Package ‘tensorBSS’

March 1, 2018
Type Package

Title Blind Source Separation Methods for Tensor-Valued Observations
Version 0.3.4

Date 2018-03-01

Author Joni Virta, Bing Li, Klaus Nordhausen, Hannu Oja
Maintainer Joni Virta <joni.virta@outlook.com>

Description Contains several utility functions for manipulating tensor-valued data (centering, multi-
plication from a single mode etc.) and the implementations of the following blind source separa-
tion methods for tensor-valued data: 'tPCA’, 'tFOBI', 'tJADE', k-tJADE', 'tgFOBI', 'tg-

JADE', tSOBI', 'tNSS.SD', tNSS.JD', tNSS.TD.JD' and 'tPP".

License GPL (>=2)

Imports Rcpp (>=0.12.3), tensor, tsBSS, ICtest
LinkingTo Rcpp, ReppArmadillo

Depends JADE

Suggests stochvol, ElemStatLearn
NeedsCompilation yes

Repository CRAN

Date/Publication 2018-03-01 16:32:51 UTC

R topics documented:

tensorBSS-package 2
kK tJADE e 3
mModeAutoCovariance e e e e e e e e e e e e e e e e 5
mModeCovariance e e e e e e e 6
plot.tbss e 7
selectComponents L. 9
tensorCentering e e e e e e 10
tensorStandardize L. 11
tensorTransform 12
tensorVECtOriZE e e e e e e e 13

2 tensorBSS-package

tFOBI 14
tgFOBI 16
teJADE . . . e 18
tJADE . . . 20
tMD . L 21
INSSID . . 23
INSS.SD . . . 25
INSS.TDJD o e 27
tPCA . e 29
PP . 31
tSIR . . o 32
tSOBI 34
Index 36
tensorBSS-package Blind Source Separation Methods for Tensor-Valued Observations
Description

Contains several utility functions for manipulating tensor-valued data (centering, multiplication
from a single mode etc.) and the implementations of the following blind source separation meth-
ods for tensor-valued data: ‘tPCA’, ‘tFOBI’, ‘tJADE’, ‘k-tJADE’, ‘tgFOBI’, ‘tgJADE’, ‘tSOBI’,
‘tNSS.SD’, “tNSS.JD’, ‘tNSS.TD.JD’ and ‘tPP’.

Details
Package: tensorBSS
Type: Package
Version: 0.3.4
Date: 2018-03-01
License: GPL (>=2)
Author(s)

Joni Virta, Bing Li, Klaus Nordhausen and Hannu Oja

Maintainer: Joni Virta <joni.virta@outlook.com>

References

Virta, J., Taskinen, S. and Nordhausen, K. (2016), Applying fully tensorial ICA to fMRI data, Signal
Processing in Medicine and Biology Symposium (SPMB), 2016 IEEE, doi: 10.1109/SPMB.2016.7846858

Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), Independent component analysis for tensor-
valued data, Journal of Multivariate Analysis, doi: 10.1016/j.jmva.2017.09.008

http://doi.org/10.1109/SPMB.2016.7846858
http://doi.org/10.1016/j.jmva.2017.09.008

k_tJADE 3

Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), JADE for Tensor-Valued Observation, to ap-
pear in Journal of Computational and Graphical Statistics. preprint available on ArXiv http://arxiv.org/abs/1603.05406.

Virta, J. and Nordhausen, K., (2017), Blind source separation of tensor-valued time series. Signal
Processing 141, 204-216, doi: 10.1016/;.sigpro.2017.06.008

Virta J., Nordhausen K. (2017): Blind source separation for nonstationary tensor-valued time se-
ries, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP),
doi: 10.1109/MLSP.2017.8168122

k_tJADE k-tJADE for Tensor-Valued Observations

Description

Computes the faster “k”-version of tensorial JADE in an independent component model.

Usage

k_tJADE(x, k = NULL, maxiter = 100, eps = 1e-06)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
k A vector with one less element than dimensions in x. The elements of k give
upper bounds for cumulant matrix indices we diagonalize in each mode. Lower
values mean faster computation times. The default value NULL puts k equal to 1
in each mode (the fastest choice).
maxiter Maximum number of iterations. Passed on to rjd.
eps Convergence tolerance. Passed on to rjd.
Details
It is assumed that S is a tensor (array) of size p; X p2 X ... X p, with mutually independent
elements and measured on NV units. The tensor independent component model further assumes that
the tensors S are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed data X. In R the sample of X is saved as an array of dimensions p1, ps,...,pr, N.

k_tJADE recovers then based on x the underlying independent components .S by estimating the r
unmixing matrices Wy, ..., W, using fourth joint moments at the same time in a more efficient way
than tFOBI but also in fewer numbers than tJADE. k_tJADE diagonalizes in each mode only those
cumulant matrices C*/ for which |i — j| < ky,.

If x is a matrix, that is, » = 1, the method reduces to JADE and the function calls k_JADE.

http://doi.org/10.1016/j.sigpro.2017.06.008
http://doi.org/10.1109/MLSP.2017.8168122

4 k_tJADE

Value

A list with class ’tbss’, inheriting from class "bss’, containing the following components:

S Array of the same size as x containing the independent components.

W List containing all the unmixing matrices

Xmu The data location.

k The used vector of k-values.

datatype Character string with value "iid". Relevant for plot. tbss.
Author(s)

Joni Virta
References

Miettinen, J., Nordhausen, K., Oja, H. and Taskinen, S. (2013), Fast Equivariant JADE, In the
Proceedings of 38th IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP 2013), 6153-6157, doi: 10.1109/ICASSP.2013.6638847

Virta, J., Li, B., Nordhausen, K. and Oja, H., (201X), JADE for Tensor-Valued Observation, to ap-
pear in Journal of Computational and Graphical Statistics, preprint available on ArXiv http://arxiv.org/abs/1603.05406.

See Also

k_JADE, tJADE, JADE

Examples

n <- 1000

S <~ t(cbind(rexp(n)-1,
rnorm(n),
runif(n, -sqrt(3), sqrt(3)),
rt(n,5)*sqrt(0.6),
(rchisq(n,1)-1)/sqrt(2),
(rchisq(n,2)-2)/sqrt(4)))

dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)
k_tjade <- k_tJADE(X)
MD(k_tjade$WL[111, A1)

MD(k_tjade$WL[2]], A2)
tMD(k_tjade$W, 1list(A1, A2))

http://doi.org/10.1109/ICASSP.2013.6638847

mModeAutoCovariance 5

k_tjade <- k_tJADE(X, k = c(2, 1))

MD(k_tjade$WL[11], A1)
MD(k_tjade$W[[21], A2)
tMD(k_tjade$w, list(A1, A2))

mModeAutoCovariance The m-Mode Autocovariance Matrix

Description
Estimates the m-mode autocovariance matrix from an array of array-valued observations with the
specified lag.

