CRAN Package Check Results for Package model4you

Last updated on 2018-04-29 01:47:11 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.9-1 4.91 146.82 151.73 ERROR
r-devel-linux-x86_64-debian-gcc 0.9-1 5.86 126.73 132.59 ERROR
r-devel-linux-x86_64-fedora-clang 0.9-1 218.47 OK
r-devel-linux-x86_64-fedora-gcc 0.9-1 202.02 OK
r-devel-windows-ix86+x86_64 0.9-1 14.00 228.00 242.00 OK
r-patched-linux-x86_64 0.9-1 5.09 152.68 157.77 ERROR
r-patched-solaris-x86 0.9-1 227.70 OK
r-release-linux-x86_64 0.9-1 6.06 145.48 151.54 ERROR
r-release-windows-ix86+x86_64 0.9-1 14.00 228.00 242.00 OK
r-release-osx-x86_64 0.9-1 OK
r-oldrel-windows-ix86+x86_64 0.9-1 8.00 253.00 261.00 OK
r-oldrel-osx-x86_64 0.9-1 OK

Check Details

Version: 0.9-1
Check: tests
Result: ERROR
     Running ‘test-pmodel-test.R’ [21s/26s]
     Running ‘test-pmodel.R’ [40s/53s]
     Comparing ‘test-pmodel.Rout’ to ‘test-pmodel.Rout.save’ ...6,12d5
    <
    < Attaching package: 'survival'
    <
    < The following object is masked from 'package:rpart':
    <
    < solder
    <
    65,70c58,63
    < Min. :6.083 Min. :-2.09411
    < 1st Qu.:6.832 1st Qu.:-0.65812
    < Median :7.097 Median : 0.08235
    < Mean :7.061 Mean : 0.04625
    < 3rd Qu.:7.277 3rd Qu.: 0.77876
    < Max. :7.667 Max. : 2.34688
    ---
    > Min. :6.083 Min. :-2.06955
    > 1st Qu.:6.838 1st Qu.:-0.67986
    > Median :7.097 Median :-0.02111
    > Mean :7.044 Mean : 0.03952
    > 3rd Qu.:7.269 3rd Qu.: 0.72868
    > Max. :7.662 Max. : 2.27505
    91,96c84,89
    < Min. :1.833 Min. :-0.18204 Min. :0.1246 Min. :5.579
    < 1st Qu.:1.971 1st Qu.: 0.02887 1st Qu.:0.1793 1st Qu.:6.627
    < Median :1.995 Median : 0.09685 Median :0.2067 Median :6.839
    < Mean :1.989 Mean : 0.08811 Mean :0.2104 Mean :6.772
    < 3rd Qu.:2.018 3rd Qu.: 0.15046 3rd Qu.:0.2353 3rd Qu.:6.970
    < Max. :2.064 Max. : 0.37519 Max. :0.3411 Max. :7.336
    ---
    > Min. :1.837 Min. :-0.18402 Min. :0.1242 Min. :5.564
    > 1st Qu.:1.973 1st Qu.: 0.03964 1st Qu.:0.1734 1st Qu.:6.649
    > Median :1.997 Median : 0.09375 Median :0.2025 Median :6.852
    > Mean :1.989 Mean : 0.09052 Mean :0.2074 Mean :6.783
    > 3rd Qu.:2.017 3rd Qu.: 0.15010 3rd Qu.:0.2349 3rd Qu.:6.975
    > Max. :2.058 Max. : 0.35433 Max. :0.3334 Max. :7.293
    98,103c91,96
    < Min. :5.556 Min. :-1.1437
    < 1st Qu.:6.861 1st Qu.: 0.1988
    < Median :7.544 Median : 0.6617
    < Mean :7.430 Mean : 0.6580
    < 3rd Qu.:7.993 3rd Qu.: 1.1185
    < Max. :9.075 Max. : 2.6604
    ---
    > Min. :5.619 Min. :-1.1664
    > 1st Qu.:6.853 1st Qu.: 0.2761
    > Median :7.501 Median : 0.6648
    > Mean :7.459 Mean : 0.6755
    > 3rd Qu.:7.984 3rd Qu.: 1.0902
    > Max. :9.126 Max. : 2.5114
     Running ‘test-pmtree.R’ [5s/8s]
    Running the tests in ‘tests/test-pmtree.R’ failed.
    Complete output:
     > library("model4you")
     Loading required package: partykit
     Loading required package: grid
     Loading required package: libcoin
     Loading required package: mvtnorm
     Loading required package: rpart
     > library("survival")
    
