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Abstract

Spatial survival analysis has received a great deal of attention over the last 20 years
due to the important role that geographical information can play in predicting survival.
This paper provides an introduction to a set of programs for implementing some Bayesian
spatial survival models in R using the package spBayesSurv. The function survregbayes

includes the three most commonly-used semiparametric models: proportional hazards,
proportional odds, and accelerated failure time. All manner of censored survival times
are simultaneously accommodated including uncensored, interval censored, current-status,
left and right censored, and mixtures of these. Left-truncated data are also accommodated.
Time-dependent covariates are allowed under the piecewise constant assumption. Both
georeferenced and areally observed spatial locations are handled via frailties. Model fit
is assessed with conditional Cox-Snell residual plots, and model choice is carried out via
the log pseudo marginal likelihood, the deviance information criterion and the Watanabe-
Akaike information criterion. The accelerated failure time frailty model with a covariate-
dependent baseline is included in the function frailtyGAFT. In addition, the package
also provides two marginal survival models: proportional hazards and linear dependent
Dirichlet process mixture, where the spatial dependence is modeled via spatial copulas.
Note that the package can also handle non-spatial data using non-spatial versions of
aforementioned models.

Keywords: Bayesian nonparametric, survival analysis, spatial dependence, semiparametric
models, parametric models.

1. Introduction

Spatial location plays a key role in survival prediction, serving as a proxy for unmeasured
regional characteristics such as socioeconomic status, access to health care, pollution, etc. Lit-
erature on the spatial analysis of survival data has flourished over the last decade, including
the study of leukemia survival (Henderson, Shimakura, and Gorst 2002), childhood mortal-
ity (Kneib 2006), asthma (Li and Lin 2006), breast cancer (Banerjee and Dey 2005; Zhou,
Hanson, Jara, and Zhang 2015a), political event processes (Darmofal 2009), prostate cancer
(Wang, Zhang, and Lawson 2012; Zhou, Hanson, and Zhang 2017), pine trees (Li, Hong,
Thapa, and Burkhart 2015), threatened frogs (Zhou, Hanson, and Knapp 2015b), health and
pharmaceutical firms (Arbia, Espa, Giuliani, and Micciolo 2016), emergency service response
times (Taylor 2017), and many others.

Here we introduce the spBayesSurv (Zhou and Hanson 2018) package for fitting various sur-
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vival models to spatially-referenced survival data. Note that all models included in this
package can also be fit without spatial information, including nonparametric models as well
as semiparametric proportional hazards (PH), proportional odds (PO), and accelerated failure
time (AFT) models. The model parameters and statistical inference are carried out via self-
tuning adaptive Markov chain Monte Carlo (MCMC) methods; no manual tuning is needed.
The R syntax is essentially the same as for existing R survival (Therneau 2015) functions.
Sensible, well-tested default priors are used throughout, however, the user can easily imple-
ment informative priors if such information is available. The primary goal of this paper is
to introduce spBayesSurv and provide extensive examples of its use. Comparisons to other
models and R packages can be found in Zhou et al. (2015b), Zhou et al. (2017), and Zhou and
Hanson (2017).

Section 2 discusses spBayesSurv’s implementation of PH, PO, and AFT frailty models for
georeferenced (e.g., latitude and longitude are recorded) and areally-referenced (e.g., county
of residence recorded) spatial survival data; the functions also work very well for exchangeable
or no frailties. The models are centered at a parametric family through a novel transformed
Bernstein polynomial prior and the centering family can be tested versus the Bernstein ex-
tension via Bayes factors. All manner of censoring is accommodated as well as left-truncated
data; left-truncation also allows for the inclusion of time-dependent covariates. The LPML,
DIC and WAIC statistics are available for model selection; spike-and-slab variable selection
is also implemented.

In Section 3, a generalized AFT model is implemented allowing for continuous stratification.
That is, the baseline survival function is itself a function of covariates: baseline survival
changes smoothly as a function of continuous predictors; for categorical predictors the usual
stratified AFT model is obtained. Note that even for the usual stratified semiparametric AFT
model with one discrete predictor (e.g., clinic) it is extremely difficult to obtain inference using
frequentist approaches; see Chiou, Kang, and Yan (2015) for a recent development. The
model fit in spBayesSurv actually extends discrete stratification to continuous covariates,
allowing for very general models to be fit. The generalized AFT model includes the easy
computation of Bayes factors for determining which covariates affect baseline survival and
whether a parametric baseline is adequate.

Finally, Section 4 offers a spatial implementation of the completely nonparametric linear
dependent Dirichlet process mixture (LDDPM) model of De Iorio, Johnson, Müller, and
Rosner (2009) for georeferenced data. The LDDPM does not have one simple“linear predictor”
as do the models in Sections 2 and 3, and therefore a marginal copula approach was taken
to incorporate spatial dependence. A piecewise-constant baseline hazard PH model is also
implemented via spatial copula for comparison purposes, i.e., a Bayesian version of the model
presented in Li and Lin (2006). Section 5 concludes the paper with a discussion.

Although there are many R packages for implementing survival models, there are only a
handful of that allow the inclusion of spatial information and these focus almost exclusively
on variants of the PH model. BayesX (Belitz, Brezger, Klein, Kneib, Lang, and Umlauf 2015)
is an immensely powerful standalone program for fitting various generalized additive mixed
models, including both georeferenced and areally-referenced frailties in the PH model. The
package R2BayesX (Umlauf, Adler, Kneib, Lang, and Zeileis 2015) interfaces BayesX with R,
but does not appear to include the full functionality of BayesX, e.g., a Bayesian approach for
interval-censored data is not included. BayesX uses Gaussian Markov random fields for discrete
spatial data. For georeferenced frailties BayesX uses what have been termed “Matern splines,”
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first introduced in an applied context by Kammann and Wand (2003). Several authors have
used this approach including Kneib (2006), Hennerfeind, Brezger, and Fahrmeir (2006), and
Kneib and Fahrmeir (2007). This approximation was termed a “predictive process” and given
a more formal treatment by Banerjee, Gelfand, Finley, and Sang (2008) and Finley, Sang,
Banerjee, and Gelfand (2009). The spBayesSurv package utilizes the full-scale approximation
(FSA) of Sang and Huang (2012) which extends the predictive process to capture both the
large and small spatial scales; see Section 2.1.4.

The package spatsurv (Taylor and Rowlingson 2017) includes an implementation of PH allow-
ing for georeferenced Gaussian process frailties. The frailty process is approximated on a fine
grid and the covariance matrix inverted via the discrete Fourier transform on block circulant
matrices; see Taylor (2015) for details. Taylor’s approach vastly improves computation time
over a fully-specified Gaussian process. The package mgcv (Wood 2017) also fits a spatial
PH model by including a spatial term through various smoothers such as thin plate spline,
Duchon spline and Gaussian process. All the three aforementioned R packages focus on the
PH model, whereas the spBayesSurv includes several other spatial frailty models and two
marginal copula models (Zhou et al. 2015b).

To set notation, suppose subjects are observed at m distinct spatial locations s1, . . . , sm. Let
tij be a random event time associated with the jth subject in si and xij be a related p-
dimensional vector of covariates, i = 1, . . . ,m, j = 1, . . . , ni. Then n =

∑m
i=1 ni is the total

number of subjects under consideration. Assume the survival time tij lies in the interval
(aij , bij), 0 ≤ aij ≤ bij ≤ ∞. Here left censored data are of the form (0, bij), right censored
(aij ,∞), interval censored (aij , bij) and uncensored values simply have aij = bij , i.e., we define
(x, x) = {x}. Therefore, the observed data will be D = {(aij , bij ,xij , si); i = 1, . . . ,m, j =
1, . . . , ni}. For areally-observed outcomes, e.g., county-level, there is typically replication
(i.e., ni > 1); for georeferenced data, there may or may not be replication. Note although the
models are discussed for spatial survival data, non-spatial data are also accommodated. All
code below is run in R version 3.3.3 under the platform x86 64-apple-darwin13.4.0 (64-bit).