Usage

mModeAutoCovariance(x, m, lag, center = TRUE)

Arguments
X Array of order higher than two with the last dimension corresponding to the
sampling units.
m The mode with respect to which the autocovariance matrix is to be computed.
lag The lag with respect to which the autocovariance matrix is to be computed.
center Logical, indicating whether the observations should be centered prior to com-
puting the autocovariance matrix. Default is TRUE.
Details

The m-mode autocovariance matrix provides a higher order analogy for the ordinary autocovariance
matrix of a random vector and is computed for a random tensor X; of size p1 X p2 X ... X p,

as Covpr (Xy) = E(ngm)Xt(TT)T)/(pl .« Dm—1Dm+1 - - - Pr), Where Xt(m) is the centered m-
flattening of X, and 7 is the desired lag. The algorithm computes the estimate of this based on
the sample x.

Value

The m-mode autocovariance matrix of x with respect to lag having the size p,, X pm,.

Author(s)

Joni Virta

References

Virta, J. and Nordhausen, K., (2017), Blind source separation of tensor-valued time series, Signal
Processing, 141, 204-216, doi: 10.1016/j.sigpro.2017.06.008

http://doi.org/10.1016/j.sigpro.2017.06.008

6 mModeCovariance

See Also

mModeCovariance

Examples

n <- 1000
S <- t(cbind(as.vector(arima.sim(n = n, list(ar = 0.9))),
as.vector(arima.sim(n = n, list(ar = -0.9))),
as.vector(arima.sim(n = n, list(ma = c(0.5, -0.5)))),
as.vector(arima.sim(n = n, list(ar = c(-0.5, -0.3)))),
as.vector(arima.sim(n = n, list(ar = c(0.5, -0.3, 0.1, -0.1), ma=c(0.7, -0.3)))),
as.vector(arima.sim(n = n, list(ar = c(-0.7, ©0.1), ma =c(0.9, 0.3, 0.1, -0.1))))))
dim(S) <- c(3, 2, n)

mModeAutoCovariance(S, m = 1, lag = 1)
mModeAutoCovariance(S, m = 1, lag = 4)
mModeCovariance The m-Mode Covariance Matrix

Description

Estimates the m-mode covariance matrix from an array of array-valued observations.

Usage

mModeCovariance(x, m, center = TRUE)

Arguments
X Array of order higher than two with the last dimension corresponding to the
sampling units.
m The mode with respect to which the covariance matrix is to be computed.
center Logical, indicating whether the observations should be centered prior to com-
puting the covariance matrix. Default is TRUE.
Details

The m-mode covariance matrix provides a higher order analogy for the ordinary covariance matrix
of a random vector and is computed for a random tensor X of size p1 X pa X ... X p,. as Cov,, (X) =
E(XtXETY /(py .. P 1Dm41 - - - Dr)» where X (™) is the centered m-flattening of X. The
algorithm computes the estimate of this based on the sample x.

Value

The m-mode covariance matrix of x having the size p,, X pp,.

plot.tbss 7

Author(s)

Joni Virta

References

Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), Independent component analysis for tensor-
valued data, Journal of Multivariate Analysis, doi: 10.1016/j.jmva.2017.09.008

See Also

mModeAutoCovariance

Examples

Generate sample data.

n <- 100

x <= t(cbind(rnorm(n, mean = @),
rnorm(n, mean = 1),
rnorm(n, mean = 2),
rnorm(n, mean = 3),
rnorm(n, mean = 4),
rnorm(n, mean = 5)))

dim(x) <- c(3, 2, n)
The m-mode covariance matrices of the first and second modes

mModeCovariance(x, 1)
mModeCovariance(x, 2)

plot.tbss Plot an Object of the Class tbss

Description

Plots the most interesting components (in the sense of extreme kurtosis) obtained by a tensor blind
source separation method.

Usage

S3 method for class 'tbss'
plot(x, first = 2, last = 2, datatype = NULL,
main = "The components with most extreme kurtoses"”, ...)

http://doi.org/10.1016/j.jmva.2017.09.008

Arguments

X

first

last

main

datatype

Details

plot.tbss

Object of class tbss.

Number of components with maximal kurtosis to be selected. See selectComponents
for details.

Number of components with minimal kurtosis to be selected. See selectComponents
for details.

The title of the plot.

Parameter for choosing the type of plot, either NULL, "iid" or "ts". The default
NULL means the value from the tbss object x is taken.

Further arguments to be passed to the plotting functions, see details.

The function plot.tbss first selects the most interesting components using selectComponents
and then plots them either as a matrix of scatter plots using pairs (datatype = "iid") or as a time
series plot using plot. ts (datatype ="ts"). Note that for tSOBI this criterion might not necessarily
be meaningful as the method is based on second moments only.

Author(s)

Joni Virta

Examples

library(ElemStatLearn)

X <- zip.train

rows <- which(x[, 11 == 0 | x[, 1] == 1)
x0 <- x[rows, 2:257]
yo <- x[rows, 1] + 1

x0 <- t(x0)

dim(x@) <- c(16, 16, 2199)

tfobi <- tFOBI(x®)
plot(tfobi, col=y@)

library("stochvol")

n <- 1000

S <- t(cbind(svsim(n, mu = -10, phi = 0.98, sigma = 0.2, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.98, sigma = 0.2, nu = 10)%$y,
svsim(n, mu = -10, phi = 0.70, sigma = 0.7, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.70, sigma = 0.7, nu = 10)$y,

svsim(n, mu = -9, phi = 0.20, sigma = 0.01, nu = Inf)3y,
svsim(n, mu = -9, phi = -0.20, sigma = 0.01, nu = 10)$y))

dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

selectComponents 9

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tgfobi <- tgFOBI(X)
plot(tgfobi, 1, 1)

selectComponents Select the Most Informative Components

Description
Takes an array of observations as an input and outputs a subset of the components having the most
extreme kurtoses.

Usage

selectComponents(x, first = 2, last = 2)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
first Number of components with maximal kurtosis to be selected. Can equal zero
but the total number of components selected must be at least two.
last Number of components with minimal kurtosis to be selected. Can equal zero
but the total number of components selected must be at least two.
Details

In independent component analysis (ICA) the components having the most extreme kurtoses are of-

ten thought to be also the most informative. With this viewpoint in mind the function selectComponents
selects from x first components having the highest kurtosis and 1ast components having the low-

est kurtoses and outputs them as a standard data matrix for further analysis.