     Attaching package: 'survival'
    
     The following object is masked from 'package:rpart':
    
     solder
    
     >
     > ### survreg
     > set.seed(1)
     > data(GBSG2, package = "TH.data")
     >
     > ## base model
     > bmod <- survreg(Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
     > survreg_plot(bmod)
     >
     > ## partitioned model
     > tr <- pmtree(bmod)
     No data given. I'm using data set GBSG2 from the current environment parent.frame().
     Please check if that is what you want.
     > plot(tr, terminal_panel = node_pmterminal(tr, plotfun = survreg_plot,
     + confint = TRUE))
     > summary(tr)
     Stratified model for node(s) 2, 4, 5
    
     Model call:
     survreg(formula = Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
    
     Coefficients:
     node 2 node 4 node 5
     (Intercept) 7.8590 7.2936 6.981
     horThyes 0.4001 0.3039 0.163
    
     Number of obervations:
     node 2 node 4 node 5
     376 223 87
    
     Objective function:
     (1093.18) + (1037.81) + (457.96) = 2588.95> summary(tr, node = 1:2)
     Stratified model for node(s) 1, 2
    
     Model call:
     survreg(formula = Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
    
     Coefficients:
     node 1 node 2
     (Intercept) 7.608 7.8590
     horThyes 0.306 0.4001
    
     Number of obervations:
     node 1 node 2
     686 376
    
     Objective function:
     node 1 node 2
     2632.096 1093.182
     >
     > coef(tr)
     (Intercept) horThyes
     2 7.859026 0.4001011
     4 7.293645 0.3038557
     5 6.980875 0.1630104
     > coef(tr, node = 1)
     (Intercept) horThyes
     1 7.608449 0.3059506
     > coef(bmod)
     (Intercept) horThyes
     7.6084486 0.3059506
     >
     > logLik(bmod)
     'log Lik.' -2632.096 (df=3)
     > logLik(tr)
     'log Lik.' -2588.953 (df=9)
     >
     >
     > ### glm binomial
     > set.seed(2)
     > n <- 1000
     > trt <- factor(rep(1:2, each = n/2))
     > age <- sample(40:60, size = n, replace = TRUE)
     > eff <- -1 + I(trt == 2) + 1 * I(trt == 2) * I(age > 50)
     > expit <- function(x) 1/(1 + exp(-x))
     >
     > success <- rbinom(n = n, size = 1, prob = expit(eff))
     >
     > dat <- data.frame(success, trt, age)
     > library("plyr")
     > dattab <- ddply(.data = dat, .variables = .(trt, age),
     + function(x) data.frame(nsuccess = sum(x$success),
     + nfailure = NROW(x) - sum(x$success)))
     >
     > bmod1 <- glm(success ~ trt, family = binomial)
     > bmod2 <- glm(success ~ trt, family = "binomial")
     > bmod3 <- glm(success ~ trt, data = dat, family = binomial)
     > bmod4 <- glm(cbind(nsuccess, nfailure) ~ trt, data = dattab, family = binomial)
     >
     > (tr1 <- pmtree(bmod1, data = dat))
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr2 <- pmtree(bmod2, data = dat))
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr3 <- pmtree(bmod3))
     No data given. I'm using data set dat from the current environment parent.frame().
     Please check if that is what you want.
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr4 <- pmtree(bmod4))
     No data given. I'm using data set dattab from the current environment parent.frame().
     Please check if that is what you want.
     [1] root
     | [2] age <= 50
     | | [3] age <= 43: n = 8
     | | (Intercept) trt2
     | | -0.4367177 0.7420993
     | | [4] age > 43: n = 14
     | | (Intercept) trt2
     | | -0.9253406 0.6662319
     | [5] age > 50: n = 20
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 94.40128
     >
     > (mtr1 <- glmtree(success ~ trt | age, data = dat, family = binomial))
     Generalized linear model tree (family: binomial)
    
