The document introduces the SmartEDA package and how it can help you to build exploratory data analysis.
SmartEDA includes multiple custom functions to perform initial exploratory analysis on any input data describing the structure and the relationships present in the data. The generated output can be obtained in both summary and graphical form. The graphical form or charts can also be exported as reports.
सर्वस्य लोचनं शास्त्रं
Science is the only eye
अनेकसंशयोच्छेदि, परोक्षार्थस्य दर्शक|
सर्वस्य लोचनं शास्त्रं, यस्य नास्त्यन्ध एव सः ||
It blasts many doubts, foresees what is not obvious |
Science is the eye of everyone, one who hasn't got it, is like a blind ||
SmartEDA package helps you to construct a good base of data understanding. The capabilities and functionalities are listed below
No need to categorize the variables into Character, Numeric, Factor etc. SmartEDA functions automatically categorize all the features into the right data type (Character, Numeric, Factor etc.) based on the input data.
ggplot2 functions are used for graphical presentation of data
Rmarkdown and knitr functions were used for build HTML reports
To summarize, SmartEDA package helps in getting the complete exploratory data analysis just by running the function instead of writing lengthy r code.
In this vignette, we will be using a simulated data set containing sales of child car seats at 400 different stores.
Data Source ISLR package.
Install the package “ISLR” to get the example data set.
install.packages("ISLR")
library("ISLR")
install.packages("SmartEDA")
library("SmartEDA")
## Load sample dataset from ISLR pacakge
Carseats= ISLR::Carseats
Understanding the dimensions of the dataset, variable names, overall missing summary and data types of each variables
# Overview of the data - Type = 1
ExpData(data=Carseats,type=1,DV=NULL)
# Structure of the data - Type = 2
ExpData(data=Carseats,type=2,DV=NULL)
Descriptions | Obs |
---|---|
Total Sample | 400 |
No. of Variables | 11 |
No. of Numeric Variables | 8 |
No. of Factor Variables | 3 |
No. of Text Variables | 0 |
No. of Date Variables | 0 |
No. of Zero variance Variables (Uniform) | 0 |
%. of Variables having complete cases | 100% |
%. of Variables having <50% missing cases | 0% |
%. of Variables having >50% missing cases | 0% |
%. of Variables having >90% missing cases | 0% |
S.no | VarName | VarClass | VarType |
---|---|---|---|
1 | Sales | numeric | Independet variable |
2 | CompPrice | numeric | Independet variable |
3 | Income | numeric | Independet variable |
4 | Advertising | numeric | Independet variable |
5 | Population | numeric | Independet variable |
6 | Price | numeric | Independet variable |
7 | ShelveLoc* | factor | Independet variable |
8 | Age | numeric | Independet variable |
9 | Education | numeric | Independet variable |
10 | Urban* | factor | Independet variable |
11 | US* | factor | Independet variable |
This function shows the EDA output for 3 different cases
Summary of all numerical variables
ExpNumStat(Carseats,by="A",gp=NULL,Qnt=seq(0,1,0.1),MesofShape=2,Outlier=TRUE,round=2)
Graphical representation of all numeric features
# Note: Variable excluded (if unique value of variable which is less than or eaual to 10 [nlim=10])
ExpNumViz(Carseats,gp=NULL,nlim=10,Page=c(2,2),sample=8)
## $`0`
ExpCTable(Carseats,Target=NULL,margin=1,clim=10,nlim=NULL,round=2,bin=NULL,per=T)
Variable | Valid | Frequency | Percent | CumPercent |
---|---|---|---|---|
ShelveLoc | Bad | 96 | 24.00 | 24.00 |
ShelveLoc | Good | 85 | 21.25 | 45.25 |
ShelveLoc | Medium | 219 | 54.75 | 100.00 |
ShelveLoc | TOTAL | 400 | NA | NA |
Urban | No | 118 | 29.50 | 29.50 |
Urban | Yes | 282 | 70.50 | 100.00 |
Urban | TOTAL | 400 | NA | NA |
US | No | 142 | 35.50 | 35.50 |
US | Yes | 258 | 64.50 | 100.00 |
US | TOTAL | 400 | NA | NA |
NA
is Not Applicable
ExpCatViz(Carseats,gp=NULL,fname=NULL,clim=10,margin=2,Page = c(2,1),sample=4)
## $`0`
Summary of continuous dependent variable
summary(Carseats[,"Price"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 24.0 100.0 117.0 115.8 131.0 191.0
Summary statistics when dependent variable is continuous Price.