Value

Data matrix with rows corresponding to the observations and the columns correponding to the
first + last selected components in decreasing order with respect to kurtosis. The names of the
components in the output matrix correspond to the indices of the components in the original array
X.

Author(s)

Joni Virta

10 tensorCentering

Examples

library(ElemStatLearn)
X <- zip.train

rows <- which(x[, 11 == 0 | x[, 1] == 1)
X0 <- x[rows, 2:257]

X0 <- t(x0)
dim(x@) <- c(16, 16, 2199)

tfobi <- tFOBI(xQ)
comp <- selectComponents(tfobi$sS)
head(comp)

tensorCentering Center an Array of Observations

Description

Centers an array of array-valued observations by substracting the mean array from each observation.

Usage
tensorCentering(x)
Arguments
X Array of order at least two with the last dimension corresponding to the sampling
units.
Details

Centers a p; X p2 X . . . X p, X n-dimensional array by substracting the p; X pa X . . . X p,.-dimensional
array of element-wise means from each of the observed arrays.

Value

Array of centered observations with the same dimensions as the input array.

Author(s)

Joni Virta

tensorStandardize 11

Examples

Generate sample data.

n <- 1000

x <= t(cbind(rnorm(n, mean = 0),
rnorm(n, mean = 1),
rnorm(n, mean = 2),
rnorm(n, mean = 3),
rnorm(n, mean = 4),
rnorm(n, mean = 5)))

dim(x) <- c(3, 2, n)

Centered data
xcen <- tensorCentering(x)

Check the means of individual cells
apply(xcen, 1:2, mean)

tensorStandardize Standardize an Observation Array

Description
Standardizes an array of array-valued observations simultaneously from each mode. The method
can be seen as a higher-order analogy for the regular multivariate standardization of random vectors.
Usage

tensorStandardize(x)

Arguments
X Array of an order higher than two with the last dimension corresponding to the
sampling units.
Details

The algorithm first centers the n observed tensors X; to have an element-wise mean of zero. Then it
estimates the mth mode covariance matrix C'ov,, (X) = E(X(m)X(m)T)/(p1 e DPm—1Pm=+1 - - - Pr)s
where X (™) is the centered m-flattening of X, for each mode and transforms the observations with
the inverse square roots of the covariance matrices from the corresponding modes.

Value
A list containing the following components:

X Array of the same size as x containing the standardized observations.

S List containing inverse square roots of the covariance matrices of different modes.

12 tensorTransform

Author(s)

Joni Virta

Examples

Generate sample data.

n <- 100

x <= t(cbind(rnorm(n, mean = @),
rnorm(n, mean = 1),
rnorm(n, mean = 2),
rnorm(n, mean = 3),
rnorm(n, mean = 4),
rnorm(n, mean = 5)))

dim(x) <- c(3, 2, n)

Standardize
z <- tensorStandardize(x)$x

The m-mode covariance matrices of the standardized tensors
mModeCovariance(z, 1)
mModeCovariance(z, 2)

tensorTransform Linear Transformation of Tensors from mth Mode

Description

Applies a linear transformation to the mth mode of each individual tensor in an array of tensors

Usage

tensorTransform(x, A, m)

Arguments
X Array of an order at least two with the last dimension corresponding to the sam-
pling units.
A Matrix corresponding to the desired linear transformation with the number of
columns equal to the size of the mth dimension of x.
m The mode from which the linear transform is to be applied.
Details

Applies the linear transformation given by the matrix A of size g,, X py, to the mth mode of each of
the n observed tensors X; in the given p; X ps2 X ... X p, X n-dimensional array x. This is equivalent
to separately applying the linear transformation given by A to each m-mode vector of each X;.

tensor Vectorize 13

Value

Array of size p; X P2 X ... X D1 X @ X D41 X - .. X Pp X N

Author(s)

Joni Virta

Examples

Generate sample data.

n<-10

x <= t(cbind(rnorm(n, mean = @),
rnorm(n, mean = 1),
rnorm(n, mean = 2),
rnorm(n, mean = 3),
rnorm(n, mean = 4),
rnorm(n, mean = 5)))

dim(x) <- c(3, 2, n)

Transform from the second mode
A <- matrix(c(2, 1, 0, 3), 2, 2)
z <- tensorTransform(x, A, 2)

Compare
z[, , 1]
x[, , 11%x%t(A)

tensorVectorize Vectorize an Observation Tensor

Description

Vectorizes an array of array-valued observations into a matrix so that each column of the matrix
corresponds to a single observational unit.

Usage
tensorVectorize(x)
Arguments
X Array of an order at least two with the last dimension corresponding to the sam-
pling units.
Details

Vectorizes a p1 X pa X ... X p, X n-dimensional array into a p1ps . .. p, X n-dimensional matrix,
each column of which then corresponds to a single observational unit. The vectorization is done so
that the rth index goes through its cycle the fastest and the first index the slowest.

14 tFOBI
Value
Matrix whose columns contain the vectorized observed tensors.
Author(s)
Joni Virta
Examples
Generate sample data.
n <- 100
x <= t(cbind(rnorm(n, mean = 0),
rnorm(n, mean = 1),
rnorm(n, mean 2),
rnorm(n, mean = 3),
rnorm(n, mean = 4),
rnorm(n, mean 5)))
dim(x) <- c(3, 2, n)
Matrix of vectorized observations.
vecx <- tensorVectorize(x)
The covariance matrix of individual tensor elements
cov(t(vecx))
tFOBI FOBI for Tensor-Valued Observations
Description
Computes the tensorial FOBI in an independent component model.
Usage
tFOBI(x, norm = NULL)
Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
norm A Boolean vector with number of entries equal to the number of modes in a

single observation. The elements tell which modes use the “normed” version of

tensorial FOBI. If NULL then all modes use the non-normed version.

tFOBI 15

Details

It is assumed that S is a tensor (array) of size p; X p2 X ... X p, with mutually independent
elements and measured on N units. The tensor independent component model further assumes that
the tensors S are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed data X. In R the sample of X is saved as an array of dimensions p1, ps,...,pr, N.

tFOBI recovers then based on x the underlying independent components S by estimating the 7
unmixing matrices Wy, ..., W, using fourth joint moments.

The unmixing can in each mode be done in two ways, using a ‘“non-normed” or “normed” method
and this is controlled by the argument norm. The authors advocate the general use of non-normed
version, see the reference below for their comparison.

If x is a matrix, that is, » = 1, the method reduces to FOBI and the function calls FOBI.