2. Semiparametric frailty models

2.1. Models

The function survregbayes supports three commonly-used semiparametric frailty models:
AFT, PH, and PO. The AFT model has survival and density functions

Sxij
(t) = S0(e

x
⊤

ijβ+vit), fxij
(t) = ex

⊤

ijβ+vif0(e
x
⊤

ijβ+vit), (1)
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where β = (β1, . . . , βp)
⊤ is a vector of regression coefficients, vi is an unobserved frailty

associated with si, and S0(t) is the baseline survival with density f0(t) corresponding to
xij = 0 and vi = 0. Let Γ(a, b) denote a gamma distribution with mean a/b and Np(µ,Σ)
a p-variate normal distribution with mean µ and covariance Σ. The survregbayes function
implements the following prior distributions:

β ∼ Np(β0,S0),

S0(·)|α,θ ∼ TBPL(α, Sθ(·)), α ∼ Γ(a0, b0), θ ∼ N2(θ0,V0),

(v1, . . . , vm)⊤|τ ∼ ICAR(τ2), τ−2 ∼ Γ(aτ , bτ ), or

(v1, . . . , vm)⊤|τ, φ ∼ GRF(τ2, φ), τ−2 ∼ Γ(aτ , bτ ), φ ∼ Γ(aφ, bφ), or

(v1, . . . , vm)⊤|τ ∼ IID(τ2), τ−2 ∼ Γ(aτ , bτ )

where TBPL, ICAR, GRF and IID refer to the transformed Bernstein polynomial (TBP)
(Chen, Hanson, and Zhang 2014; Zhou and Hanson 2017) prior, intrinsic conditionally au-
toregressive (ICAR) (Besag 1974) prior, Gaussian random field (GRF) prior, and independent
Gaussian (IID) prior distributions, respectively. The function argument prior allows users
to specify these prior parameters in a list with elements defined as follows:

element maxL beta0 S0 a0 b0 theta0 V0 taua0 taub0 phia0 phib0

symbol L β0 S0 a0 b0 θ0 V0 aτ bτ aφ bφ

We next briefly introduce these priors but leave details to Zhou and Hanson (2017).

TBP prior

In semiparametric survival analysis, a wide variety of Bayesian nonparametric priors can be
used to model S0(·); see Müller, Quintana, Jara, and Hanson (2015) and Zhou and Hanson
(2015) for reviews. The TBP prior is attractive in that it is centered at a given paramet-
ric family and it selects only smooth densities. For a fixed positive integer L, the prior
TBPL(α, Sθ(·)) is defined as

S0(t) =

L∑

j=1

wjI(Sθ(t)|j, L− j + 1), wL ∼ Dirichlet(α, . . . , α),

where wL = (w1, . . . , wL)
⊤ is a vector of positive weights, I(·|a, b) denotes a beta cumulative

distribution function (cdf) with parameters (a, b), and {Sθ(·) : θ ∈ Θ} is a parametric
family of survival functions with support on positive reals R

+. The log-logistic Sθ(t) =
{1+(eθ1t)exp(θ2)}−1, the log-normal Sθ(t) = 1−Φ{(log t+θ1) exp(θ2)}, and theWeibull Sθ(t) =
1 − exp

{
−(eθ1t)exp(θ2)

}
families are implemented in survregbayes, where θ = (θ1, θ2)

⊤. In
our experience, the three centering distributions yield almost identical posterior inferences
but in small samples one might be preferred. The random distribution S0(·) is centered at
Sθ(·), i.e., E[S0(t)|α,θ] = Sθ(t). The parameter α controls how close the weights wj are
to 1/L, i.e., how close the shape of the baseline survival S0(·) is relative to the prior guess
Sθ(·). Large values of α indicate a strong belief that S0(·) is close to Sθ(·); as α → ∞,
S0(·) → Sθ(·) with probability 1. Smaller values of α allow more pronounced deviations of
S0(·) from Sθ(·). This adaptability makes the TBP prior attractive in its flexibility, but also
anchors the random S0(·) firmly about Sθ(·): wj = 1/L for j = 1, . . . , L implies S0(t) = Sθ(t)
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for t ≥ 0. Moreover, unlike the mixture of Polya trees (Lavine 1992) or mixture of Dirichlet
process (Antoniak 1974) priors, the TBP prior selects smooth densities, leading to efficient
posterior sampling.

ICAR and IID priors

For areal data, the ICAR prior smooths neighboring geographic-unit frailties v = (v1, . . . , vm)⊤.
Let eij be 1 if regions i and j share a common boundary and 0 otherwise; set eii = 0. Then
the m × m matrix E = [eij ] is called the adjacency matrix for the m regions. The prior
ICAR(τ2) on v is defined through the set of the conditional distributions

vi|{vj}j 6=i ∼ N




m∑

j=1

eijvj/ei+, τ2/ei+


 , i = 1, . . . ,m, (4)

where ei+ =
∑m

j=1 eij is the number of neighbors of area si. The induced prior on v under
ICAR is improper; the constraint

∑m
j=1 vj = 0 is used for identifiability (Banerjee, Carlin,

and Gelfand 2014). Note that we assume that every region has at least one neighbor, so the
proportionality constant for the improper density of v is (τ−2)(m−1)/2 (Lavine and Hodges
2012).

For non-spatial data, we consider the independent Gaussian prior IID(τ2), defined as

v1, v2, . . . , vm
iid
∼ N(0, τ2). (5)

GRF priors

For georeferenced data, it is commonly assumed that vi = v(si) arises from a Gaussian ran-
dom field (GRF) {v(s), s ∈ S} such that v = (v1, . . . , vm) follows a multivariate Gaussian
distribution as v ∼ Nm(0, τ2R), where τ2 measures the amount of spatial variation across lo-
cations and the (i, j) element of R is modeled as R[i, j] = ρ(si, sj). Here ρ(·, ·) is a correlation
function controlling the spatial dependence of v(s). In survregbayes the powered exponen-
tial correlation function ρ(s, s′) = ρ(s, s′;φ) = exp{−(φ‖s − s′‖)ν} is used, where φ > 0 is
a range parameter controlling the spatial decay over distance, ν ∈ (0, 2] is a pre-specified
shape parameter which can be specified via prior$nu, and ‖s − s′‖ refers to the distance
(e.g., Euclidean, great-circle) between s and s′. Therefore, the prior GRF(τ2, φ) is defined as

vi|{vj}j 6=i ∼ N


−

∑

{j:j 6=i}

pijvj/pii, τ2/pii


 , i = 1, . . . ,m,

where pij is the (i, j) element of R−1.

Full-scale approximation

As m increases evaluating R−1 from R becomes computationally impractical. To overcome
this computational issue, we consider the FSA (Sang and Huang 2012) due to its capa-
bility of capturing both large- and small-scale spatial dependence. Consider a fixed set of
“knots” S∗ = {s∗1, . . . , s

∗
K} chosen from the study region. These knots are chosen using



6 spBayesSurv, version 1.1.3

the function cover.design within the R package fields (Nychka, Furrer, Paige, and Sain
2015), which computes space-filling coverage designs using the swapping algorithm (John-
son, Moore, and Ylvisaker 1990). Let ρ(s, s′) be the correlation between locations s and s′.
The usual predictive process approach (e.g., Banerjee et al. 2008) approximates ρ(s, s′) with
ρl(s, s

′) = ρ⊤(s,S∗)ρ−1
KK(S∗,S∗)ρ(s′,S∗), where ρ(s,S∗) = [ρ(s, s∗i )]

K
i=1 is a K × 1 vector, and

ρKK(S∗,S∗) = [ρ(s∗i , s
∗
j )]

K
i,j=1 is a K×K correlation matrix at knots S∗. However, noting that

ρ(s, s′) = ρl(s, s
′) + [ρ(s, s′) − ρl(s, s

′)], the predictive process discards entirely the residual
part ρ(s, s′)− ρl(s, s

′). In contrast, the FSA approach approximates the correlation function
ρ(s, s′) with

ρ†(s, s′) = ρl(s, s
′) + ρs(s, s

′), (6)

where ρs(s, s
′) = {ρ(s, s′)− ρl(s, s

′)}∆(s, s′) serves as a sparse approximate of the residual
part. Here ∆(s, s′) is a modulating function, which is specified so that ρs(s, s

′) can well capture
the local residual spatial dependence while still permitting efficient computation. Motivated
by Konomi, Sang, and Mallick (2014), we first partition the total input space into B disjoint
blocks, and then specify ∆(s, s′) in a way such that the residuals are independent across
input blocks, but the original residual dependence structure within each block is retained.
Specifically, the function ∆(s, s′) is taken to be 1 if s and s′ belong to the same block and 0
otherwise. The approximated correlation function ρ†(s, s′) in Equation 6 provides an exact
recovery of the true correlation within each block, and the approximation errors are ρ(s, s′)−
ρl(s, s

′) for locations s and s′ in different blocks. Those errors are expected to be small for
most entries because most of these location pairs are farther apart. To determine the blocks,
we first use the R function cover.design to choose B ≤ m locations among the m locations
forming B blocks, then assign each si to the block that is closest to si. Here B does not
need to be equal to K. When B = 1, no approximation is applied to the correlation ρ.
When B = m, it reduces to the approach of Finley et al. (2009), so the local residual spatial
dependence may not be well captured.