     Model formula:
     success ~ trt | age
    
     Fitted party:
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function (negative log-likelihood): 621.198
     > # (mtr2 <- glmtree(cbind(nsuccess, nfailure) ~ trt | age, data = dattab, family = binomial))
     >
     > library("strucchange")
     Loading required package: zoo
    
     Attaching package: 'zoo'
    
     The following objects are masked from 'package:base':
    
     as.Date, as.Date.numeric
    
     Loading required package: sandwich
     > sctest(tr3)
     Error in UseMethod("estfun") :
     no applicable method for 'estfun' applied to an object of class "c('pmtree', 'constparty', 'party')"
     Calls: sctest -> sctest.default -> gefp -> scores
     Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.9-1
Check: tests
Result: ERROR
     Running ‘test-pmodel-test.R’ [17s/26s]
     Running ‘test-pmodel.R’ [30s/48s]
     Comparing ‘test-pmodel.Rout’ to ‘test-pmodel.Rout.save’ ...6,12d5
    <
    < Attaching package: 'survival'
    <
    < The following object is masked from 'package:rpart':
    <
    < solder
    <
    65,70c58,63
    < Min. :6.083 Min. :-2.09411
    < 1st Qu.:6.832 1st Qu.:-0.65812
    < Median :7.097 Median : 0.08235
    < Mean :7.061 Mean : 0.04625
    < 3rd Qu.:7.277 3rd Qu.: 0.77876
    < Max. :7.667 Max. : 2.34688
    ---
    > Min. :6.083 Min. :-2.06955
    > 1st Qu.:6.838 1st Qu.:-0.67986
    > Median :7.097 Median :-0.02111
    > Mean :7.044 Mean : 0.03952
    > 3rd Qu.:7.269 3rd Qu.: 0.72868
    > Max. :7.662 Max. : 2.27505
    91,96c84,89
    < Min. :1.833 Min. :-0.18204 Min. :0.1246 Min. :5.579
    < 1st Qu.:1.971 1st Qu.: 0.02887 1st Qu.:0.1793 1st Qu.:6.627
    < Median :1.995 Median : 0.09685 Median :0.2067 Median :6.839
    < Mean :1.989 Mean : 0.08811 Mean :0.2104 Mean :6.772
    < 3rd Qu.:2.018 3rd Qu.: 0.15046 3rd Qu.:0.2353 3rd Qu.:6.970
    < Max. :2.064 Max. : 0.37519 Max. :0.3411 Max. :7.336
    ---
    > Min. :1.837 Min. :-0.18402 Min. :0.1242 Min. :5.564
    > 1st Qu.:1.973 1st Qu.: 0.03964 1st Qu.:0.1734 1st Qu.:6.649
    > Median :1.997 Median : 0.09375 Median :0.2025 Median :6.852
    > Mean :1.989 Mean : 0.09052 Mean :0.2074 Mean :6.783
    > 3rd Qu.:2.017 3rd Qu.: 0.15010 3rd Qu.:0.2349 3rd Qu.:6.975
    > Max. :2.058 Max. : 0.35433 Max. :0.3334 Max. :7.293
    98,103c91,96
    < Min. :5.556 Min. :-1.1437
    < 1st Qu.:6.861 1st Qu.: 0.1988
    < Median :7.544 Median : 0.6617
    < Mean :7.430 Mean : 0.6580
    < 3rd Qu.:7.993 3rd Qu.: 1.1185
    < Max. :9.075 Max. : 2.6604
    ---
    > Min. :5.619 Min. :-1.1664
    > 1st Qu.:6.853 1st Qu.: 0.2761
    > Median :7.501 Median : 0.6648
    > Mean :7.459 Mean : 0.6755
    > 3rd Qu.:7.984 3rd Qu.: 1.0902
    > Max. :9.126 Max. : 2.5114
     Running ‘test-pmtree.R’ [5s/7s]
    Running the tests in ‘tests/test-pmtree.R’ failed.
    Complete output:
     > library("model4you")
     Loading required package: partykit
     Loading required package: grid
     Loading required package: libcoin
     Loading required package: mvtnorm
     Loading required package: rpart
     > library("survival")
    
     Attaching package: 'survival'
    