For a generalization for tensor-valued time series see tgFOBI.

Value

A list with class ’tbss’, inheriting from class ’bss’, containing the following components:

S Array of the same size as x containing the independent components.

W List containing all the unmixing matrices.

norm The vector indicating which modes used the “normed” version.

Xmu The data location.

datatype Character string with value "iid". Relevant for plot. tbss.
Author(s)

Joni Virta
References

Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), Independent component analysis for tensor-
valued data, Journal of Multivariate Analysis, doi: 10.1016/j.jmva.2017.09.008

See Also
FOBI, tgFOBI

Examples
n <- 1000
S <- t(cbind(rexp(n)-1,

rnorm(n),

runif(n, -sqrt(3), sqrt(3)),
rt(n,5)*sqrt(0.6),
(rchisq(n,1)-1)/sqrt(2),
(rchisq(n,2)-2)/sqrt(4)))

dim(S) <- c(3, 2, n)

http://doi.org/10.1016/j.jmva.2017.09.008

16 tgFOBI

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tfobi <- tFOBI(X)
MD(tfobi$WL[11], A1)
MD(tfobi$W[[2]], A2)
tMD(tfobi$W, list(Al, A2))

Digit data example

library(ElemStatLearn)
x <- zip.train

rows <- which(x[, 11 ==0 | x[, 1] == 1)
X0 <- x[rows, 2:257]
yo <- x[rows, 1] + 1

x0 <- t(x0)
dim(x@) <- c(16, 16, 2199)

tfobi <- tFOBI(x®)
plot(tfobi, col=y@)

tgFOBI gFOBI for Tensor-Valued Time Series

Description
Computes the tensorial gFOBI for time series where at each time point a tensor of order r is ob-
served.

Usage

tgFOBI(x, lags = 0:12, maxiter = 100, eps = 1e-06)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the time.
lags Vector of integers. Defines the lags used for the computations of the autocovari-
ances.
maxiter Maximum number of iterations. Passed on to rjd.

eps Convergence tolerance. Passed on to rjd.

tgFOBI 17

Details

It is assumed that S is a tensor (array) of size p; X p2 X ... X p, measured at time points 1,... 7.
The assumption is that the elements of .S are mutually independent, centered and weakly stationary
time series and are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed time series X . In R the sample of X is saved as an array of dimensions py, p2,...,pr, 1.

tgFOBI recovers then based on x the underlying independent time series S by estimating the 7
unmixing matrices W7, ..., W, using the lagged fourth joint moments specified by lags. This re-
liance on higher order moments makes the method especially suited for stochastic volatility models.

If x is a matrix, that is, 7 = 1, the method reduces to gFOBI and the function calls gFOBI.
If 1ags = @ the method reduces to tFOBI.

Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S Array of the same size as x containing the estimated uncorrelated sources.
W List containing all the unmixing matrices
Xmu The data location.
datatype Character string with value "ts". Relevant for plot. tbss.
Author(s)
Joni Virta
References

Virta, J. and Nordhausen, K., (2017), Blind source separation of tensor-valued time series. Signal
Processing 141, 204-216, doi: 10.1016/j.sigpro.2017.06.008

See Also
gFOBI, rjd, tFOBI

Examples

library("stochvol")

n <- 1000

S <- t(cbind(svsim(n, mu = -10, phi = 0.98, sigma = 0.2, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.98, sigma = 0.2, nu = 10)%$y,
svsim(n, mu = -10, phi = 0.70, sigma = 0.7, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.70, sigma = 0.7, nu = 10)$y,

svsim(n, mu = -9, phi = 0.20, sigma = 0.01, nu = Inf)$y,
svsim(n, mu = -9, phi = -0.20, sigma = 0.01, nu = 10)%y))
dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)

http://doi.org/10.1016/j.sigpro.2017.06.008

18 tgJADE

X <- tensorTransform(X, A2, 2)
tgfobi <- tgFOBI(X)
MD(tgfobi$WL[111, A1)

MD(tgfobi$WL[2]1, A2)
tMD(tgfobi$W, list(Al, A2))

tgJADE 8JADE for Tensor-Valued Time Series

Description
Computes the tensorial gJADE for time series where at each time point a tensor of order 7 is ob-
served.

Usage

tgJADE(x, lags = 0:12, maxiter = 100, eps = 1e-06)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the time.
lags Vector of integers. Defines the lags used for the computations of the autocovari-
ances.
maxiter Maximum number of iterations. Passed on to rjd.
eps Convergence tolerance. Passed on to rjd.
Details
It is assumed that S is a tensor (array) of size p; X p2 X ... X p, measured at time points 1,... 7.
The assumption is that the elements of S are mutually independent, centered and weakly stationary
time series and are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed time series X . In R the sample of X is saved as an array of dimensions py,p2,...,pr, 1.

tgJADE recovers then based on x the underlying independent time series S by estimating the r
unmixing matrices W1, ..., W, using the lagged fourth joint moments specified by lags. This re-
liance on higher order moments makes the method especially suited for stochastic volatility models.

If x is a matrix, that is, » = 1, the method reduces to gJADE and the function calls gJADE.
If 1ags = 0 the method reduces to tJADE.

tgJADE 19

Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S Array of the same size as x containing the estimated uncorrelated sources.
W List containing all the unmixing matrices
Xmu The data location.
datatype Character string with value "ts". Relevant for plot. tbss.
Author(s)
Joni Virta
References

Virta, J. and Nordhausen, K., (2017), Blind source separation of tensor-valued time series. Signal
Processing 141, 204-216, doi: 10.1016/].sigpro.2017.06.008

See Also

gJADE, rjd, tJADE

Examples

library("stochvol™)

n <- 1000

S <- t(cbind(svsim(n, mu = -10, phi = 0.98, sigma = 0.2, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.98, sigma = 0.2, nu = 10)%$y,
svsim(n, mu = =10, phi = .70, sigma = 0.7, nu = Inf)$y,
svsim(n, mu = -5, phi = -0.70, sigma = 0.7, nu = 10)$y,

svsim(n, mu = -9, phi = 0.20, sigma = 0.01, nu = Inf)$y,
svsim(n, mu = -9, phi = -0.20, sigma = 0.01, nu = 10)%y))
dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tgjade <- tgJADE(X)
MD(tgjade$WLL[11], A1)

MD(tgjade$WL[2]], A2)
tMD(tgjadesh, list(Al, A2))

http://doi.org/10.1016/j.sigpro.2017.06.008

20 tJADE

tJADE tJADE for Tensor-Valued Observations

Description

Computes the tensorial JADE in an independent component model.

