Package ‘units’

January 8, 2018
Version 0.5-1

Title Measurement Units for R Vectors
Depends R (>=3.0.0)
Imports udunits2 (>=0.13)

Suggests NISTunits, measurements, xml2, tibble, pillar, knitr,
testthat, ggforce, rmarkdown, magrittr

VignetteBuilder knitr

Description Support for measurement units in R vectors, matrices
and arrays: automatic propagation, conversion, derivation
and simplification of units; raising errors in case of unit
incompatibility. Compatible with the POSIXct, Date and difftime
classes. Uses the UNIDATA udunits library and unit database for
unit compatibility checking and conversion.

License GPL-2
URL https://github.com/r-quantities/units/

BugReports https://github.com/r-quantities/units/issues/
RoxygenNote 6.0.1

Encoding UTF-8

NeedsCompilation no

Author Edzer Pebesma [aut, cre] (0000-0001-8049-7069),
Thomas Mailund [aut],
Tomasz Kalinowski [aut]

Maintainer Edzer Pebesma <edzer.pebesma@uni-muenster.de>
Repository CRAN
Date/Publication 2018-01-08 14:03:45 UTC

R topics documented:

as_difftime
AS_UNIES . . o o o e e e s,

https://github.com/r-quantities/units/
https://github.com/r-quantities/units/issues/

2 as_difftime
deparse_Unit L e e e e e e 7
drop_umits e 8
hiStUnits e e e 8
install_conversion_constant e e e e e 9
install_conversion_function e 10
install_symbolic_unit oL 11
make _Unit e e e e e 11
Math.units e 12
matmult e e 13
Ops.units L e e e e e 13
PIOLUNILS L e e e e e e e e e e e 14
SEQLUIILS . o v v v o e e e e e e e e e e e e e e e e e 16
SEt_UNIES . . . v v o o e e e e e e e e e e e 16
tibble e 17
Ud_Units L e e e e e 17
unitless L e e e 18
UNIES . . . o o e e e e 18
UNIES_OPLONS . . . o v v v o v v e i e e e e e e e e e e e e e 19
valid_udunits e e 20

Index 21

as_difftime convert units object into difftime object

Description

convert units object into difftime object
Usage

as_difftime(x)
Arguments

X object of class units
Examples

t1 = Sys.time()
t2 = t1 + 3600
d=1t2 - t1

du <- as_units(d)
dt = as_difftime(du)
class(dt)

dt

as_units 3

as_units convert object to a units object

Description

convert object to a units object
difftime objects to units
A number of functions are provided for creating unit objects.
* as_units, a generic with methods for a character string and for quoted language. Note,

direct usage of this function by users is typically not necessary, as coercion via as_units is
automatically done with ‘*units<-" and set_units().

* make_units(), constructs units from bare expressions. make_units(m/s) is equivalent to
as_units(quote(m/s))

* set_units(), a pipe_friendly version of *units<-*. By default it operates with bare expres-

sions like make_unit, but this behavior can be disabled by a specifying mode = "standard”
or setting units_options(set_units_mode = "standard").
Usage
as_units(x, ...)

Default S3 method:
as_units(x, value = unitless, ...)

S3 method for class 'difftime’
as_units(x, value, ...)

make_units(bare_expression, check_is_valid = TRUE)
S3 method for class 'character'
as_units(x, check_is_valid = TRUE,

implicit_exponents = NULL, force_single_symbol = FALSE, ...)

S3 method for class 'call'

as_units(x, check_is_valid = TRUE, ...)
Arguments
X object of class units

passed on to other methods

value an object of class units, or something coercible to one with as_units
bare_expression

a bare R expression describing units. Must be valid R syntax (reserved R syntax
words like in must be backticked)

4 as_units

check_is_valid throw an error if all the unit symbols are not either recognized by udunits2 via
udunits2::ud.is.parseable(), or acustom user defined via install_symbolic_unit().
If FALSE, no check for validity is performed.

implicit_exponents
If the unit string is in product power form (e.g. "km m-2 s-1"). Defaults to
NULL, in which case a guess is made based on the supplied string. Set to TRUE or
FALSE if the guess is incorrect.

force_single_symbol
Whether to perform no string parsing and force treatment of the string as a single
symbol.

