, 1996) is used in all re-sampling steps.
See Douc and Cappé (2005) for a comparison of re-sampling methods. The rest
of the arguments to PF_EM are similar to those of the ddhazard function.
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