A simple and fast distance-based k-medoids clustering algorithm from Park and Jun (2009) <doi:10.1016/j.eswa.2008.01.039>. Calculate distances for mixed variable data such as Gower (1971) <doi:10.2307/2528823>, Wishart (2003) <doi:10.1007/978-3-642-55721-7_23>, Podani (1999) <doi:10.2307/1224438>, Huang (1997) <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.9984&rep=rep1&type=pdf>, and Harikumar and PV (2015) <doi:10.1016/j.procs.2015.10.077>. Cluster validation applies bootstrap procedure producing a heatmap with a flexible reordering matrix algorithm such as complete, ward, or average linkages.
Version: | 0.0.1 |
Depends: | R (≥ 2.10) |
Imports: | ggplot2 |
Suggests: | knitr, rmarkdown |
Published: | 2018-02-12 |
Author: | Weksi Budiaji |
Maintainer: | Weksi Budiaji <budiaji at untirta.ac.id> |
License: | GPL-3 |
NeedsCompilation: | no |
CRAN checks: | kmed results |
Reference manual: | kmed.pdf |
Vignettes: |
K-medoids Distance-Based clustering |
Package source: | kmed_0.0.1.tar.gz |
Windows binaries: | r-devel: kmed_0.0.1.zip, r-release: kmed_0.0.1.zip, r-oldrel: kmed_0.0.1.zip |
OS X binaries: | r-release: kmed_0.0.1.tgz, r-oldrel: kmed_0.0.1.tgz |
Please use the canonical form https://CRAN.R-project.org/package=kmed to link to this page.