Value

A new unit object that can be used in arithmetic, unit conversion or unit assignment.

Character strings

Generally speaking, there are 3 types of unit strings are accepted in as_units (and by extension,
‘units<-t).

The first, and likely most common, is a "standard" format unit specification where the relation-
ship between unit symbols or names is specified explicitly with arithmetic symbols for division /,
multiplication * and power exponents *, or other mathematical functions like 1og(). In this case,
the string is parsed as an R expression via parse(text =) after backticking all unit symbols
and names, and then passed on to as_units.call(). A heuristic is used to perform backticking,
such that any continuous set of characters uninterrupted by one of ()**- are backticked (unless
the character sequence consists solely of numbers @-9), with some care to not double up on pre-
existing backticks. This heuristic appears to be quite robust, and works for units would otherwise
not be valid R syntax. For example, percent ("%"), feet ("'"), inches ("in"), and Tesla ("T") are all
backticked and parsed correctly.

Nevertheless, for certain complex unit expressions, this backticking heuristic may give incorrect
results. If the string supplied fails to parse as an R expression, then the string is treated as a single
symbolic unit and symbolic_unit(chr) is used as a fallback with a warning. In that case, auto-
matic unit simplification may not work properly when performing operations on unit objects, but
unit conversion and other Math operations should still give correct results so long as the unit string
supplied returns TRUE for udunits2::ud.is.parsable().

The second type of unit string accepted is one with implicit exponents. In this format, /, *, and
*, may not be present in the string, and unit symbol or names must be separated by a space. Each
unit symbol may optionally be followed by a single number, specifying the power. For example
"m2 s-2" is equivalent to "(m*2)*(s*-2)".

The third type of unit string format accepted is the special case of udunits time duration with a
reference origin, for example "hours since 1970-01-01 00:00:00". Note, that the handling
of time and calendar operations via the udunits library is subtly different from the way R handles
date and time operations. This functionality is mostly exported for users that work with udunits time
data, e.g., with NetCDF files. Users are otherwise encouraged to use R’s date and time functionality
provided by Date and POSIXt classes.

as_units 5

Expressions

In as_units(), each of the symbols in the unit expression is treated individually, such that each

symbol must be recognized by the udunits database (checked by ud. is.parseable(), or be a cus-

tom, user-defined unit symbol that was defined either by install_symbolic_unit() or install_conversion_function().
To see which symbols and names are currently recognized by the udunits database, see udunits_symbols().

Note

By default, unit names are automatically substituted with unit names (e.g., kilogram —> kg). To turn
off this behavior, set units_options(auto_convert_names_to_symbols = FALSE)

See Also

valid_udunits

Examples

s = Sys.time()

d =s - (st1)

as_units(d)

The easiest way to assign units to a numeric vector is like this:
X <-y <-1:4

units(x) <- "m/s" # meters / second

Alternatively, the easiest pipe-friendly way to set units:
if(require(magrittr))
y %>% set_units(m/s)

these are different ways of creating the same unit:

meters per second squared, i.e, acceleration

x1 <- make_units(m/s"2)

x2 <- as_units(quote(m/s*2))

x2 <- as_units("m/s*2")

x3 <- as_units("m s-2") # in product power form, i.e., implicit exponents = T
x4 <- set_units(1, m/s*2) # by default, mode = "symbols”

x5 <- set_units(1, "m/s*2", mode = "standard")
x6 <- set_units(1, x1, mode = "standard")
x7 <- set_units(1, units(x1), mode = "standard")

x8 <- as_units("m") / as_units("s")*2

all_identical <- function(...) {
1 <- list(...)
for(i in seq_along(1)[-11)
if(lidentical(1C[111, 1CC[i11))
return(FALSE)
TRUE

3
all_identical(x1, x2, x3, x4, x5, x6, x7, x8)

Note, direct usage of these unit creation functions is typically not

necessary, since coercion is automatically done via as_units(). Again,
these are all equivalent ways to generate the same result.