Usage

tJADE(x, maxiter = 100, eps = 1e-06)

Arguments

X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.

maxiter Maximum number of iterations. Passed on to rjd.
eps Convergence tolerance. Passed on to rjd.

Details
It is assumed that .S is a tensor (array) of size p; X py X ... X p, with mutually independent
elements and measured on NV units. The tensor independent component model further assumes that
the tensors S are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed data X. In R the sample of X is saved as an array of dimensions p1,pa, ..., p,, IN.

tJADE recovers then based on x the underlying independent components .S by estimating the r
unmixing matrices Wi, ..., W, using fourth joint moments in a more efficient way than tFOBI.

If x is a matrix, that is, » = 1, the method reduces to JADE and the function calls JADE.

For a generalization for tensor-valued time series see tgJADE.

Value

A list with class ’tbss’, inheriting from class ’bss’, containing the following components:

S Array of the same size as x containing the independent components.
W List containing all the unmixing matrices
Xmu The data location.
datatype Character string with value "iid". Relevant for plot. tbss.
Author(s)
Joni Virta
References

Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), JADE for Tensor-Valued Observation, to ap-
pear in Journal of Computational and Graphical Statistics. preprint available on ArXiv http://arxiv.org/abs/1603.05406.

tMD

See Also
JADE, tgJADE

Examples

n <- 1000

S <- t(cbind(rexp(n)-1,
rnorm(n),
runif(n, -sqrt(3), sqrt(3)),
rt(n,5)*sqrt(0.6),
(rchisq(n,1)-1)/sqrt(2),
(rchisq(n,2)-2)/sqrt(4)))

dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tjade <- tJADE(X)

MD(tjade$WLL[11]1, A1)
MD(tjade$WL[21], A2)
tMD(tjade$W, list(A1, A2))

Not run:
Digit data example
Running will take a few minutes

library(ElemStatLearn)
X <- zip.train

rows <- which(x[, 11 == 0@ | x[, 1] == 1)
X0 <- x[rows, 2:257]

yo <- x[rows, 1] + 1

X0 <- t(x0)
dim(x@) <- c(16, 16, 2199)

tjade <- tJADE(xQ)
plot(tjade, col=y@)

End(Not run)

tMD Minimum Distance Index of a Kronecker Product

22 tMD

Description

A shortcut function for computing the minimum distance index of a tensorial ICA estimate on the
Kronecker product “scale” (the vectorized space).

Usage
tMD(W. hat, A)

Arguments
W.hat A list of r unmixing matrix estimates, W_1, W_2, ..., W_r.
A A list of r mixing matrices, A_1, A_2, ..., A_r.

Details
The function computes the minimum distance index between W.hat[[r]] %x% ... %x% W.hat[[1]1]
and A[[r]] %x% ... %x% AL[1]1]. The index is useful for comparing the performance of a tensor-
valued ICA method to that of a method using first vectorization and then some vector-valued ICA
method.

Value

The value of the MD index of the Kronecker product.

Author(s)

Joni Virta

References

Ilmonen, P, Nordhausen, K., Oja, H. and Ollila, E. (2010), A New Performance Index for ICA:
Properties, Computation and Asymptotic Analysis. In Vigneron, V., Zarzoso, V., Moreau, E.,
Gribonval, R. and Vincent, E. (editors) Latent Variable Analysis and Signal Separation, 229-236,
Springer.

Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), Independent component analysis for tensor-
valued data, Journal of Multivariate Analysis, doi: 10.1016/j.jmva.2017.09.008

See Also
MD

Examples

n <- 1000

S <- t(cbind(rexp(n)-1,
rnorm(n),
runif(n, -sqrt(3), sqrt(3)),
rt(n,5)*sqrt(0.6),
(rchisq(n,1)-1)/sqrt(2),
(rchisq(n,2)-2)/sqrt(4)))

http://doi.org/10.1016/j.jmva.2017.09.008

tNSS.JD 23

dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tfobi <- tFOBI(X)

MD(tfobi$WL[211 %x% tfobi$WL[111, A2 %x% A1)
tMD(Llist(tfobi$WL[211), list(A2))

tNSS.JD NSS-JD Method for Tensor-Valued Time Series

Description

Estimates the non-stationary sources of a tensor-valued time series using separation information
contained in several time intervals.

Usage
tNSS.JD(x, K = 12, n.cuts = NULL, eps = 1e-06, maxiter = 100, ...)
Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
K The number of equisized intervals into which the time range is divided. If the
parameter n.cuts is non-NULL it takes preference over this argument.
n.cuts Either a interval cutoffs (the cutoffs are used to define the two intervals that are
open below and closed above, e.g. (a,b]) or NULL (the parameter K is used to
define the the amount of intervals).
eps Convergence tolerance for rjd.
maxiter Maximum number of iterations for rjd.
Further arguments to be passed to or from methods.
Details

Assume that the observed tensor-valued time series comes from a tensorial BSS model where the
sources have constant means over time but the component variances change in time. Then TNSS-
JD first standardizes the series from all modes and then estimates the non-stationary sources by
dividing the time scale into K intervals and jointly diagonalizing the covariance matrices of the K
intervals within each mode.

24 tNSS.JD

Value

A list with class ’tbss’, inheriting from class "bss’, containing the following components:

S Array of the same size as x containing the independent components.

W List containing all the unmixing matrices.

K The number of intervals.

n.cuts The interval cutoffs.

Xmu The data location.

datatype Character string with value "ts". Relevant for plot. tbss.
Author(s)

Joni Virta
References

Virta J., Nordhausen K. (2017): Blind source separation for nonstationary tensor-valued time se-
ries, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP),
doi: 10.1109/MLSP.2017.8168122

See Also

NSS.SD, NSS.JD, NSS.TD. JD, tNSS.SD, tNSS.TD.JD

Examples

Create innovation series with block-wise changing variances

nl <- 200
n2 <- 500
n3 <- 300

n<-nl+n2+n3

innov1l <- c(rnorm(nl, @, 1), rnorm(n2, @, 3), rnorm(n3, @, 5))
innov2 <- c(rnorm(nl, @, 1), rnorm(n2, @, 5), rnorm(n3, @, 3))
innov3 <- c(rnorm(n1, @, 5), rnorm(n2, @, 3), rnorm(n3, @, 1))
innov4 <- c(rnorm(nl, @, 5), rnorm(n2, @, 1), rnorm(n3, @, 3))

Generate the observations

vecx <- cbind(as.vector(arima.sim(n =
as.vector(arima.sim(n =
as.vector(arima.sim(n =
as.vector(arima.sim(n =

, list(ar = 0.8), innov = innovl)),

, list(ar = ¢c(0.5, @.1)), innov = innov2)),

, list(ma = -0.7), innov = innov3)),

, list(ar = 0.5, ma = -0.5), innov = innov4)))

Vector to tensor
tenx <- t(vecx)
dim(tenx) <- c(2, 2, n)

Run TNSS-JD
res <- tNSS.JD(tenx, K = 6)
res$w

http://doi.org/10.1109/MLSP.2017.8168122

tNSS.SD 25

res <- tNSS.JD(tenx, K = 12)
res$w

tNSS.SD NSS-SD Method for Tensor-Valued Time Series

Description
Estimates the non-stationary sources of a tensor-valued time series using separation information
contained in two time intervals.