     The following object is masked from 'package:rpart':
    
     solder
    
     >
     > ### survreg
     > set.seed(1)
     > data(GBSG2, package = "TH.data")
     >
     > ## base model
     > bmod <- survreg(Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
     > survreg_plot(bmod)
     >
     > ## partitioned model
     > tr <- pmtree(bmod)
     No data given. I'm using data set GBSG2 from the current environment parent.frame().
     Please check if that is what you want.
     > plot(tr, terminal_panel = node_pmterminal(tr, plotfun = survreg_plot,
     + confint = TRUE))
     > summary(tr)
     Stratified model for node(s) 2, 4, 5
    
     Model call:
     survreg(formula = Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
    
     Coefficients:
     node 2 node 4 node 5
     (Intercept) 7.8590 7.2936 6.981
     horThyes 0.4001 0.3039 0.163
    
     Number of obervations:
     node 2 node 4 node 5
     376 223 87
    
     Objective function:
     (1093.18) + (1037.81) + (457.96) = 2588.95> summary(tr, node = 1:2)
     Stratified model for node(s) 1, 2
    
     Model call:
     survreg(formula = Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
    
     Coefficients:
     node 1 node 2
     (Intercept) 7.608 7.8590
     horThyes 0.306 0.4001
    
     Number of obervations:
     node 1 node 2
     686 376
    
     Objective function:
     node 1 node 2
     2632.096 1093.182
     >
     > coef(tr)
     (Intercept) horThyes
     2 7.859026 0.4001011
     4 7.293645 0.3038557
     5 6.980875 0.1630104
     > coef(tr, node = 1)
     (Intercept) horThyes
     1 7.608449 0.3059506
     > coef(bmod)
     (Intercept) horThyes
     7.6084486 0.3059506
     >
     > logLik(bmod)
     'log Lik.' -2632.096 (df=3)
     > logLik(tr)
     'log Lik.' -2588.953 (df=9)
     >
     >
     > ### glm binomial
     > set.seed(2)
     > n <- 1000
     > trt <- factor(rep(1:2, each = n/2))
     > age <- sample(40:60, size = n, replace = TRUE)
     > eff <- -1 + I(trt == 2) + 1 * I(trt == 2) * I(age > 50)
     > expit <- function(x) 1/(1 + exp(-x))
     >
     > success <- rbinom(n = n, size = 1, prob = expit(eff))
     >
     > dat <- data.frame(success, trt, age)
     > library("plyr")
     > dattab <- ddply(.data = dat, .variables = .(trt, age),
     + function(x) data.frame(nsuccess = sum(x$success),
     + nfailure = NROW(x) - sum(x$success)))
     >
     > bmod1 <- glm(success ~ trt, family = binomial)
     > bmod2 <- glm(success ~ trt, family = "binomial")
     > bmod3 <- glm(success ~ trt, data = dat, family = binomial)
     > bmod4 <- glm(cbind(nsuccess, nfailure) ~ trt, data = dattab, family = binomial)
     >
     > (tr1 <- pmtree(bmod1, data = dat))
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr2 <- pmtree(bmod2, data = dat))
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr3 <- pmtree(bmod3))
     No data given. I'm using data set dat from the current environment parent.frame().
     Please check if that is what you want.
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr4 <- pmtree(bmod4))
     No data given. I'm using data set dattab from the current environment parent.frame().
     Please check if that is what you want.
     [1] root
     | [2] age <= 50
     | | [3] age <= 43: n = 8
     | | (Intercept) trt2
     | | -0.4367177 0.7420993
     | | [4] age > 43: n = 14
     | | (Intercept) trt2
     | | -0.9253406 0.6662319
     | [5] age > 50: n = 20
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 94.40128
     >
     > (mtr1 <- glmtree(success ~ trt | age, data = dat, family = binomial))
     Generalized linear model tree (family: binomial)
    
     Model formula:
     success ~ trt | age
    
     Fitted party:
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function (negative log-likelihood): 621.198
     > # (mtr2 <- glmtree(cbind(nsuccess, nfailure) ~ trt | age, data = dattab, family = binomial))
     >
     > library("strucchange")
     Loading required package: zoo
    
     Attaching package: 'zoo'
    