Applying the above FSA approach to approximate the correlation function ρ(s, s′), we can
approximate the correlation matrix R with

ρ†
mm = ρl + ρs = ρmKρ−1

KKρ⊤
mK +

(
ρmm − ρmKρ−1

KKρ⊤
mK

)
◦∆, (7)

where ρmK = [ρ(si, s
∗
j )]i=1:m,j=1:K , ρKK = [ρ(s∗i , s

∗
j )]

K
i,j=1, and ∆ = [∆(si, sj)]

m
i,j=1. Here, the

notation“◦”represents the element-wise matrix multiplication. To avoid numerical instability,
we add a small nugget effect ǫ = 10−10 when defining R, that is, R = (1 − ǫ)ρmm + ǫIm. It
follows from Equation 7 that R can be approximated by

R† = (1− ǫ)ρ†
mm + ǫIm = (1− ǫ)ρmKρ−1

KKρ⊤
mK +Rs,

where Rs = (1 − ǫ)
(
ρmm − ρmKρ−1

KKρ⊤
mK

)
◦ ∆ + ǫIm. Applying the Sherman-Woodbury-

Morrison formula for inverse matrices, we can approximate R−1 by

(
R†

)−1
= R−1

s − (1− ǫ)R−1
s ρmK

[
ρKK + (1− ǫ)ρ⊤

mKR−1
s ρmK

]−1
ρ⊤
mKR−1

s . (8)

In addition, the determinant of R can be approximated by

det
(
R†

)
= det

{
ρKK + (1− ǫ)ρ⊤

mKR−1
s ρmK

}
det(ρKK)−1 det(Rs). (9)
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Since the m × m matrix Rs is a block matrix, the right-hand sides of Equations 8 and 9
involve only inverses and determinants of K×K low-rank matrices and m×m block diagonal
matrices. Thus the computational complexity can be greatly reduced relative to the expensive
computational cost of using original correlation function for large value of m. However, for
small m, e.g., m < 300, the FSA is usually slower than direct inverse of R due to the
complexity of FSA’s implementation. Note that K and B can be specified via prior$K and
prior$B, respectively.

2.2. MCMC

The likelihood function for (wL,θ,β,v) is given by

L(wL,θ,β,v) =
m∏

i=1

ni∏

j=1

[
Sxij

(aij)− Sxij
(bij)

]I{aij<bij} fxij
(aij)

I{aij=bij}. (10)

MCMC is carried out through an empirical Bayes approach (Carlin and Louis 2010) coupled
with adaptive Metropolis samplers (Haario, Saksman, and Tamminen 2001). Recall that
wj = 1/L implies the underlying parametric model with S0(t) = Sθ(t). Thus, the parametric

model provides good starting values for the TBP survival model. Let θ̂ and β̂ denote the
parametric estimates of θ and β, e.g., maximum likelihood estimates, and let V̂ and Ŝ denote
their estimated covariance matrices, respectively. Set zL−1 = (z1, . . . , zL−1)

⊤ with zj =
log(wj) − log(wL). The β, θ, zL−1, α and φ are all updated using adaptive Metropolis

samplers, where the initial proposal variance is Ŝ for β, V̂ for θ, 0.16IL−1 for zL−1 and 0.16
for α and φ. Each frailty term vi is updated via Metropolis-Hastings, with proposal variance
as the conditional prior variance of vi|{vj}j 6=i; τ

−2 is updated via a Gibbs step from its full
conditional. A complete description and derivation of the updating steps are available in Zhou
and Hanson (2017).

The function survregbayes sets the following hyperparameters as defaults: β0 = 0, S0 =
1010Ip, θ0 = θ̂, V0 = 10V̂, a0 = b0 = 1, and aτ = bτ = .001. Although the default
Γ(0.001, 0.001) prior on τ2 has been tested to perform well across various simulation scenarios
(Zhou and Hanson 2017), it still should be used with caution in practice; see Gelman (2006)
for general suggestions. In addition, we assume a somewhat informative prior on θ to obviate
confounding between θ and wL. For the GRF prior, we set aφ = 2 and bφ = (aφ − 1)/φ0 so
that the prior of φ has mode at φ0 and the prior mean of 1/φ is 1/φ0 with infinite variance.
Here φ0 satisfies ρ(s′, s′′;φ0) = 0.001, where ‖s′− s′′‖ = maxij ‖si− sj‖. Note that Kneib and
Fahrmeir (2007) simply fix φ at φ0, while we allow φ to be random around φ0.

2.3. Model diagnostics and comparison

For model diagnostics, we consider a general residual of Cox and Snell (1968), defined as
r(tij) = − logSxij

(tij). Given Sxij
(·), r(tij) has a standard exponential distribution. If the

model is “correct,” and under the arbitrary censoring, the pairs {r(aij), r(bij)} are approxi-
mately a random arbitrarily censored sample from an Exp(1) distribution, and the estimated
(Turnbull 1974) integrated hazard plot should be approximately straight with slope 1. Uncer-
tainty in the plot is assessed through several cumulative hazards based on a random posterior
sample from [β,θ,wL,v|D]. Note that conditional on frailties, the Cox-Snell residuals con-
sidered here are still independent. This is in contrast to typical Cox-Snell plots which only
use point estimates yieding dependent residuals under frailty models.
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For model comparison, we consider three popular model choice criteria: the deviance infor-
mation criterion (DIC) (Spiegelhalter, Best, Carlin, and Van Der Linde 2002), the log pseudo
marginal likelihood (LPML) (Geisser and Eddy 1979), and the Watanabe-Akaike information
criterion (WAIC) Watanabe (2010), where DIC (smaller is better) places emphasis on the
relative quality of model fitting, and LPML (larger is better) and WAIC (smaller is better)
focus on the predictive performance. These criteria are readily computed from the MCMC
output; see Zhou and Hanson (2017) for more details.

2.4. Leukemia survival data

A dataset on the survival of acute myeloid leukemia in n = 1, 043 patients (Henderson et al.

2002) is considered, named as LeukSurv in the package. It is of interest to investigate possible
spatial variation in survival after accounting for known subject-specific prognostic factors,
which include age, sex, white blood cell count (wbc) at diagnosis, and the Townsend score
(tpi) for which higher values indicates less affluent areas. Both exact residential locations of
all patients and their administrative districts (the boundary file is named as nwengland.bnd
in the package) are available, so we can fit both geostatistical and areal models.

PO model with ICAR frailties

If the IID or ICAR frailties are considered, to easily identify the correspondence between
frailties and clusters/regions, we program the function survregbayes so that the input dataset
should be sorted by the cluster variable before any use. The following code is used to sort
the dataset by district and obtain the adjacency matrix E.

R> library("coda")

R> library("survival")

R> library("spBayesSurv")

R> library("fields")

R> library("BayesX")

R> library("R2BayesX")

R> data("LeukSurv")

R> d <- LeukSurv[order(LeukSurv$district), ]

R> head(d)

time cens xcoord ycoord age sex wbc tpi district

24 1 1 0.4123484 0.4233738 44 1 281.0 4.87 1

62 3 1 0.3925028 0.4531422 72 1 0.0 7.10 1

68 4 1 0.4167585 0.4520397 68 0 0.0 5.12 1

128 9 1 0.4244763 0.4123484 61 1 0.0 2.90 1

129 9 1 0.4145535 0.4520397 26 1 0.0 6.72 1

163 15 1 0.4013230 0.4785006 67 1 27.9 1.50 1

R> nwengland <- read.bnd(system.file("otherdata/nwengland.bnd",

+ package = "spBayesSurv"))

R> adj.mat <- bnd2gra(nwengland)

R> E <- diag(diag(adj.mat)) - as.matrix(adj.mat)



Zhou, Hanson, Zhang 9

The following code is used to fit the PO model with ICAR frailties using the TBP prior with
L = 15 and default settings for other priors. A burn-in period of 5,000 iterates was considered
and the Markov chain was subsampled every 5 iterates to get a final chain size of 2,000. The
argument ndisplay = 1000 will display the number of saved scans after every 1,000 saved
iterates. If the argument InitParamMCMC = TRUE (not used here as it is the default setting),
then an initial chain with nburn = 5000, nsave = 5000, nkip = 0 and ndisplay = 1000

will be run under parametric models; otherwise, the initial values are obtained from fitting
parametric non-frailty models via survreg. The total running time is 166 seconds.