X1 <= X2 <= x3 <= x4 <- x5 <- x6 <- x7 <- x8 <- 1:4
units(x1) <- "m/s*2"

units(x2) <- "m s-2"

units(x3) <- quote(m/s*2)

units(x4) <- make_units(m/s*2)

units(x5) <- as_units(quote(m/s*2))

x6 <- set_units(x6, m/s*2)

x7 <- set_units(x7, "m/s*2", mode = "standard")

x8 <- set_units(x8, units(x1), mode = "standard")

all_identical(x1, x2, x3, x4, x5, x6, x7, x8)

Both unit names or symbols can be used. By default, unit names are

automatically converted to unit symbols.

make_units(degree_C)

make_units(kilogram)

make_units(ohm)

Note, if the printing of non-ascii characters is garbled, then you may
need to specify the encoding on your system manually like this:

udunits2::ud.set.encoding("latin1")

not all unit names get converted to symbols under different encodings

Arithmetic operations and units

conversion between unit objects that were defined as symbols and names will
work correctly, although unit simplification in printing may not always occur.
<- 500 * make_units(micrograms/liter)

<- set_units(200, ug/l)

ty

* y # numeric result is correct, but units not simplified completely

X X <K X H H=

note, plural form of unit name accepted too ('liters' vs 'liter'), and
denominator simplification can be performed correctly
x * set_units(5, liters)

H o

unit conversion works too
set_units(x, grams/gallon)

Creating custom, user defined units

For example, a microbiologist might work with counts of bacterial cells
make_units(cells/ml) # by default, throws an ERROR

First define the unit, then the newly defined unit is accepted.
install_symbolic_unit("cells"”)

make_units(cells/ml)

Note, install_symbolic_unit() does not add any support for unit

conversion, or arithmetic operations that require unit conversion. See
?install_conversion_function for how to define relationships for user
defined units.

as_units

deparse_unit

set_units()
set_units is a pipe friendly version of ‘units<-‘.
if (require(magrittr)) {

1:5 %>% set_units(N/m*2)

first sets to m, then converts to km

1:5 %>% set_units(m) %>% set_units(km)

}

set_units has two modes of operation. By default, it operates with
bare symbols to define the units.
set_units(1:5, m/s)

use ‘mode = "standard”‘ to use the value of supplied argument, rather than
the bare symbols of the expression. In this mode, set_units() can be

thought of as a simple alias for ‘units<-‘ that is pipe friendly.
set_units(1:5, "m/s", mode = "standard")

set_units(1:5, make_units(m/s), mode = "standard")

the mode of set_units() can be controlled via a global option
units_options(set_units_mode = "standard")

To remove units use
units(x) <- NULL

or

drop_units(y)

deparse_unit deparse unit to string in product power form (e.g. km m-2 s-1)

Description

deparse unit to string in product power form (e.g. km m-2 s-1)

Usage

deparse_unit(x)

as_cf(x)

Arguments

X object of class units

Details

as_cf is deprecated; use deparse_unit.

Value

length one character vector

Examples

u = as_units("kg m-2 s-1", implicit_exponents = TRUE)

u
deparse_unit(u)

hist.units

drop_units drop units

Description

drop units

Usage

drop_units(x)

Arguments

X a units object

Value

the numeric without any units attributes, while preserving other attributes like dimensions or other

classes.

Note

Equivalent to units(x) <- NULL

hist.units histogram for unit objects

Description

histogram for unit objects

Usage

S3 method for class 'units'

hist(x, xlab = NULL, main = paste("Histogram of"

>

, Xname),

install_conversion_constant 9

Arguments
X object of class units, for which we want to plot the histogram
x1lab character; x axis label
main character; title of histogram
parameters passed on to hist.default
Examples

units_options(parse = FALSE) # otherwise we break on the funny symbol!
u = set_units(rnorm(100), degree_C)
hist(u)

install_conversion_constant
Install a function for conversion between user-defined units.

Description

Tells the units package how to convert between units that have a linear relationship, i.e. can be
related on the form y = ax.

Usage

install_conversion_constant(from, to, const)

Arguments
from String for the symbol of the unit being converted from.
to String for the symbol of the unit being converted to.
const The constant « in the conversion.

Details

This function handles the very common case where units are related through a linear function, that
is, you can convert from one to the other as y = ax. Using this function, you specify that you can
go from values of type from to values of type to by first multiplying a constant and then adding an
offset. The function then automatically installs that conversion and the invers z = y/c.

For a more general conversion mechanism, see install_conversion_function.