     The following objects are masked from 'package:base':
    
     as.Date, as.Date.numeric
    
     Loading required package: sandwich
     > sctest(tr3)
     Error in UseMethod("estfun") :
     no applicable method for 'estfun' applied to an object of class "c('pmtree', 'constparty', 'party')"
     Calls: sctest -> sctest.default -> gefp -> scores
     Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.9-1
Check: tests
Result: ERROR
     Running ‘test-pmodel-test.R’ [22s/30s]
     Running ‘test-pmodel.R’ [42s/55s]
     Comparing ‘test-pmodel.Rout’ to ‘test-pmodel.Rout.save’ ...6,12d5
    <
    < Attaching package: 'survival'
    <
    < The following object is masked from 'package:rpart':
    <
    < solder
    <
    65,70c58,63
    < Min. :6.083 Min. :-2.09411
    < 1st Qu.:6.832 1st Qu.:-0.65812
    < Median :7.097 Median : 0.08235
    < Mean :7.061 Mean : 0.04625
    < 3rd Qu.:7.277 3rd Qu.: 0.77876
    < Max. :7.667 Max. : 2.34688
    ---
    > Min. :6.083 Min. :-2.06955
    > 1st Qu.:6.838 1st Qu.:-0.67986
    > Median :7.097 Median :-0.02111
    > Mean :7.044 Mean : 0.03952
    > 3rd Qu.:7.269 3rd Qu.: 0.72868
    > Max. :7.662 Max. : 2.27505
    91,96c84,89
    < Min. :1.833 Min. :-0.18204 Min. :0.1246 Min. :5.579
    < 1st Qu.:1.971 1st Qu.: 0.02887 1st Qu.:0.1793 1st Qu.:6.627
    < Median :1.995 Median : 0.09685 Median :0.2067 Median :6.839
    < Mean :1.989 Mean : 0.08811 Mean :0.2104 Mean :6.772
    < 3rd Qu.:2.018 3rd Qu.: 0.15046 3rd Qu.:0.2353 3rd Qu.:6.970
    < Max. :2.064 Max. : 0.37519 Max. :0.3411 Max. :7.336
    ---
    > Min. :1.837 Min. :-0.18402 Min. :0.1242 Min. :5.564
    > 1st Qu.:1.973 1st Qu.: 0.03964 1st Qu.:0.1734 1st Qu.:6.649
    > Median :1.997 Median : 0.09375 Median :0.2025 Median :6.852
    > Mean :1.989 Mean : 0.09052 Mean :0.2074 Mean :6.783
    > 3rd Qu.:2.017 3rd Qu.: 0.15010 3rd Qu.:0.2349 3rd Qu.:6.975
    > Max. :2.058 Max. : 0.35433 Max. :0.3334 Max. :7.293
    98,103c91,96
    < Min. :5.556 Min. :-1.1437
    < 1st Qu.:6.861 1st Qu.: 0.1988
    < Median :7.544 Median : 0.6617
    < Mean :7.430 Mean : 0.6580
    < 3rd Qu.:7.993 3rd Qu.: 1.1185
    < Max. :9.075 Max. : 2.6604
    ---
    > Min. :5.619 Min. :-1.1664
    > 1st Qu.:6.853 1st Qu.: 0.2761
    > Median :7.501 Median : 0.6648
    > Mean :7.459 Mean : 0.6755
    > 3rd Qu.:7.984 3rd Qu.: 1.0902
    > Max. :9.126 Max. : 2.5114
     Running ‘test-pmtree.R’ [5s/7s]
    Running the tests in ‘tests/test-pmtree.R’ failed.
    Complete output:
     > library("model4you")
     Loading required package: partykit
     Loading required package: grid
     Loading required package: libcoin
     Loading required package: mvtnorm
     Loading required package: rpart
     > library("survival")
    
     Attaching package: 'survival'
    
     The following object is masked from 'package:rpart':
    
     solder
    
     >
     > ### survreg
     > set.seed(1)
     > data(GBSG2, package = "TH.data")
     >
     > ## base model
     > bmod <- survreg(Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
     > survreg_plot(bmod)
     >
     > ## partitioned model
     > tr <- pmtree(bmod)
     No data given. I'm using data set GBSG2 from the current environment parent.frame().
     Please check if that is what you want.
     > plot(tr, terminal_panel = node_pmterminal(tr, plotfun = survreg_plot,
     + confint = TRUE))
     > summary(tr)
     Stratified model for node(s) 2, 4, 5
    