R> set.seed(1)

R> mcmc <- list(nburn = 5000, nsave = 2000, nskip = 4, ndisplay = 1000)

R> prior <- list(maxL = 15)

R> ptm <- proc.time()

R> res1 <- survregbayes(formula = Surv(time, cens) ~ age + sex + wbc + tpi +

+ frailtyprior("car", district), data = d, survmodel = "PO",

+ dist = "loglogistic", mcmc = mcmc, prior = prior, Proximity = E)

R> proc.time() - ptm

user system elapsed

165.919 0.296 166.354

The term frailtyprior("car", district) indicates that the ICAR prior in Equation 4
is used. One can also incorporate the IID prior in Equation 5 via frailtyprior("iid",

district). The non-frailty model can be fit by removing the frailtyprior term. The
argument survmodel is used to indicate which model will be fit; choices include "PH", "PO",
and "AFT". The argument dist is used to specify the distribution family of Sθ(·) defined
in Section 2.1, and the choices include "loglogistic", "lognormal", and "weibull". The
argument prior is used to specify user-defined hyperparameters, e.g., for p = 3, L = 15,
β0 = 0, S0 = 10Ip, θ0 = 0, V0 = 10I2, a0 = b0 = 1, and aτ = bτ = 1, the prior can be
specified as below.

R> prior <- list(maxL = 15, beta0 = rep(0, 3), S0 = diag(10, 3),

+ theta0 = rep(0, 2), V0 = diag(10, 2), a0 = 1, b0 = 1,

+ taua0 = 1, taub0 = 1)

If prior = NULL, then the default hyperparameters given in Section 2.2 would be used. Note
by default survregbayes standardizes each covariate by subtracting the sample mean and
dividing the sample standard deviation. Therefore, the user-specified hyperparameters should
be based on the model with scaled covariates unless the argument scale.designX = FALSE

is added.

The output from applying the summary function to the returned object res1 is given below.

R> (sfit1 <- summary(res1))

Proportional Odds model:

Call:

survregbayes(formula = Surv(time, cens) ~ age + sex + wbc + tpi +
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frailtyprior("car", district), data = d, survmodel = "PO",

dist = "loglogistic", mcmc = mcmc, prior = prior, Proximity = E)

Posterior inference of regression coefficients

(Adaptive M-H acceptance rate: 0.2731):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

age 0.0519835 0.0518955 0.0034329 0.0455544 0.0589767

sex 0.1238558 0.1241657 0.1061961 -0.0854203 0.3274537

wbc 0.0059439 0.0059223 0.0008163 0.0043996 0.0074789

tpi 0.0598826 0.0597254 0.0159244 0.0286519 0.0904957

Posterior inference of conditional CAR frailty variance

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

variance 0.080346 0.056350 0.082950 0.001709 0.299395

Log pseudo marginal likelihood: LPML=-5925.194

Deviance Information Criterion: DIC=11849.82

Watanabe-Akaike information criterion: WAIC=11850.39

Number of subjects: n=1043

We can see that age, wbc and tpi are significant risk factors for leukemia survival. For
example, lower age decreases the odds of a patient dying by any time; holding other predictors
constant, a 10-year decrease in age cuts the odds of dying by exp(−10 × 0.05) ≈ 60%. The
posterior mean for τ2 is 0.08. The LPML, DIC and WAIC are -5925, 11850 and 11850,
respectively.

The following code is used to produce trace plots (Figure 1) for β and τ2. Note that the
mixing for τ2 is not very satisfactory. This is not surprising, since we are using very vague
gamma prior Γ(0.001, 0.001) and the total number of districts is only 24. One may consider to
use a more informative prior Γ(1, 1) on τ2 or run a longer chain with higher thin to improve
the mixing.

R> par(mfrow = c(3, 2))

R> par(cex = 1, mar = c(2.5, 4.1, 1, 1))

R> traceplot(mcmc(res1$beta[1,]), xlab = "", main = "age")

R> traceplot(mcmc(res1$beta[2,]), xlab = "", main = "sex")

R> traceplot(mcmc(res1$beta[3,]), xlab = "", main = "wbc")

R> traceplot(mcmc(res1$beta[4,]), xlab = "", main = "tpi")

R> traceplot(mcmc(res1$tau2), xlab = "", main = "tau^2")

The code below is used to generate the Cox-Snell plots with 10 posterior residuals (Figure 2,
panel a).

R> set.seed(1)

R> cox.snell.survregbayes(res1, ncurves = 10)

The code below is used to generate survival curves for female patients with wbc=38.59 and
tpi=0.3398 at different ages (Figure 2, panel b).
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Figure 1: Leukemia survival data. Trace plots for β, τ2 and α under the PO model with
ICAR frailties.
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Figure 2: Leukemia survival data. PO model with ICAR frailties. (a) Cox-Snell plot. (b)
Survival curves with 95% credible interval bands for female patients with wbc=38.59 and
tpi=0.3398 at different ages. (c) Map for the posterior mean frailties; larger frailties mean
higher mortality rate overall.
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R> tgrid <- seq(0.1, 5000, length.out = 300);

R> xpred <- data.frame(age = c(49, 65, 74), sex = c(0, 0, 0),

+ wbc = c(38.59, 38.59, 38.59), tpi = c(0.3398, 0.3398, 0.3398),

+ row.names = c("age=49", "age=65", "age=74"))

R> plot(res1, xnewdata = xpred, tgrid = tgrid, cex = 2)

The code below is used to generate the map of posterior means of frailties for each district
(Figure 2, panel c). Note that the posterior median of frailties can be extracted similarly by
replacing mean below with median in the apply function.

R> frail0 <- apply(res1$v, 1, mean)

R> frail <- frail0[as.integer(names(nwengland))]

R> values <- cbind(as.integer(names(nwengland)), frail)

R> op <- par(no.readonly = TRUE)

R> par(mar = c(3, 0, 0, 0))

R> plotmap(nwengland, x = values, col = (gray.colors(10, 0.3, 1))[10:1],

+ pos = "bottomleft", width = 0.5, height = 0.04)

PO model with GRF frailties

Note that all coordinates are distinct, so we have m = 1043 and ni = 1 in terms of our
notation. To use frailtyprior to specify the prior, we need to create an ID variable consisting
of 1043 distinct values. The powered exponential correlation function with ν = 1 is used. To
specify the number of knots and blocks for the FSA of R, we consider K = 100 and B = 1043.
The code below is used to fit a PO model with GRF frailties under above settings. The running
time is a bit under three hours.

R> set.seed(1)

R> mcmc <- list(nburn = 5000, nsave = 2000, nskip = 4, ndisplay = 1000)

R> prior <- list(maxL = 15, nu = 1, nknots = 100, nblock = 1043)

R> d$ID <- 1:nrow(d)

R> locations <- cbind(d$xcoord, d$ycoord);

R> ptm <- proc.time()

R> res2 <- survregbayes(formula = Surv(time, cens) ~ age + sex + wbc + tpi +

+ frailtyprior("grf", ID), data = d, survmodel = "PO",

+ dist = "loglogistic", mcmc = mcmc, prior = prior,

+ Coordinates = locations)

R> proc.time() - ptm

user system elapsed

10079.006 97.039 10176.650

R> (sfit2 <- summary(res2))

Posterior inference of regression coefficients

(Adaptive M-H acceptance rate: 0.2726):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp
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age 0.0526668 0.0527180 0.0034351 0.0460261 0.0596917

sex 0.1310119 0.1318825 0.1069728 -0.0748948 0.3457847

wbc 0.0060590 0.0060293 0.0008156 0.0044876 0.0077388

tpi 0.0606026 0.0609221 0.0158076 0.0300292 0.0918792

Posterior inference of frailty variance

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

variance 0.06179 0.05290 0.03261 0.02376 0.14086

Posterior inference of correlation function range phi

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

range 19.138 17.245 7.305 8.701 35.094

Log pseudo marginal likelihood: LPML=-5923.402

Deviance Information Criterion: DIC=11845.78

Watanabe-Akaike information criterion: WAIC=11846.78

Number of subjects: n=1043

The trace plots for β, τ2 and φ (Figure 3), Cox-Snell residuals and survival curves (Figure 4)
can be obtained using the same code used for the PO model with ICAR frailties. The code
below is used to generate the map of posterior means of frailties for each location (Figure 4).

R> frail <- round(apply(res2$v, 1, mean), 3)

R> nclust <- 5

R> frail.cluster <- cut(frail, breaks = nclust)

R> frail.names <- names(table(frail.cluster))

R> rbPal <- colorRampPalette(c('blue', 'red'))

R> frail.colors <- rbPal(nclust)[as.numeric(frail.cluster)]

R> par(mar = c(3, 0, 0, 0))

R> plot(nwengland)

R> points(cbind(d$xcoord,d$ycoord), col = frail.colors)

R> legend("topright", title = "frailty values", legend = frail.names,

+ col = rbPal(nclust), pch = 20, cex = 1.7)

Note that the mixing for τ2 and φ is very poor. This may be partly due to the fact we are
updating large dimensional (m = 1, 043) correlated frailties individually using Metropolis-
Hastings. From the simulation studies in Zhou and Hanson (2017), we see that the GRF
frailty models perform very well for georeferenced data with replicates at each location. For
this dataset, one could create georeferenced data with replicates as follows: group the 1043
locations into, say 150, clusters with cluster centroid as the new locations, and assume one
shared frailty on each cluster.