ExpNumStat(Carseats,by="A",gp="Price",Qnt=seq(0,1,0.1),MesofShape=1,Outlier=TRUE,round=2)
If Target variable is continuous, summary statistics will add the correlation column (Correlation between Target variable vs all independet variables)
Graphical representation of all numeric variables
Scatter plot between all numeric variables and target variable Price. This plot help to examine how well a target variable is correlated with dependent variables.
Dependent variable is Price (continuous).
#Note: sample=8 means randomly selected 8 scatter plots
#Note: nlim=4 means included numeric variable with unique value is more than 4
ExpNumViz(Carseats,gp="Price",nlim=4,fname=NULL,col=NULL,Page=c(2,2),sample=8)
## $`0`
Summary of categorical variables
##bin=4, descretized 4 categories based on quantiles
ExpCTable(Carseats,Target="Price",margin=1,clim=10,nlim=NULL,round=2,bin=4,per=F)
Summary of categorical dependent variable
Urban | Frequency | Descriptions |
---|---|---|
No | 118 | Store location |
Yes | 282 | Store location |
Summary of all numeric variables
ExpNumStat(Carseats,by="GA",gp="Urban",Qnt=seq(0,1,0.1),MesofShape=2,Outlier=TRUE,round=2)
Boxplot for all the numeric attributes by each category of Urban
ExpNumViz(Carseats,gp="Urban",type=1,nlim=NULL,fname=NULL,col=c("pink","yellow","orange"),Page=c(2,2),sample=8)
## $`0`
Cross tabulation with target variable
ExpCTable(Carseats,Target="Urban",margin=1,clim=10,nlim=NULL,round=2,bin=NULL,per=F)
VARIABLE | CATEGORY | Urban:No | Urban:Yes | TOTAL |
---|---|---|---|---|
ShelveLoc | Bad | 22 | 74 | 96 |
ShelveLoc | Good | 28 | 57 | 85 |
ShelveLoc | Medium | 68 | 151 | 219 |
ShelveLoc | TOTAL | 118 | 282 | 400 |
US | No | 46 | 96 | 142 |
US | Yes | 72 | 186 | 258 |
US | TOTAL | 118 | 282 | 400 |
Information Value
ExpCatStat(Carseats,Target="Urban",Label="Store Location",result = "IV",clim=10,nlim=5,Pclass="Yes")
Variable | Target | Class | Out_1 | Out_0 | TOTAL | Per_1 | Per_0 | Odds | WOE | IV | Ref_1 | Ref_0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ShelveLoc | Urban | Bad | 74 | 22 | 96 | 0.262 | 0.186 | 1.409 | 0.343 | 0.026 | Yes | No |
ShelveLoc | Urban | Good | 57 | 28 | 85 | 0.202 | 0.237 | 0.852 | -0.160 | 0.006 | Yes | No |
ShelveLoc | Urban | Medium | 151 | 68 | 219 | 0.535 | 0.576 | 0.929 | -0.074 | 0.003 | Yes | No |
US | Urban | No | 96 | 46 | 142 | 0.340 | 0.390 | 0.872 | -0.137 | 0.007 | Yes | No |
US | Urban | Yes | 186 | 72 | 258 | 0.660 | 0.610 | 1.082 | 0.079 | 0.004 | Yes | No |
Statistical test
ExpCatStat(Carseats,Target="Urban",Label="Store Location",result = "Stat",clim=10,nlim=5,Pclass="Yes")
Variable | Target | Unique | Chi-squared | p-value | df | IV Value | Pred Power |
---|---|---|---|---|---|---|---|
ShelveLoc | Urban | 3 | 2.738 | 0.254 | 2 | 0.035 | Somewhat Predictive |
US | Urban | 2 | 0.684 | 0.408 | 1 | 0.011 | Not Predictive |
Stacked bar plot with vertical or horizontal bars for all categorical variables
ExpCatViz(Carseats,gp="Urban",fname=NULL,clim=10,col=NULL,margin=2,Page = c(2,1),sample=2)
## $`0`