grf: Generalized Random Forests (Beta)

A pluggable package for forest-based statistical estimation and inference. GRF currently provides methods for non-parametric least-squares regression, quantile regression, and treatment effect estimation (optionally using instrumental variables). This package is currently in beta, and we expect to make continual improvements to its performance and usability.

Version: 0.9.6
Depends: R (≥ 3.3.0)
Imports: DiceKriging, Matrix, methods, Rcpp (≥ 0.12.15), sandwich (≥ 2.4-0)
LinkingTo: Rcpp, RcppEigen
Suggests: testthat
Published: 2018-04-14
Author: Julie Tibshirani [aut, cre], Susan Athey [aut], Stefan Wager [aut], Rina Friedberg [ctb], Luke Miner [ctb], Marvin Wright [ctb]
Maintainer: Julie Tibshirani <jtibs at cs.stanford.edu>
BugReports: https://github.com/swager/grf/issues
License: GPL-3
URL: https://github.com/swager/grf
NeedsCompilation: yes
SystemRequirements: GNU make
In views: MachineLearning
CRAN checks: grf results

Downloads:

Reference manual: grf.pdf
Package source: grf_0.9.6.tar.gz
Windows binaries: r-devel: grf_0.9.6.zip, r-release: grf_0.9.6.zip, r-oldrel: grf_0.9.6.zip
OS X binaries: r-release: grf_0.9.6.tgz, r-oldrel: grf_0.9.6.tgz
Old sources: grf archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=grf to link to this page.