2.5. Variable selection

Let x = (x1, . . . , xp)
⊤ denote the p-vector of covariates in general. The most direct approach

is to multiply βℓ by a latent Bernoulli variable γℓ for ℓ = 1, . . . , p, where γℓ = 1 indicates the
presence of covariate xℓ in the model, and then assume an appropriate prior on (β,γ), where
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Figure 3: Leukemia survival data. Trace plots for β, τ2 and α under the PO model with GRF
frailties.
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Figure 4: Leukemia survival data. PO model with GRF frailties. (a) Cox-Snell plot. (b)
Survival curves with 95% credible interval bands for female patients with wbc=38.59 and
tpi=0.3398 at different ages. (c) Map for the posterior mean frailties; larger frailties mean
higher mortality rate overall.
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γ = (γ1, . . . , γp)
⊤. Following Kuo and Mallick (1998) and Hanson, Branscum, and Johnson

(2014), we consider below independent priors

γ1, . . . , γp
iid
∼ Bern(0.5) and β ∼ Np(0, gn(X

⊤X)−1),

where X is the usual design matrix, but with mean-centered covariates, i.e., 1⊤nX = 0⊤p , and

g is chosen by picking a number M such that a random ex
⊤β is less than M with probability

q, i.e., approximately g =
[
logM/Φ−1(q)

]2
/p. The function survregbayes sets M = 10 and

q = 0.9 as the defaults. For other choices, one can specify M and q via prior$M and prior$q,
respectively. The MCMC procedure is described in Zhou and Hanson (2017).

To perform variable selection for the leukemia survival data, we simply need to add the
argument selection=TRUE to the function survregbayes. A part of the output from summary

is also shown. The model with age, wbc and tpi has the highest proportion (89.8%), and
thus can be served as the final model.

R> set.seed(1)

R> res3 <- survregbayes(formula = Surv(time, cens) ~ age + sex + wbc + tpi +

+ frailtyprior("car", district), data = d, survmodel = "PO",

+ dist = "loglogistic", mcmc = mcmc, prior = prior, Proximity = E,

+ selection = TRUE)

R> (sfit3 <- summary(res3))

Variable selection:

age,wbc,tpi age,sex,wbc,tpi age,wbc

prop. 0.8975 0.1010 0.0015

2.6. Parametric vs. semiparametric

Many authors have found parametric models to fit as well or better than competing semipara-
metric models (Cox and Oakes 1984, p. 123; Nardi and Schemper 2003). The semiparametric
– or more accurately richly parametric – formulation of the AFT, PH and PO models present-
ed here have their baseline survival functions centered at a parametric family Sθ(t). Note that
zJ−1 = 0 implies S0(t) = Sθ(t). Therefore, testing H0 : zJ−1 = 0 versus H1 : zJ−1 6= 0 leads
to the comparison of the semiparametric model with the underlying parametric model. Let
BF10 be the Bayes factor between H1 and H0. Zhou et al. (2017) proposed to estimate BF10

by a large-sample approximation to the generalized Savage-Dickey density ratio (Verdinelli
and Wasserman 1995). Adapting their approach BF10 is estimated

B̂F 10 =
p(0|α̂)

NJ−1(0; m̂, Σ̂)
,

where p(0|α) = Γ(αJ)/[JαΓ(α)]J is the prior density of zJ−1 evaluated at zJ−1 = 0, α̂ is
the posterior mean of α, Np(·;m,Σ) denotes a p-variable normal density with mean m and

covariance Σ, and m̂ and Σ̂ are posterior mean and covariance of zJ−1.

The Bayes factor BF10 under the semiparametric PO model with ICAR frailties can be
obtained using the code below (here the object res1 is obtained in Section 2.4).
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R> BF.survregbayes(res1)

[1] 82.12799

The BF10 = 82 > 1 indicates that the semiparametric model outperforms the loglogistic
parametric model.

The function survregbayes also supports the efficient fitting of parametric frailty models
with loglogistic, lognormal or Weibull baseline functions. In parametric models, the prior for
θ can be set to be relatively vague. Setting a0 at any negative value will force the α to be
fixed at the value specified in the argument state. For example, setting prior <- list(a0

= -1) and state = list(alpha = 1) will fix α = 1 throughout the MCMC; setting prior =

list(a0 = -1) and state = list(alpha = Inf) will fit a parametric model. The following
code fits a parametric loglogistic PO model with ICAR frailties to the leukemia survival data.
The LPML is -5950, much worse than the value under the semiparametric PO model.

R> set.seed(1)

R> prior <- list(maxL = 15, a0 = -1, thete0 = rep(0, 2), V0 = diag(1e10, 2))

R> state <- list(alpha = Inf)

R> ptm <- proc.time()

R> res11 <- survregbayes(formula = Surv(time, cens) ~ age + sex + wbc + tpi +

+ frailtyprior("car", district), data = d, survmodel = "PO",

+ dist = "loglogistic", mcmc = mcmc, prior = prior, state = state,

+ Proximity = E, InitParamMCMC = FALSE)

R> proc.time() - ptm

user system elapsed

25.037 0.115 25.239

R> (sfit11 <- summary(res11))

Proportional Odds model:

Call:

survregbayes(formula = Surv(time, cens) ~ age + sex + wbc + tpi +

frailtyprior("car", district), data = d, survmodel = "PO",

dist = "loglogistic", mcmc = mcmc, prior = prior, state = state,

Proximity = E, InitParamMCMC = FALSE)

Posterior inference of regression coefficients

(Adaptive M-H acceptance rate: 0.2844):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

age 0.0504253 0.0504362 0.0033318 0.0439945 0.0568477

sex 0.1187297 0.1134544 0.1109109 -0.0912841 0.3374972

wbc 0.0062192 0.0062147 0.0007395 0.0048068 0.0076600

tpi 0.0602207 0.0603376 0.0156038 0.0299010 0.0915584

Posterior inference of conditional CAR frailty variance

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

variance 0.078627 0.055078 0.082164 0.002005 0.305202
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Log pseudo marginal likelihood: LPML=-5949.919

Deviance Information Criterion: DIC=11899.46

Watanabe-Akaike information criterion: WAIC=11899.84

Number of subjects: n=1043

2.7. Left-truncation and time-dependent covariates

The survival time tij is left-truncated at uij ≥ 0 if uij is the time when the ijth subject is
first observed. Left-truncation often occurs when age is used as the time scale. Given the
observed left-truncated data {(uij , aij , bij ,xij , si)}, where aij ≥ uij , the likelihood function in
Equation 10 becomes

L(wJ ,θ,β,v) =

m∏

i=1

ni∏

j=1

[
Sxij

(aij)− Sxij
(bij)

]I{aij<bij} fxij
(aij)

I{aij=bij}/Sxij
(uij).

Note that the left censored data under left-truncation are of the form (uij , bij). Allowing for
left-truncation allows the semiparametric AFT, PH and PO models to be easily extended to
handle time-dependent covariates. Following Kneib (2006) and Hanson, Johnson, and Laud
(2009), assume the covariate vector xij(t) is a step function that changes at oij ordered times
tij,1 < . . . < tij,oij ≤ aij , i.e.,

xij(t) =

oij∑

k=1

xij,kI(tij,k ≤ t < tij,k+1),

where tij,1 = uij and tij,oij+1 = ∞. Assuming one of PH, PO, or AFT holds conditionally on
each interval, the survival function for the ijth individual at time aij is

P (tij > aij) = P (tij > aij |tij > tij,oij )

oij−1∏

k=1

P (tij > tij,k+1|tij > tij,k)

=
Sxij,oij

(aij)

Sxij,oij
(tij,oij )

oij−1∏

k=1

Sxij,k
(tij,k+1)

Sxij,k
(tij,k)

.

Thus one can replace the observation (uij , aij , bij ,xij(t), si) by a set of new oij observations
(tij,1, tij,2,∞,xij,1, si), (tij,2, tij,3,∞,xij,2, si), . . ., (tij,oij , aij , bij ,xij,oij , si). This way we get a
new left-truncated data set of size

∑m
i=1

∑ni

j=1 oij . Then the likelihood function becomes

L(wJ ,θ,β,v) =

m∏

i=1

ni∏

j=1

{[
Sxij,oij

(aij)− Sxij,oij
(bij)

]I{aij<bij}
fxij,oij

(aij)
I{aij=bij}/Sxij,oij

(tij,oij )

×

oij−1∏

k=1

Sxij,k
(tij,k+1)

Sxij,k
(tij,k)

}
.