See Also

install_conversion_function

10 install_conversion_function

Examples

one orange is worth two apples
install_conversion_constant("orange”, "apple", 2)
apples <- 2 * as_units("apple")

oranges <- 1 % as_units("orange")

apples + oranges

oranges + apples

install_conversion_function
Install a function for conversion between user-defined units.

Description

Tells the units package how to convert one-way from one unit to another.

Usage

install_conversion_function(from, to, f)

Arguments
from String for the symbol of the unit being converted from.
to String for the symbol of the unit being converted to.
f A function responsible for conversion.

Details

This is the most general way of specifying conversion between user-defined units. The function
installes a one-way conversion from one unit to another through a general function, f, that must
take one numeric argument and return one numeric argument. When the units package tries to
convert between units, it will look up from and to to see if it can find a conversion function. If it
can, it will call f and consider the value converted from unit from to unit to.

It is the user’s responsibility to install a conversion from to back to from as well. One-way conver-
sion does not work well with the units package, since conversion is done in several places for unit
expression simplification and if a unit can only be converted in one direction, this simplification
will not work correctly.

For conversion that can be done as a linear function, y = ax + 3, you should instead use the
install_conversion_constant function. This function will automatically install conversion func-
tions for both directions of unit conversion.

See Also

install_conversion_constant

install_symbolic_unit 11

Examples

install_symbolic_unit("apple"”)
install_symbolic_unit("orange")
apples <- 2 * as_units("apple”)
oranges <- 3 * as_units("orange")

one orange is worth two apples
install_conversion_function("orange”, "apple”, function(x) 2 * x)
install_conversion_function("apple”, "orange”, function(x) x / 2)
apples + oranges

oranges + apples

install_symbolic_unit Define new symbolic units

Description

Adding a symbolic unit allows it to be used in as_units, make_units and set_units. No instal-
lation is performed if the unit is already known by udunits.

Usage

install_symbolic_unit(chr, warn = TRUE)

uninstall_symbolic_unit(chr, all = FALSE)

Arguments
chr a length 1 character vector that is the new unit name or symbol.
warn warns if the supplied unit symbol is already a valid unit symbol recognized by
udunits.
all if TRUE, uninstalls all user defined custom symbolic units
make_unit Deprecated functions
Description

The following functions are deprecated and will be removed in a future release.

12 Math.units
Usage

make_unit(chr)

parse_unit(chr)

as.units(x, value = unitless)

Arguments
chr length 1 character string
X a numeric
value a units object, by default, unitless
Math.units Mathematical operations for units objects
Description

Mathematical operations for units objects

Usage
S3 method for class 'units'
Math(x, ...)
Arguments
X object of class units
parameters passed on to the Math functions
Examples

a <- sqrt(1:10)

a <- set_units(a, m/s)
log(a)

log(a, base = 10)
cumsum(a)

signif(a, 2)

matmult

13

matmult matrix multiplication

Description

matrix multiplication

Usage
X %*% Yy
Default S3 method:
X %*% Yy

S3 method for class 'units

X %*% Yy
Arguments
X numeric matrix or vector
y numeric matrix or vector
Details

see "%*%" for the base function, reimplemented as default method

Examples

a = set_units(1:5, m)

a %*% a

a %*% t(a)

a %*% set_units(1:5, 1)
set_units(1:5, 1) %*% a

Ops.units S3 Ops Group Generic Functions for units objects

Description

Ops functions for units objects, including comparison, product and divide, add, subtract

Usage

S3 method for class 'units'
Ops(el, e2)

14 plot.units

Arguments
el object of class units, or something that can be coerced to it by as_units(el)
e2 object of class units, or something that can be coerced to it by as_units(e2),
or in case of power a number (integer n or 1/n)
Value

object of class units

Examples
a <- set_units(1:3, m/s)
b <- set_units(1:3, m/s)
a+h
a*xb
al/b
a <- as_units("kg m-3")
b <- set_units(1, kg/m/m/m)
a+h
a = set_units(1:5, m)
a %/% a
a %/% set_units(2)

set_units(1:5, m*2) %/% set_units(2, m)
a %% a
a %% set_units(2)

plot.units create axis label with appropriate labels

Description

create axis label with appropriate labels

plot unit objects

Usage

make_unit_label(lab, u, sep = units_options("sep”),
group = units_options(”group”"), parse = units_options("parse”))

S3 method for class 'units'

plot(x, y, xlab = NULL, ylab = NULL, ...)
Arguments
lab length one character; name of the variable to plot

u vector of class units

plot.units 15

non o nn

sep length two character vector, defaulting to c(,), with the white space
between unit name and unit symbols, and between subsequent symbols.

group length two character vector with grouping symbols, e.g. c("(",")") for paren-
thesis, or c("","") for no group symbols
parse logical; indicates whether a parseable expression should be returned (typically

needed for super scripts), or a simple character string without special formatting.