     Model call:
     survreg(formula = Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
    
     Coefficients:
     node 2 node 4 node 5
     (Intercept) 7.8590 7.2936 6.981
     horThyes 0.4001 0.3039 0.163
    
     Number of obervations:
     node 2 node 4 node 5
     376 223 87
    
     Objective function:
     (1093.18) + (1037.81) + (457.96) = 2588.95> summary(tr, node = 1:2)
     Stratified model for node(s) 1, 2
    
     Model call:
     survreg(formula = Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
    
     Coefficients:
     node 1 node 2
     (Intercept) 7.608 7.8590
     horThyes 0.306 0.4001
    
     Number of obervations:
     node 1 node 2
     686 376
    
     Objective function:
     node 1 node 2
     2632.096 1093.182
     >
     > coef(tr)
     (Intercept) horThyes
     2 7.859026 0.4001011
     4 7.293645 0.3038557
     5 6.980875 0.1630104
     > coef(tr, node = 1)
     (Intercept) horThyes
     1 7.608449 0.3059506
     > coef(bmod)
     (Intercept) horThyes
     7.6084486 0.3059506
     >
     > logLik(bmod)
     'log Lik.' -2632.096 (df=3)
     > logLik(tr)
     'log Lik.' -2588.953 (df=9)
     >
     >
     > ### glm binomial
     > set.seed(2)
     > n <- 1000
     > trt <- factor(rep(1:2, each = n/2))
     > age <- sample(40:60, size = n, replace = TRUE)
     > eff <- -1 + I(trt == 2) + 1 * I(trt == 2) * I(age > 50)
     > expit <- function(x) 1/(1 + exp(-x))
     >
     > success <- rbinom(n = n, size = 1, prob = expit(eff))
     >
     > dat <- data.frame(success, trt, age)
     > library("plyr")
     > dattab <- ddply(.data = dat, .variables = .(trt, age),
     + function(x) data.frame(nsuccess = sum(x$success),
     + nfailure = NROW(x) - sum(x$success)))
     >
     > bmod1 <- glm(success ~ trt, family = binomial)
     > bmod2 <- glm(success ~ trt, family = "binomial")
     > bmod3 <- glm(success ~ trt, data = dat, family = binomial)
     > bmod4 <- glm(cbind(nsuccess, nfailure) ~ trt, data = dattab, family = binomial)
     >
     > (tr1 <- pmtree(bmod1, data = dat))
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr2 <- pmtree(bmod2, data = dat))
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr3 <- pmtree(bmod3))
     No data given. I'm using data set dat from the current environment parent.frame().
     Please check if that is what you want.
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr4 <- pmtree(bmod4))
     No data given. I'm using data set dattab from the current environment parent.frame().
     Please check if that is what you want.
     [1] root
     | [2] age <= 50
     | | [3] age <= 43: n = 8
     | | (Intercept) trt2
     | | -0.4367177 0.7420993
     | | [4] age > 43: n = 14
     | | (Intercept) trt2
     | | -0.9253406 0.6662319
     | [5] age > 50: n = 20
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 94.40128
     >
     > (mtr1 <- glmtree(success ~ trt | age, data = dat, family = binomial))
     Generalized linear model tree (family: binomial)
    
     Model formula:
     success ~ trt | age
    
     Fitted party:
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function (negative log-likelihood): 621.198
     > # (mtr2 <- glmtree(cbind(nsuccess, nfailure) ~ trt | age, data = dattab, family = binomial))
     >
     > library("strucchange")
     Loading required package: zoo
    
     Attaching package: 'zoo'
    
     The following objects are masked from 'package:base':
    
     as.Date, as.Date.numeric
    
     Loading required package: sandwich
     > sctest(tr3)
     Error in UseMethod("estfun") :
     no applicable method for 'estfun' applied to an object of class "c('pmtree', 'constparty', 'party')"
     Calls: sctest -> sctest.default -> gefp -> scores
     Execution halted
Flavor: r-patched-linux-x86_64