Note that the derivations above still hold for time-dependent covariates without left-truncation
(i.e., uij = 0 for all i and j).
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PBC data

We use the primary biliary cirrhosis (PBC) dataset (available in the package survival as
pbc) as an example to show how to incorporate time-dependent covariates in the function
survregbayes. Although this is not a spatial dataset, spatial frailties can be added similarly
as in Section 2.4. The following code is copied from Therneau, Crowson, and Atkinson (2017)
to create the data frame with time-dependent covariates.

R> temp <- subset(pbc, id <= 312, select = c(id:sex, stage)) # baseline data

R> pbc2 <- tmerge(temp, temp, id = id, endpt = event(time, status))

R> pbc2 <- tmerge(pbc2, pbcseq, id = id, ascites = tdc(day, ascites),

+ bili = tdc(day, bili), albumin = tdc(day, albumin),

+ protime = tdc(day, protime), alk.phos = tdc(day, alk.phos))

R> pbc2 <- pbc2[,c("id", "tstart", "tstop", "endpt", "bili", "protime")]

R> head(pbc2)

id tstart tstop endpt bili protime

1 1 0 192 0 14.5 12.2

2 1 192 400 2 21.3 11.2

3 2 0 182 0 1.1 10.6

4 2 182 365 0 0.8 11.0

5 2 365 768 0 1.0 11.6

6 2 768 1790 0 1.9 10.6

We can fit the Bayesian PH model with TBP baseline as follows. The output for regression
coefficients is partial.

R> set.seed(1)

R> mcmc <- list(nburn = 5000, nsave = 2000, nskip = 4, ndisplay = 1000)

R> ptm <- proc.time()

R> fit1 <- survregbayes(Surv(tstart, tstop, endpt == 2) ~ log(bili) +

+ log(protime), data = pbc2, survmodel = "PH", dist = "loglogistic",

+ mcmc = mcmc, subject.num = id)

R> proc.time() - ptm

user system elapsed

227.626 0.434 228.243

R> summary(fit1)

Proportional hazards model:

Call:

survregbayes(formula = Surv(tstart, tstop, endpt == 2) ~ log(bili) +

log(protime), data = pbc2, survmodel = "PH", dist = "loglogistic",

mcmc = mcmc, subject.num = id)

Posterior inference of regression coefficients
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(Adaptive M-H acceptance rate: 0.2135):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

log(bili) 1.29937 1.30058 0.09452 1.11354 1.48584

log(protime) 4.18500 4.20421 0.37052 3.43850 4.84161

Log pseudo marginal likelihood: LPML=-1018.001

Deviance Information Criterion: DIC=2032.754

Watanabe-Akaike information criterion: WAIC=2035.861

Number of subjects: n=1807

Equivalently, one can also run the following code to obtain the same analysis. The argument
truncation_time is used to specify the start time point for each time interval, i.e., tstart.
The end time point tstop together with endpt are formulated as interval censored data using
type = "interval2" of Surv. This format is more general than the former one, as one can
easily incorporate interval censored data.

R> pbc2$tleft <- pbc2$tstop; pbc2$tright <- pbc2$tstop;

R> pbc2$tright[which(pbc2$endpt! = 2)] <- NA;

R> fit11 <- survregbayes(Surv(tleft, tright, type = "interval2") ~ log(bili) +

+ log(protime), data = pbc2, survmodel = "PH", dist = "loglogistic",

+ mcmc = mcmc, truncation_time = tstart, subject.num = id);

3. GAFT frailty models

3.1. The model

The generalized accelerated failure time (GAFT) frailty model (Zhou et al. 2017) generalizes
the AFT model in Equation 1 to allow the baseline survival function S0(t) to depend on
certain covariates, say a q-dimensional vector zij which is usually a subset of xij . Specifically,
the GAFT frailty model is given by

Sxij
(t) = S0,zij

(
e−x

⊤

ijβ−vit
)
,

or equivalently,

yij = log(tij) = x̃⊤
ijβ̃ + vi + ǫij ,

where x̃ij = (1,x⊤
ij)

⊤ includes an intercept, β̃ = (β0,β
⊤)⊤ is a vector of corresponding coeffi-

cients, ǫij is a heteroscedastic error term independent of vi, and P (eβ0+ǫij > t|zij) = S0,zij (t).
Note the regression coefficients β here are defined differently with those in Equation 1. Here
we assume

ǫij |Gzij

ind.
∼ Gzij

,

where Gz is a probability measure defined on R for every z ∈ X ; this defines a model for the
entire collection of probability measures GX = {Gz : z ∈ X} so that each element is allowed
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to smoothly change with the covariates z. The frailtyGAFT function considers the following
prior distributions:

β̃ ∼ Np+1(m0,S0)

Gz|α, σ
2 ∼ LDTFPL(α, σ

2), α ∼ Γ(a0, b0), σ−2 ∼ Γ(aσ, bσ),

(v1, . . . , vm)⊤|τ ∼ ICAR(τ2), τ−2 ∼ Γ(aτ , bτ ), or

(v1, . . . , vm)⊤|τ, φ ∼ GRF(τ2, φ), τ−2 ∼ Γ(aτ , bτ ), φ ∼ Γ(aφ, bφ), or

(v1, . . . , vm)⊤|τ ∼ IID(τ2), τ−2 ∼ Γ(aτ , bτ )

where LDTFPL refers to the linear dependent tailfree process prior (LDTFP) prior as de-
scribed in (Zhou et al. 2017). The function argument prior allows users to specify these
prior parameters in a list with elements defined as follows:

element maxL m0 S0 a0 b0 siga0 sigb0 taua0 taub0 phia0 phib0

symbol L m0 S0 a0 b0 aσ bσ aτ bτ aφ bφ

The LDTFP prior considered in Zhou et al. (2017) is centered at a normal distribution Φσ

with mean 0 and variance σ2, that is, E(Gz) = Φσ for every z ∈ X . Define the function
kσ(x) = ⌈2LΦσ(x)⌉, where ⌈x⌉ is the ceiling function, the smallest integer greater than or
equal to x. Further define probability pz(k) for k = 1, . . . , 2L as

pz(k) =

L∏

l=1

Yl,⌈k2l−L⌉(z),

where Yj+1,2k−1(z) =
(
1 + exp{−z̃⊤γj,k}

)−1
and Yj+1,2k(z) = 1 − Yj+1,2k−1(z) for j =

0, . . . , L−1, k = 1, . . . , 2j , where z̃ = (1, z⊤)⊤ includes an intercept, and γj,k = (γj,k,0, . . . , γj,k,q)
⊤

is a vector of coefficients. Note there are 2L− 1 regression coefficient vectors γ = {γj,k}, e.g.,
for L = 3, γ = {γ0,1,γ1,1,γ1,2,γ2,1,γ2,2,γ2,3,γ2,4}. For a fixed integer L > 0, the random
density associated with LDTFPL(α, σ

2) is defined as

fz(e) = 2Lφσ(e)pz{kσ(e)}, γj,k
ind.
∼ Nq+1

(
0,

2n

α(j + 1)2
(Z⊤Z)−1

)

with cdf

Gz(e) = pz{kσ(e)}
{
2LΦσ(e)− kσ(e)

}
+

kσ(e)∑

k=1

pz(k), (11)

where Z is the n × (q + 1) design matrix with mean-centered covariates z̃ijs. Furthermore,
the LDTFP is specified by setting γ0,1 ≡ 0, such that for every z ∈ X , Gz is almost surely a
median-zero probability measure.

The function frailtyGAFT sets the following hyperparameters as defaults: m0 = 0, S0 =
105Ip+1, a0 = b0 = 1, aτ = bτ = 1, and aσ = 2 + σ̂4

0/(100v̂0), bσ = σ̂2
0(aσ − 1), where

σ̂2
0 and v̂0 are the estimates of σ2 and its asymptotic variance from fitting the parametric

lognormal AFT model, respectively. Note here we assume a somewhat informative prior on
σ2 so that its mean is σ̂2

0 and variance is 100v̂0. For the GRF prior, we again set aφ = 2 and
bφ = (aφ−1)/φ0 so that the prior of φ has mode at φ0 and the prior mean of 1/φ is 1/φ0 with
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infinite variance. Here φ0 satisfies ρ(s′, s′′;φ0) = 0.001, where ‖s′ − s′′‖ = maxij ‖si − sj‖.
Note by default frailtyGAFT standardizes each covariate by subtracting the sample mean
and dividing the sample standard deviation. Therefore, the user-specified hyperparameters
should be based on the model with scaled covariates unless the argument scale.designX =

FALSE is added.