X object of class units, to plot along the x axis, or, if y is missing, along the y axis
y object to plot along the y axis, or missing

x1lab character; x axis label

ylab character; y axis label

other parameters, passed on to plot.default

Details

units_options can be used to set and change the defaults for sep, group and doParse.

Examples

oldpar = par(mar = par("mar") + c(0, .3, 0, 0))

displacement = mtcars$disp * ud_units[["in"]]1*3

an example that would break if parse were (default) TRUE, since
units_options(parse=FALSE)

make_unit_label("displacement”, displacement)
units_options(parse=TRUE)

units(displacement) = with(ud_units, cm”3)

weight = mtcars$wt * 1000 * with(ud_units, 1b)

units(weight) = with(ud_units, kg)

plot(weight, displacement)

in' is a reserved word:

units_options(group = c("(", ")")) # parenthesis instead of square brackets
plot(weight, displacement)

units_options(sep = c("~~~", "~"), group = c("", "")) # no brackets; extra space
plot(weight, displacement)

units_options(sep = c("~", "~~"), group = c("[", "1"))

gallon = as_units(”"gallon”)

consumption = mtcars$mpg * with(ud_units, mi/gallon)
units(consumption) = with(ud_units, km/1)
plot(displacement, consumption) # division in consumption
units_options(negative_power = TRUE) # division becomes *-1
plot(displacement, consumption)

plot(1/displacement, 1/consumption)

par(oldpar)

16 set_units

seqg.units seq method for units objects

Description

seq method for units objects

Usage

S3 method for class 'units'
seq(from, to, by = ((to - from)/(length.out - 1)),

length.out = NULL, along.with = NULL, ...)
Arguments
from see seq
to see seq
by see seq
length.out see seq
along.with see seq
see seq
Details

arguments with units are converted to have units of the first argument (which is either from or to)

Examples

seq(to = set_units(10, m), by = set_units(1, m), length.out = 5)
seq(set_units(10, m), by = set_units(1, m), length.out = 5)
seq(set_units(10, m), set_units(19, m))

seq(set_units(10, m), set_units(.1, km), set_units(10000, mm))

set_units set_units

Description

A pipe friendly version of units<-

Usage

set_units(x, value, ..., mode = units_options("”set_units_mode"))

tibble 17
Arguments
X a numeric to be assigned units, or a units object to have units converted
value a units object, or something coercible to one with as_units. Depending on
mode, the unit is constructed from the supplied bare expression or from the sup-
plied value via standard evaluation.
passed on to as_units
mode if "symbols” (the default), then unit is constructed from the expression supplied.
Otherwise, ifmode = "standard"”, standard evaluation is used for the supplied
value This argument can be set via a global option units_options(set_units_mode = "standard")
See Also
as_units
tibble type_sum function for units
Description

type_sum function for units

pillar_shaft function for units

Usage
type_sum.units(x, ...)
pillar_shaft.units(x, ...)
Arguments
X see type_sum
see type_sum
ud_units List containing pre-defined units from the udunits2 package.
Description
Lazy loaded when used
Usage
ud_units
Format

An object of class NULL of length 0.

18 units

unitless The "unit" type for vectors that are actually dimension-less.

Description

The "unit" type for vectors that are actually dimension-less.