Version: 0.9-1
Check: tests
Result: ERROR
     Running ‘test-pmodel-test.R’ [21s/27s]
     Running ‘test-pmodel.R’ [37s/49s]
     Comparing ‘test-pmodel.Rout’ to ‘test-pmodel.Rout.save’ ...6,12d5
    <
    < Attaching package: 'survival'
    <
    < The following object is masked from 'package:rpart':
    <
    < solder
    <
    65,70c58,63
    < Min. :6.083 Min. :-2.09411
    < 1st Qu.:6.832 1st Qu.:-0.65812
    < Median :7.097 Median : 0.08235
    < Mean :7.061 Mean : 0.04625
    < 3rd Qu.:7.277 3rd Qu.: 0.77876
    < Max. :7.667 Max. : 2.34688
    ---
    > Min. :6.083 Min. :-2.06955
    > 1st Qu.:6.838 1st Qu.:-0.67986
    > Median :7.097 Median :-0.02111
    > Mean :7.044 Mean : 0.03952
    > 3rd Qu.:7.269 3rd Qu.: 0.72868
    > Max. :7.662 Max. : 2.27505
    91,96c84,89
    < Min. :1.833 Min. :-0.18204 Min. :0.1246 Min. :5.579
    < 1st Qu.:1.971 1st Qu.: 0.02887 1st Qu.:0.1793 1st Qu.:6.627
    < Median :1.995 Median : 0.09685 Median :0.2067 Median :6.839
    < Mean :1.989 Mean : 0.08811 Mean :0.2104 Mean :6.772
    < 3rd Qu.:2.018 3rd Qu.: 0.15046 3rd Qu.:0.2353 3rd Qu.:6.970
    < Max. :2.064 Max. : 0.37519 Max. :0.3411 Max. :7.336
    ---
    > Min. :1.837 Min. :-0.18402 Min. :0.1242 Min. :5.564
    > 1st Qu.:1.973 1st Qu.: 0.03964 1st Qu.:0.1734 1st Qu.:6.649
    > Median :1.997 Median : 0.09375 Median :0.2025 Median :6.852
    > Mean :1.989 Mean : 0.09052 Mean :0.2074 Mean :6.783
    > 3rd Qu.:2.017 3rd Qu.: 0.15010 3rd Qu.:0.2349 3rd Qu.:6.975
    > Max. :2.058 Max. : 0.35433 Max. :0.3334 Max. :7.293
    98,103c91,96
    < Min. :5.556 Min. :-1.1437
    < 1st Qu.:6.861 1st Qu.: 0.1988
    < Median :7.544 Median : 0.6617
    < Mean :7.430 Mean : 0.6580
    < 3rd Qu.:7.993 3rd Qu.: 1.1185
    < Max. :9.075 Max. : 2.6604
    ---
    > Min. :5.619 Min. :-1.1664
    > 1st Qu.:6.853 1st Qu.: 0.2761
    > Median :7.501 Median : 0.6648
    > Mean :7.459 Mean : 0.6755
    > 3rd Qu.:7.984 3rd Qu.: 1.0902
    > Max. :9.126 Max. : 2.5114
     Running ‘test-pmtree.R’ [5s/7s]
    Running the tests in ‘tests/test-pmtree.R’ failed.
    Complete output:
     > library("model4you")
     Loading required package: partykit
     Loading required package: grid
     Loading required package: libcoin
     Loading required package: mvtnorm
     Loading required package: rpart
     > library("survival")
    
     Attaching package: 'survival'
    
     The following object is masked from 'package:rpart':
    
     solder
    
     >
     > ### survreg
     > set.seed(1)
     > data(GBSG2, package = "TH.data")
     >
     > ## base model
     > bmod <- survreg(Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
     > survreg_plot(bmod)
     >
     > ## partitioned model
     > tr <- pmtree(bmod)
     No data given. I'm using data set GBSG2 from the current environment parent.frame().
     Please check if that is what you want.
     > plot(tr, terminal_panel = node_pmterminal(tr, plotfun = survreg_plot,
     + confint = TRUE))
     > summary(tr)
     Stratified model for node(s) 2, 4, 5
    
     Model call:
     survreg(formula = Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
    
     Coefficients:
     node 2 node 4 node 5
     (Intercept) 7.8590 7.2936 6.981
     horThyes 0.4001 0.3039 0.163
    