3.2. Bayesian hypothesis testing

The GAFT frailty model includes the following as important special cases: an AFT frailty
model with nonparametric baseline where Gz = G

z
′ for all z = z′ and parametric baseline

model Gz = Φσ for all z ∈ X . Hypothesis tests can be constructed based on the LDTFP
coefficients {γl,k : k = 1, . . . , 2l, l = 1, . . . , L− 1}, where γl,k = (γl,k,0, . . . , γl,k,q)

⊤. Let γl,k,−j

denote the subvector of γl,k without element γl,k,j for j = 0, . . . , q. Set Υj = (γl,k,j , k =

1, . . . , 2l, l = 1, . . . , L−1)⊤, Υ−j = (γ⊤
l,k,−j , k = 1, . . . , 2l, l = 1, . . . , L−1)⊤ andΥ = (γ⊤

l,k, k =

1, . . . , 2l, l = 1, . . . , L − 1)⊤. Testing the hypotheses H0 : Υ−0 = 0 and H0 : Υ = 0 leads
to global comparisons of the proposed model with the above two special cases respectively.
Similarly, we may also test the null hypothesis H0 : Υj = 0 for the jth covariate effect of z
on the baseline survival, j = 1, . . . , q.

Suppose we wish to test H0 : Υj = 0 versus H1 : Υj 6= 0, for fixed j ∈ {1, . . . , q}. Following
Zhou et al. (2017), the Bayes factor between hypotheses H1 and H0 can be approximated by

B̂F 10 =

L−1∏

l=1

2l∏

k=1

N

(
0

∣∣∣∣0,
2n

α̂(l + 1)2
(Z⊤Z)−1

jj

)

N2L−2(Υj = 0; m̂j , Ŝj)
,

where Np(·;m,S) denotes a p-variate normal density with mean m and covariance matrix S,

and m̂j and Ŝj are the sample mean and covariance for Υj .

3.3. Leukemia survival data

The code below is used to fit the GAFT model with ICAR frailties for the leukemia survival
data. As suggested by Zhou et al. (2017), the gamma prior Γ(a0 = 5, b0 = 1) is used for α.
We include all four covariates in modeling the baseline survival function.

R> set.seed(1)

R> mcmc <- list(nburn = 5000, nsave = 2000, nskip = 4, ndisplay = 1000)

R> prior <- list(maxL = 4, a0 = 5, b0 = 1)

R> ptm <- proc.time()

R> res1 <- frailtyGAFT(formula = Surv(time, cens) ~ age + sex + wbc + tpi +

+ baseline(age, sex, wbc, tpi) + frailtyprior("car", district),

+ data = d, mcmc = mcmc, prior = prior, Proximity = E)

R> (sfit1 <- summary(res1)) ## Output below is partial

Generalized accelerated failure time frailty model:

Call:
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frailtyGAFT(formula = Surv(time, cens) ~ age + sex + wbc + tpi +

baseline(age, sex, wbc, tpi) + frailtyprior("car", district),

data = d, mcmc = mcmc, prior = prior, Proximity = E)

Posterior inference of regression coefficients

Mean Median Std. Dev. 95%HPD-Low 95%HPD-Upp

intercept 8.589761 8.607783 0.288535 7.982265 9.140489

age -0.051342 -0.051508 0.003987 -0.058561 -0.041985

sex -0.267978 -0.288883 0.164310 -0.533180 0.064909

wbc -0.004161 -0.004322 0.001001 -0.005931 -0.001864

tpi -0.065335 -0.067061 0.019601 -0.099992 -0.023739

Bayes factors for LDTFP covariate effects:

intercept age sex wbc tpi overall normality

220.2500 16.2494 1.1579 28.1776 0.4842 11.2454 1787.3269

Log pseudo marginal likelihood: LPML=-5937.304

Number of subjects:=1043

R> proc.time() - ptm

user system elapsed

444.393 2.433 454.270

The Bayes factors for testing age and wbc effects on LDTFP are 16 and 28, respectively,
indicating that the baseline survival function under the AFT model depends on age and
wbc, and thus GAFT should be considered. The trace plots, survival curves and frailty map
(Figure 5) can be obtained using the code similarly as in Section 2.4. The only difference
for plotting survival curves is that we need to specify the baseline covariates by including the
argument xtfnewdata = xpred into the plot function. Note that the mixing for covariate
effects is okay but not great due to the non-smoothness of Polya trees. In this case, we need
to run a longer chain with much higher thinning as suggested in Zhou et al. (2017).

4. Survival models via spatial copulas

In environmental studies, survival times (e.g. time to water pollution) often present a strong
spatial dependence after adjusting for available risk factors, making frailty models extremely
difficult to fit because of the strong posterior dependency among frailties. The spatial copula
approach (Bárdossy 2006) offers an appealing way to describe spatial dependence among sur-
vival times separately from their univariate distributions, thus leads to more efficient posterior
sampling algorithms. In addition, the regression coefficients have population-level interpreta-
tions under copula models. However, the copula approach can be very slow in the presence
of high censoring rate due to the imputation of centered survival times.

Currently the package only supports spatial copula models for georeferenced (without replica-
tion, i.e., ni = 1), right-censored spatial data. Suppose subjects are observed at n distinct spa-
tial locations s1, . . . , sn. Let ti be a random event time associated with the subject at si and xi
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Figure 5: Leukemia survival data. GAFT model with ICAR frailties. (a) Trace plots for
β, τ2 and α. (b) Survival curves with 95% credible interval bands for female patients with
wbc=38.59 and tpi=0.3398 at different ages. (c) Map for the negative posterior mean frailties;
larger values mean higher mortality rate overall.

be a related p-dimensional vector of covariates, i = 1, . . . , n. For right-censored data, we only
observe toi and a censoring indicator δi for each subject, where δi equals 1 if toi = ti and equals
0 if ti is censored at toi . Therefore, the observed data will be D = {(toi , δi,xi, si); i = 1, . . . , n}.
Note although the models below are developed for spatial survival data, non-spatial data are
also accommodated.

In the context of survival models, the idea of spatial copula approach is to first assume that
the survival time ti at location si marginally follows a model Sxi

(t), then model the joint
distribution of (t1, . . . , tn)

⊤ as

P (t1 ≤ a1, . . . , tn ≤ an) = C(Fx1
(a1), . . . , Fxn(an)),

where Fxi
(t) = 1 − Sxi

(t) is the cumulative distribution function and the function C is an
n-copula used to capture spatial dependence.

The current package assumes a spatial version of the Gaussian copula (Li 2010), defined as

C(u1, . . . , un) = Φn

(
Φ−1{u1}, . . . ,Φ

−1{un};R
)
, (12)

where Φn(·, . . . , ·;R) denotes the distribution function of Nn(0,R). To allow for a nugget ef-
fect, we consider R[i, j] = θ1ρ(si, sj ; θ2)+(1−θ1)I(si = sj), where ρ(si, sj ; θ2) = exp{−θ2‖si−
sj‖}. Here θ1 ∈ [0, 1], also known as a “partial sill” in Waller and Gotway (2004), is a scale
parameter measuring a local maximum correlation, and θ2 controls the spatial decay over
distance. Note that all the diagonal elements of R are ones, so it is also a correlation matrix.
Under the above spatial Gaussian copula, the likelihood function based on upon the complete
data {(ti,xi, si), i = 1, . . . , n} is

L = |R|−1/2 exp

{
−
1

2
z⊤(R−1 − In)z

} n∏

i=1

fxi
(ti),

where zi = Φ−1 {Fxi
(ti)} and fxi

(t) is the density function corresponding to Sxi
(t). We next

discuss two marginal spatial survival models for Sxi
(t) that are accommodated in the package.
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Note that for large n, the FSA introduced in Section 2.1 (with ǫ replaced by 1 − θ1) can be
applied.