Usage

unitless

Format

An object of class symbolic_units of length 2.

units Set measurement units on a numeric vector

Description

Set measurement units on a numeric vector
Convert units

retrieve measurement units from units object

Usage

S3 replacement method for class 'numeric'
units(x) <- value

S3 replacement method for class 'units'
units(x) <- value

S3 replacement method for class 'logical'
units(x) <- value

S3 method for class 'units'

units(x)
Arguments
X numeric vector, or object of class units
value object of class units or symbolic_units, or in the case of set_units expres-

sion with symbols that can be resolved in ud_units (see examples).

units_options 19

Value

object of class units

the units method retrieves the units attribute, which is of class symbolic_units

Examples

x =1:3

class(x)

units(x) <- with(ud_units, m/s) # valid
class(x)

y = 2:5

a <- with(ud_units, 1:3 * m/s)

units(a) <- with(ud_units, km/h)

a

units_options set one or more units global options

Description

set units global options, mostly related how units are printed and plotted

Usage

units_options(..., sep, group, negative_power, parse, set_units_mode,
auto_convert_names_to_symbols)

Arguments
ignored
sep character length two; default c("~", "~"); space separator between variable
and units, and space separator between two different units
group character length two; start and end group, may be two empty strings, a paren-

thesis pair, or square brackets.

negative_power logical, default FALSE; should denominators have negative power, or follow a
division symbol?

parse logical, default TRUE; should the units be made into an expression (so we get
subscripts)? Setting to FALSE may be useful if parse fails, e.g. if the unit contains
symbols that assume a particular encoding

set_units_mode character; either "symbols” or "standard”; see set_units

auto_convert_names_to_symbols
logical: should names, such as degree_C be converted to their usual symbol?

Examples

nn

units_options(sep = c("~~~", "~"), group = c("",
set defaults:
units_options(sep = c("~", "~"), group = c("[", "1"), negative_power = FALSE, parse = TRUE)

)) # more space, parenthesis

20 valid_udunits

valid_udunits Get information about valid units

Description

The returned dataframe is constructed at runtime by reading the xml database that powers unit
conversion in [package:udunits2]. Inspect this dataframe to determine what inputs are accepted by
as_units (and the other functions it powers: make_units , set_units, units<-).

Usage
valid_udunits(quiet = FALSE)

valid_udunits_prefixes(quiet = FALSE)

Arguments
quiet logical, defaults TRUE to give a message about the location of the udunits database
being read.
Details

Any entry listed under symbol , symbol_aliases, name_singular , name_singular_aliases
, name_plural , or name_plural_aliases is valid. Additionally, any entry under symbol or
symbol_aliases may can also contain a valid prefix, as specified by valid_udunits_prefixes()

Note, this is primarily intended for interactive use, the exact format of the returned dataframe may
change in the future.

Value

a data frame with columns symbol , symbol_aliases, name_singular, name_singular_aliases
, hame_plural , or name_plural_aliases , def , definition , comment , dimensionless and
source_xml

Examples

valid_udunits()

valid_udunits_prefixes()

if(interactive())
View(valid_udunits())

Index

+Topic datasets type_sum, 17
ud_units, 17 type_sum.units (tibble), 17
unitless, 18
%*% (matmult), 13 ud_units, 17, 18
%x%, 13 uninstall_symbolic_unit
(install_symbolic_unit), 11
as.units (make_unit), 11 unitless, 18
as_cf (deparse_unit), 7 units, 18
as_difftime, 2 units<-.logical (units), 18
as_units, 3,17 units<-.numeric (units), 18
units<-.units (units), 18
deparse_unit, 7 units_options, 15, 19
deprecated (make_unit), 11
drop_units, 8 valid_udunits, 5, 20
valid_udunits_prefixes (valid_udunits),
hist.default, 9 20

hist.units, 8

install_conversion_constant, 9, /10
install_conversion_function, 9, 10
install_symbolic_unit, 11

make_unit, 11

make_unit_label (plot.units), 14
make_units (as_units), 3
Math.units, 12

matmult, 13

Ops.units, 13

parse, 19

parse_unit (make_unit), 11
pillar_shaft.units (tibble), 17
plot.default, /5
plot.units, 14

seq, 16
seqg.units, 16

set_units, 16, 19

tibble, 17

21

	as_difftime
	as_units
	deparse_unit
	drop_units
	hist.units
	install_conversion_constant
	install_conversion_function
	install_symbolic_unit
	make_unit
	Math.units
	matmult
	Ops.units
	plot.units
	seq.units
	set_units
	tibble
	ud_units
	unitless
	units
	units_options
	valid_udunits
	Index