Usage

tNSS.SD(x, n.cuts = NULL)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
n.cuts Either a 3-vector of interval cutoffs (the cutoffs are used to define the two inter-
vals that are open below and closed above, e.g. (a, b]) or NULL (the time range is
sliced into two parts of equal size).
Details

Assume that the observed tensor-valued time series comes from a tensorial BSS model where the
sources have constant means over time but the component variances change in time. Then TNSS-
SD estimates the non-stationary sources by dividing the time scale into two intervals and jointly
diagonalizing the covariance matrices of the two intervals within each mode.

Value

A list with class ’tbss’, inheriting from class ’bss’, containing the following components:

Array of the same size as x containing the independent components.

W List containing all the unmixing matrices.

EV Eigenvalues obtained from the joint diagonalization.

n.cuts The interval cutoffs.

Xmu The data location.

datatype Character string with value "ts". Relevant for plot. tbss.
Author(s)

Joni Virta

26 tNSS.SD

References

Virta J., Nordhausen K. (2017): Blind source separation for nonstationary tensor-valued time se-
ries, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP),
doi: 10.1109/MLSP.2017.8168122

See Also

NSS.SD, NSS.JD, NSS.TD. JD, tNSS.JD, tNSS.TD.JD

Examples

Create innovation series with block-wise changing variances

9 smooth variance structures
var_1 <- function(n){

t <- 1:n

return(1 + cos((2*pi*t)/n)*sin((2*x150%t)/(n*pi)))
3

var_2 <- function(n){

t <- 1:n

return(1 + sin((2*pixt)/n)*cos((2*x150*t)/(nxpi)))
3

var_3 <- function(n){

t <- 1:n

return(0.5 + 8*xexp((n+1)*2/(4*t*x(t - n - 1))))
3

var_4 <- function(n){

t <- 1:n

return(3.443 - 8xexp((n+1)"2/(4*xt*x(t - n - 1))))
3

var_5 <- function(n){

t <- 1:n

return(0.5 + @.5xgamma(10)/(gamma(7)*gamma(3))*(t/(n + 1)) (7 - D*(1 - t/(n + 1))*(3 - 1))
3

var_6 <- function(n){
t <- 1:n
res <- var_5(n)
return(rev(res))

3

var_7 <- function(n){
t <- 1:n
return(@.2+2xt/(n + 1))
3

var_8 <- function(n){
t <- 1:n

http://doi.org/10.1109/MLSP.2017.8168122

tNSS.TD.JD 27

return(@.2+2x(n + 1 - t)/(n + 1))
3

var_9 <- function(n){

t <- 1:n

return(1.5 + cos(4*pi*t/n))
3

Innovation series
n <- 1000

innov1l <- c(rnorm(n,
innov2 <- c(rnorm(n,
innov3 <- c(rnorm(n,
innov4 <- c(rnorm(n,
innov5 <- c(rnorm(n,
innov6 <- c(rnorm(n,
innov7 <- c(rnorm(n,
innov8 <- c(rnorm(n,
innov9 <- c(rnorm(n,

sqrt(var_1(n))))
sqrt(var_2(n))))
sqrt(var_3(n))))
sqrt(var_4(n))))
sqrt(var_5(n))))
sqrt(var_6(n))))
sqrt(var_7(n))))
sqrt(var_8(n))))
sqrt(var_9(n))))

[SENSENSENSENSEGSESEOES

Generate the observations

vecx <- cbind(as.vector(arima.sim(n = n, list(ar = ©0.9), innov = innovl)),
as.vector(arima.sim(n = n, list(ar = c(@, 0.2, 0.1, -0.1, 0.7)),
innov = innov2)),
as.vector(arima.sim(n = n, list(ar = c(0.5, 0.3, -0.2, 0.1)),
innov = innov3)),
as.vector(arima.sim(n = n, list(ma = -0.5), innov = innov4)),
as.vector(arima.sim(n = n, list(ma = c(0.1, 0.1, 0.3, 0.5, 0.8)),
innov = innovb)),
as.vector(arima.sim(n = n, list(ma = c(0.5, -0.5, @.5)), innov = innov6)),
as.vector(arima.sim(n = n, list(ar = c(-0.5, -0.3), ma = c(-0.2, 0.1)),
innov = innov7)),

as.vector(arima.sim(n = n, list(ar = c(0, -0.1, -0.2, 0.5), ma =c(9, 0.1, 0.1, 0.6)),

innov = innov8)),
as.vector(arima.sim(n = n, list(ar = c(0.8), ma = c(0.7, 0.6, 0.5, 0.1)),
innov = innov9)))

Vector to tensor
tenx <- t(vecx)
dim(tenx) <- c(3, 3, n)

Run TNSS-SD
res <- tNSS.SD(tenx)
res$w

tNSS.TD.JD TNSS-TD-JD Method for Tensor-Valued Time Series

28 tNSS.TD.JD

Description

Estimates the non-stationary sources of a tensor-valued time series using separation information
contained in several time intervals and lags.

Usage
tNSS.TD.JD(x, K =12, lags = 0:12, n.cuts = NULL, eps = 1e-06, maxiter = 100, ...)
Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the sampling units.
K The number of equisized intervals into which the time range is divided. If the
parameter n.cuts is non-NULL it takes preference over this argument.
lags The lag set for the autocovariance matrices.
n.cuts Either a interval cutoffs (the cutoffs are used to define the two intervals that are
open below and closed above, e.g. (a,b]) or NULL (the parameter K is used to
define the the amount of intervals).
eps Convergence tolerance for rjd.
maxiter Maximum number of iterations for rjd.
Further arguments to be passed to or from methods.
Details

Assume that the observed tensor-valued time series comes from a tensorial BSS model where the
sources have constant means over time but the component variances change in time. Then TNSS-
TD-JD first standardizes the series from all modes and then estimates the non-stationary sources
by dividing the time scale into K intervals and jointly diagonalizing the autocovariance matrices
(specified by lags) of the K intervals within each mode.

Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S Array of the same size as x containing the independent components.

W List containing all the unmixing matrices.

K The number of intervals.

lags The lag set.

n.cuts The interval cutoffs.

Xmu The data location.

datatype Character string with value "ts". Relevant for plot. tbss.
Author(s)

Joni Virta

tPCA

References

29

Virta J., Nordhausen K. (2017): Blind source separation for nonstationary tensor-valued time se-
ries, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP),

doi: 10.1109/MLSP.2017.8168122

See Also

NSS.SD, NSS.JD, NSS.TD. JD, tNSS.SD, tNSS.JD

Examples

Create innovation series with block-wise changing variances

nl <- 200
n2 <- 500
n3 <- 300

n<-nl+n2+n3

innovl <- c(rnorm(nl, @, 1), rnorm(n2, @, 3), rnorm(n3, @, 5))
innov2 <- c(rnorm(nl, @, 1), rnorm(n2, @, 5), rnorm(n3, @, 3))
innov3 <- c(rnorm(nl, @, 5), rnorm(n2, @, 3), rnorm(n3, @, 1))
innov4 <- c(rnorm(nl, @, 5), rnorm(n2, @, 1), rnorm(n3, @, 3))

Generate the observations

vecx <- cbind(as.vector(arima.sim(n =
as.vector(arima.sim(n =
as.vector(arima.sim(n =
as.vector(arima.sim(n =

, list(ar = 0.8), innov = innov1))
, list(ar = c(0.5, 0.1)), innov =

, list(ma = -0.7), innov = innov3)
, list(ar = 0.5, ma = -0.5), innov

Vector to tensor
tenx <- t(vecx)
dim(tenx) <- c(2, 2, n)

Run TNSS-TD-JD
res <- tNSS.TD.JD(tenx)
res$w

res <- tNSS.TD.JD(tenx, K = 6, lags = 0:6)
res$w

’

innov2)),

)7
= innov4)))

tPCA PCA for Tensor-Valued Observations

Description

Computes the tensorial principal components.

Usage
tPCA(x, p = NULL, d = NULL)

http://doi.org/10.1109/MLSP.2017.8168122

30 tPCA

Arguments
X Numeric array of an order at least three. It is assumed that the last dimension
corresponds to the sampling units.
p A vector of the percentages of variation per each mode the principal components
should explain.
d A vector of the exact number of components retained per each mode. At most
one of this and the previous argument should be supplied.
Details

The observed tensors (array) X of size p; X p2 X ... X p, measured on [V units are projected from
each mode on the eigenspaces of the m-mode covariance matrices of the corresponding modes. As
in regular PCA, by retaining only some subsets of these projections (indices) with respective sizes
di,ds, ...d,, a dimension reduction can be carried out, resulting into observations tensors of size
di; X dg X ... x d,. InR the sample of X is saved as an array of dimensions pi, ps,...,p,, N.

Value

A list containing the following components:

S Array of the same size as x containing the principal components.
U List containing the rotation matrices
D List containing the amounts of variance explained by each index in each mode.
p_comp The percentages of variation per each mode that the principal components ex-
plain.
Xmu The data location.
Author(s)
Joni Virta
References

Virta, J., Taskinen, S. and Nordhausen, K. (2016), Applying fully tensorial ICA to fMRI data, Signal
Processing in Medicine and Biology Symposium (SPMB), 2016 IEEE, doi: 10.1109/SPMB.2016.7846858

Examples

Digit data example

library(ElemStatLearn)
X <- zip.train

rows <- which(x[, 11 == 0@ | x[, 1] == 1)
X0 <- x[rows, 2:257]

yo <- x[rows, 1] + 1

X0 <- t(x0)

http://doi.org/10.1109/SPMB.2016.7846858

tPP 31

dim(x@) <- c(16, 16, 2199)

tpca <- tPCA(xQ, d = c(2, 2))
pairs(t(apply(tpcas$sS, 3, c)), col=y@)

tPP Projection pursuit for Tensor-Valued Observations

Description

Applies mode-wise projection pursuit to tensorial data with respect to the chosen measure of inter-
estingness.

Usage

tPP(x, nl = "pow3", eps = le-6, maxiter = 100)

Arguments
X Numeric array of an order at least three. It is assumed that the last dimension
corresponds to the sampling units.
nl The chosen measure of interestingness/objective function. Current choices in-
clude pow3 (default) and skew, see the details below
eps The convergence tolerance of the iterative algortihm.
maxiter The maximum number of iterations.
Details

The observed tensors (arrays) X of size p; X ps X ... X p, measured on NV units are standardized
from each mode and then projected mode-wise onto the directions that maximize the Lo-norm of
the vector of the values E[G (u} X XTuy)] — E[G(c?)], where G is the chosen objective function
and c? obeys the chi-squared distribution with ¢ degress of freedom. Currently the function al-
lows the choices G(x) = z? (pow3) and G(x) = z+/z (skew), which correspond roughly to the
maximization of kurtosis and skewness, respectively. The algorithm is the multilinear extension of
FastICA, where the names of the objective functions also come from.

Value

A list with class ’tbss’, inheriting from class ’bss’, containing the following components:

S Array of the same size as x containing the estimated components.
W List containing all the unmixing matrices.

iter The numbers of iteration used per mode.

Xmu The data location.

datatype Character string with value "iid". Relevant for plot. tbss.

32 tSIR

Author(s)

Joni Virta

References

Nordhausen, K. and Virta, J. (2018), Tensorial projection pursuit, Manuscript in preparation.

Hyvarinen, A. (1999) Fast and robust fixed-point algorithms for independent component analysis,
IEEE transactions on Neural Networks 10.3: 626-634.

See Also
fICA, NGPP

Examples

n <- 1000

S <- t(cbind(rexp(n)-1,
rnorm(n),
runif(n, -sqrt(3), sqrt(3)),
rt(n,5)xsqrt(0.6),
(rchisq(n,1)-1)/sqrt(2),
(rchisq(n,2)-2)/sqrt(4)))

dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tpp <- tPP(X)
MD(tpp$WLL11], A1)

MD(tpp$WLL[21], A2)
tMD(tpp$W, list(Al, A2))

tSIR SIR for Tensor-Valued Observations

Description

Computes the tensorial SIR.