     Number of obervations:
     node 2 node 4 node 5
     376 223 87
    
     Objective function:
     (1093.18) + (1037.81) + (457.96) = 2588.95> summary(tr, node = 1:2)
     Stratified model for node(s) 1, 2
    
     Model call:
     survreg(formula = Surv(time, cens) ~ horTh, data = GBSG2, model = TRUE)
    
     Coefficients:
     node 1 node 2
     (Intercept) 7.608 7.8590
     horThyes 0.306 0.4001
    
     Number of obervations:
     node 1 node 2
     686 376
    
     Objective function:
     node 1 node 2
     2632.096 1093.182
     >
     > coef(tr)
     (Intercept) horThyes
     2 7.859026 0.4001011
     4 7.293645 0.3038557
     5 6.980875 0.1630104
     > coef(tr, node = 1)
     (Intercept) horThyes
     1 7.608449 0.3059506
     > coef(bmod)
     (Intercept) horThyes
     7.6084486 0.3059506
     >
     > logLik(bmod)
     'log Lik.' -2632.096 (df=3)
     > logLik(tr)
     'log Lik.' -2588.953 (df=9)
     >
     >
     > ### glm binomial
     > set.seed(2)
     > n <- 1000
     > trt <- factor(rep(1:2, each = n/2))
     > age <- sample(40:60, size = n, replace = TRUE)
     > eff <- -1 + I(trt == 2) + 1 * I(trt == 2) * I(age > 50)
     > expit <- function(x) 1/(1 + exp(-x))
     >
     > success <- rbinom(n = n, size = 1, prob = expit(eff))
     >
     > dat <- data.frame(success, trt, age)
     > library("plyr")
     > dattab <- ddply(.data = dat, .variables = .(trt, age),
     + function(x) data.frame(nsuccess = sum(x$success),
     + nfailure = NROW(x) - sum(x$success)))
     >
     > bmod1 <- glm(success ~ trt, family = binomial)
     > bmod2 <- glm(success ~ trt, family = "binomial")
     > bmod3 <- glm(success ~ trt, data = dat, family = binomial)
     > bmod4 <- glm(cbind(nsuccess, nfailure) ~ trt, data = dattab, family = binomial)
     >
     > (tr1 <- pmtree(bmod1, data = dat))
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr2 <- pmtree(bmod2, data = dat))
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr3 <- pmtree(bmod3))
     No data given. I'm using data set dat from the current environment parent.frame().
     Please check if that is what you want.
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 621.198
     > (tr4 <- pmtree(bmod4))
     No data given. I'm using data set dattab from the current environment parent.frame().
     Please check if that is what you want.
     [1] root
     | [2] age <= 50
     | | [3] age <= 43: n = 8
     | | (Intercept) trt2
     | | -0.4367177 0.7420993
     | | [4] age > 43: n = 14
     | | (Intercept) trt2
     | | -0.9253406 0.6662319
     | [5] age > 50: n = 20
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function: 94.40128
     >
     > (mtr1 <- glmtree(success ~ trt | age, data = dat, family = binomial))
     Generalized linear model tree (family: binomial)
    
     Model formula:
     success ~ trt | age
    
     Fitted party:
     [1] root
     | [2] age <= 50
     | | [3] age <= 42: n = 153
     | | (Intercept) trt2
     | | -0.1300531 0.5027284
     | | [4] age > 42: n = 371
     | | (Intercept) trt2
     | | -0.9932518 0.7773634
     | [5] age > 50: n = 476
     | (Intercept) trt2
     | -0.7958013 1.9056497
    
     Number of inner nodes: 2
     Number of terminal nodes: 3
     Number of parameters per node: 2
     Objective function (negative log-likelihood): 621.198
     > # (mtr2 <- glmtree(cbind(nsuccess, nfailure) ~ trt | age, data = dattab, family = binomial))
     >
     > library("strucchange")
     Loading required package: zoo
    
     Attaching package: 'zoo'
    
     The following objects are masked from 'package:base':
    
     as.Date, as.Date.numeric
    
     Loading required package: sandwich
     > sctest(tr3)
     Error in UseMethod("estfun") :
     no applicable method for 'estfun' applied to an object of class "c('pmtree', 'constparty', 'party')"
     Calls: sctest -> sctest.default -> gefp -> scores
     Execution halted
Flavor: r-release-linux-x86_64