4.1. Proportional hazards model via spatial copulas

Assume that ti|xi marginally follows the proportional hazards (PH) model with cdf

Fxi
(t) = 1− exp

{
−Λ0(t)e

x
⊤

i β
}

(13)

and density

fxi
(t) = exp

{
−Λ0(t)e

x
⊤

i β
}
λ0(t)e

x
⊤

i β,

where β is a p × 1 vector of regression coefficients, λ0(t) is the baseline hazard function
and Λ0(t) =

∫ t
0 λ0(s)ds is the cumulative baseline hazard function. The piecewise exponential

model provides a flexible framework to deal with the baseline hazard (e.g., Walker and Mallick
1997). We partition the time period R

+ into M intervals, say Ik = (dk−1, dk], k = 1, . . . ,M ,
where d0 = 0 and dM = ∞. Specifically, we set dk to be the k

M th quantile of the empirical
distribution of the observed survival times for k = 1, . . . ,M − 1. The baseline hazard is then
assumed to be constant within each interval, i.e.,

λ0(t) =
M∑

k=1

hkI{t ∈ Ik},

where hks are unknown hazard values. Consequently, the cumulative baseline hazard function
can be written as

Λ0(t) =

M(t)∑

k=1

hk∆k(t),

where M(t) = min{k : dk ≥ t} and ∆k(t) = min{dk, t} − dk−1. After incorporating spatial
dependence via the copula in Equation 12, the spCopulaCoxph function considers the following
prior distributions:

β ∼ Np(β0,S0),

hk|h
iid
∼ Γ(r0h, r0), k = 1, . . . ,M,

(θ1, θ2) ∼ Beta(θ1a, θ1b)× Γ(θ2a, θ2b)

The spCopulaCoxph function sets the following default hyperparameter values: M = 10,
r0 = 1, h = ĥ, β0 = 0, S0 = 105Ip, θ0 = (θ1a, θ1b, θ2a, θ2b)

′ = (1, 1, 1, 1), where ĥ is the
maximum likelihood estimate of the rate parameter from fitting an exponential PH model. A
function indeptCoxph is also provided to fit the non-spatial standard PH model with above
baseline and prior settings. The function argument prior allows users to specify these prior
parameters in a list with elements defined as follows:

element M r0 h0 beta0 S0 theta0

symbol M r0 h β0 S0 θ0
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4.2. Bayesian nonparametric survival model via spatial copulas

We assume that yi = log ti given xi marginally follows a LDDPM model (De Iorio et al. 2009)
with cdf,

Fxi
(t) =

∫
Φ

(
log t− x⊤

i β

σ

)
dG{β, σ2}, (14)

where Φ(·) is the cdf of the standard normal, and G follows the Dirichlet Process (DP) prior.
This Bayesian nonparametric model treats the conditional distribution Fx as a function-valued
parameter and allows its variance, skewness, modality and other features to flexibly vary with
the x covariates. After incorporating spatial dependence via the copula in Equation 12, the
function spCopulaDDP assumes the following prior distributions:

G =

N∑

k=1

wkδ(βk,σ
2
k
), wk = Vk

k−1∏

j=0

(1− Vj), V0 = 0, VN = 1

Vk
iid
∼ Beta(1, α), k = 1, . . . , N, α ∼ Γ(a0, b0)

βk|µ
iid
∼ Np(µ,Σ), k = 1, . . . , N, µ ∼ Np(m0,S0)

σ−2
k |Σ

iid
∼ Γ(νa, νb), k = 1, . . . , N, Σ−1 ∼ Wp

(
(κ0Σ0)

−1, κ0
)

(θ1, θ2) ∼ Beta(θ1a, θ1b)× Γ(θ2a, θ2b).

The following default hyperparameters are considered in spCopulaDDP: a0 = b0 = 2, νa = 3,
νb = σ̂2, θ0 = (θ1a, θ1b, θ2a, θ2b)

′ = (1, 1, 1, 1), m0 = β̂, S0 = Σ̂, Σ0 = 30Σ̂, and κ0 = 7, where
β̂ and σ̂2 are the maximum likelihood estimates of β and σ2 from fitting the log-normal
accelerated failure time model log(ti) = x⊤

i β + σǫi, ǫi ∼ N(0, 1), and Σ̂ is the asymptotic
covariance estimate for β̂. A function anovaDDP is also provided to fit the non-spatial LDDPM
model in Equation 14 with above prior settings. The function argument prior allows users
to specify these prior parameters in a list with elements defined as follows:

element N a0 b0 m0 S0 k0 Sig0 theta0

symbol N a0 b0 m0 S0 κ0 Σ0 θ0

4.3. Leukemia survival data

PH model with spatial copula

The following code is used to fit the piecewise exponential PH model in Equation 13 with
the Gaussian spatial copula in Equation 12 using M = 20 and default priors. We consider
K = 100 and B = 1043 for the number of knots and blocks in the FSA of R. The total
running time is 15445 seconds.

R> set.seed(1)

R> mcmc <- list(nburn = 5000, nsave = 2000, nskip = 4, ndisplay = 1000);

R> prior <- list(M = 20, nknots = 100, nblock = 1043);

R> ptm <- proc.time()

R> res1 <- spCopulaCoxph(formula = Surv(time, cens) ~ age + sex + wbc + tpi,

+ data = d, mcmc = mcmc, prior = prior,



26 spBayesSurv, version 1.1.3

+ Coordinates = cbind(d$xcoord, d$ycoord));

R> proc.time() - ptm

user system elapsed

15262.274 177.716 15444.913

R> (sfit1 <- summary(res1))

Spatial Copula Cox PH model with piecewise constant baseline hazards

Call:

spCopulaCoxph(formula = Surv(time, cens) ~ age + sex + wbc +

tpi, data = d, mcmc = mcmc, prior = prior, Coordinates = cbind(d$xcoord,

d$ycoord))

Posterior inference of regression coefficients

(Adaptive M-H acceptance rate: 0.2501):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

age 0.0277864 0.0278065 0.0019297 0.0240332 0.0315580

sex 0.0522938 0.0527421 0.0588919 -0.0625843 0.1662136

wbc 0.0027808 0.0027899 0.0003767 0.0020071 0.0034546

tpi 0.0257918 0.0257969 0.0081385 0.0087972 0.0411955

Posterior inference of spatial sill and range parameters

(Adaptive M-H acceptance rate: 0.2112):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

sill 0.23051 0.23352 0.05587 0.10222 0.32903

range 0.41801 0.34165 0.34272 0.03715 1.31802

Log pseudo marginal likelihood: LPML=-5929.357

Number of subjects: n=1043

Note that the higher the value of zi = Φ−1 {Fxi
(ti)} is, the longer the survival time ti (i.e.,

lower mortality rate) would be. The posterior sample of zis is saved in res1$Zpred. The
trace plots, survival curves, and the map of the posterior mean of zi values can be obtained
using the code similarly as in Section 2.4.

LDDPM model with spatial copula

The following code is used to fit the LDDPM model in Equation 14 with the Gaussian spatial
copula in Equation 12 using N = 10 and default priors. For the FSA, K = 100 and B = 1043
are used. The total running time is 20056 seconds. Note there is no summary output as before,
as we are fitting a nonparametric model. The trace plots, survival curves, and map of zis can
be obtained using the same code used for the PH copula model.

R> set.seed(1)

R> mcmc <- list(nburn = 5000, nsave = 2000, nskip = 4, ndisplay = 1000)

R> prior <- list(N = 10, nknots = 100, nblock = 1043)
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R> ptm <- proc.time()

R> res1 <- spCopulaDDP(formula = Surv(time, cens) ~ age + sex + wbc + tpi,

+ data = d, mcmc = mcmc, prior = prior,

+ Coordinates = cbind(d$xcoord, d$ycoord))

R> proc.time() - ptm

user system elapsed

19876.947 178.595 20056.744

R> sum(log(res1$cpo)); ## LPML

[1] -5931.5

5. Conclusions

There is a wealth of R packages for non-spatial survival data, starting with survival, included
with all base installs of R. The survival package fits (discretely) stratified semiparametric PH
models to right-censored data with exchangeable gamma frailties, as well as left-truncated
data, time-dependent covariates, etc. Parametric log-logistic, Weibull and log-normal AFT
models can also be fit by this package. From there, there are many packages for various
models and types of censoring; a partial review discussing several available R packages is
given by Zhou and Hanson (2015); also see Zhou and Hanson (2017). In comparison there
are very few R packages for spatially correlated survival data, with the notable exceptions of
R2BayesX and spatsurv, both of which focus on PH exclusively. The spBayesSurv package
allows the routine fitting of several popular semiparametric and nonparametric models to
spatial survival data.

spBayesSurv can also handle non-spatial survival data using either exchangeable Gaussian
or no frailty models. Another unintroduced function is survregbayes2 which implements
the Polya tree based PH, PO, and AFT models of Hanson (2006) and Zhao, Hanson, and
Carlin (2009) for areally-referenced data. As pointed out in these papers, MCMC mixing
for Polya tree models can be highly problematic when the true baseline survival function is
very different from the parametric family that centers the Polya tree; the TBP prior provides
much improved MCMC mixing with essentially the same quality of fit as Polya trees. Another
function very recently added function is SuperSurvRegBayes, which provides Bayes factors
for testing among PO, PH, and AFT, as well as three other survival models Zhang, Hanson,
and Zhou (2018).

Future additions to spBayesSurv include spatial copula (both georeferenced and areal) ver-
sions of the PH, PO, and AFT models using TBP priors, as well as continuously-stratified
proportional hazards and proportional odds models. An extension of all semiparametric mod-
els to additive linear structure, which is already incorporated into BayesX, is also planned.
Finally, computational efficiency can be gained by replacing some of the adaptive MCMC
updates with gradient-based updates for the semiparametric models, e.g. the IWLS updates
implemented in BayesX for the PH model (Hennerfeind et al. 2006).
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