Usage
tSIR(x, y, h =10, ...)

tSIR 33

Arguments
X Numeric array of an order at least three. It is assumed that the last dimension
corresponds to the sampling units.
y A numeric or factor response vector.
h The number of slices. If y is a factor the number of factor levels is automatically
used as the number of slices.
Arguments passed on to quantile.
Details

Computes the mode-wise sliced inverse regression (SIR) estimators for a tensor-valued data set and
a univariate response variable.

Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S Array of the same size as x containing the predictors.

W List containing all the unmixing matrices.

Xmu The data location.

datatype Character string with value "iid". Relevant for plot. tbss.
Author(s)

Joni Virta, Klaus Nordhausen

Examples

library(ElemStatLearn)
X <- zip.train

rows <- which(x[, 11 == 0 | x[, 1] == 3)
X0 <- x[rows, 2:257]
y0 <- as.factor(x[rows, 1])

X0 <- t(x0)
dim(xQ) <- c(16, 16, length(y@))

res <- tSIR(xQ, yoQ)
plot(res$S[1, 1, 1, res$S[1, 2, 1, col = y0@)

34 tSOBI

tSOBI SOBI for Tensor-Valued Time Series

Description

Computes the tensorial SOBI for time series where at each time point a tensor of order 7 is observed.

Usage

tSOBI(x, lags = 1:12, maxiter = 100, eps = 1e-06)

Arguments
X Numeric array of an order at least two. It is assumed that the last dimension
corresponds to the time.
lags Vector of integers. Defines the lags used for the computations of the autocovari-
ances.
maxiter Maximum number of iterations. Passed on to rjd.
eps Convergence tolerance. Passed on to rjd.
Details
It is assumed that S is a tensor (array) of size p; X p2 X ... X p, measured at time points 1,... 7.
The assumption is that the elements of S are uncorrelated, centered and weakly stationary time
series and are mixed from each mode m by the mixing matrix A,,, m = 1,...,r, yielding the
observed time series X . In R the sample of X is saved as an array of dimensions py,p2,...,pr, 1.

tSOBI recovers then based on x the underlying uncorrelated time series S by estimating the r un-
mixing matrices Wy, ..., W, using the lagged joint autocovariances specified by lags.

If x is a matrix, that is, » = 1, the method reduces to SOBI and the function calls SOBI.

Value

A list with class ’tbss’, inheriting from class *bss’, containing the following components:

S Array of the same size as x containing the estimated uncorrelated sources.
W List containing all the unmixing matrices
Xmu The data location.
datatype Character string with value "ts". Relevant for plot. tbss.
Author(s)

Joni Virta

tSOBI

References

35

Virta, J. and Nordhausen, K., (2017), Blind source separation of tensor-valued time series. Signal
Processing 141, 204-216, doi: 10.1016/j.sigpro.2017.06.008

See Also
SOBI, rjd

Examples

n <- 1000

S <- t(cbind(as.vector(arima.sim(n =
as.vector(arima.sim(n
as.vector(arima.sim(n =
as.vector(arima.sim(n

as.vector(arima.sim(n
as.vector(arima.sim(n
dim(S) <- c(3, 2, n)

Al <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tsobi <- tSOBI(X)
MD(tsobi$WL[111, A1)

MD(tsobi$WL[21], A2)
tMD(tsobi$W, list(A1, A2))

list(ar

list(ma
= n, list(ar

n!
= n, list(ar =
n!

0.9))),
-0.9))),
c(0.5, -0.5)))),
c(-0.5, -0.3)))),

n, list(ar = c(0.5, -0.3, 0.1, -0.1), ma=c(0.7, -0.3)))),

n, list(ar

c(-0.7, 0.1), ma = c(0.9, 0.3, 0.1, -0.1))))))

http://doi.org/10.1016/j.sigpro.2017.06.008

Index

+Topic array tensorBSS-package, 2
k_tJADE, 3 xTopic ts
mModeAutoCovariance, 5 tensorBSS-package, 2
mModeCovariance, 6 tgFOBI, 16
tensorBSS-package, 2 tgJADE, 18
tensorCentering, 10 tSOBI, 34
tensorStandardize, 11 xTopic utilities
tensorTransform, 12 mModeAutoCovariance, 5
tensorVectorize, 13 mModeCovariance, 6
tFOBI, 14 selectComponents, 9
tgFOBI, 16 tensorCentering, 10
tgJADE, 18 tensorStandardize, 11
tJADE, 20 tensorTransform, 12
tMD, 21 tensorVectorize, 13
Emizgg: ;g array, 3,15, 17, 18, 20, 30, 34
tNSS.TD. JD, 27 FICA, 32
EPCA, 29 FOBI, 5
tPP, 31
tSIR, 32 gFOBI, 17
tSOBI, 34 gJADE, 18, 19

xTopic methods
plot.tbss, 7 JADE, 4, 20, 21

xTopic multivariate
k_tJADE, 3 k_JADE, 3, 4
tensorBSS-package, 2 k_tJADE, 3
tFOBI, 14
tgFOBL, 16 MD, 22 '

mModeAutoCovariance, 5, 7
LEJADE, 18 mModeCovariance, 6, 6
tJADE, 20 T
€MD, 21 NGPP, 32
tNSS. JD, 23 NSS. JD, 24, 26, 29
tNSS.SD, 25 NSS. SD, 24, 26, 29
tNSS.TD.JD, 27 NSS.TD.JD, 24, 26, 29
tPCA, 29
tPP, 31 pairs, 8
tSIR, 32 plot.tbss, 4,7, 15,17, 19, 20, 24, 25, 28, 31,
tSOBI, 34 33,34
+Topic package plot.ts, 8

36

INDEX

quantile, 33
rjd, 3, 16-20, 23, 28, 34, 35

selectComponents, 8, 9
SOBI, 34, 35

tensorBSS (tensorBSS-package), 2
tensorBSS-package, 2
tensorCentering, 10
tensorStandardize, 11
tensorTransform, 12
tensorVectorize, 13
tFOBI, 3, 14, 17, 20
tgFOBI, 15, 16
tgJADE, 18, 20, 21
tJADE, 3, 4, 18, 19, 20
tMD, 21

tNSS.JD, 23
tNSS.SD, 25
tNSS.TD.JD, 27

tPCA, 29

tPP, 31

tSIR, 32

tSOBI, 8, 34

37

	tensorBSS-package
	k_tJADE
	mModeAutoCovariance
	mModeCovariance
	plot.tbss
	selectComponents
	tensorCentering
	tensorStandardize
	tensorTransform
	tensorVectorize
	tFOBI
	tgFOBI
	tgJADE
	tJADE
	tMD
	tNSS.JD
	tNSS.SD
	tNSS.TD.JD
	tPCA
	tPP
	tSIR
	tSOBI
	Index

