
Package ‘vein’
March 1, 2018

Type Package

Title Vehicular Emissions Inventories

Version 0.3.9

Description Elaboration of vehicular emissions inventories,
consisting in four stages, pre-processing activity data, preparing
emissions factors, estimating the emissions and post-processing of emissions
in maps and databases.

License MIT + file LICENSE

URL https://github.com/atmoschem/vein

BugReports https://github.com/atmoschem/vein/issues/

LazyData no

Depends R (>= 2.10)

Imports sf, sp, data.table, graphics, stats, units, methods

Suggests knitr, rmarkdown, testthat, covr

RoxygenNote 6.0.1

NeedsCompilation no

Author Sergio Ibarra-Espinosa [aut, cre]
(<https://orcid.org/0000-0002-3162-1905>)

Maintainer Sergio Ibarra-Espinosa <sergio.ibarra@usp.br>

Repository CRAN

Date/Publication 2018-03-01 18:29:41 UTC

R topics documented:
adt . 3
age_hdv . 4
age_ldv . 5
age_moto . 6
ef_evap . 7
ef_hdv_scaled . 8

1

https://github.com/atmoschem/vein
https://github.com/atmoschem/vein/issues/

2 R topics documented:

ef_hdv_speed . 9
ef_ldv_cold . 10
ef_ldv_cold_list . 11
ef_ldv_scaled . 12
ef_ldv_speed . 13
ef_nitro . 15
ef_wear . 16
emis . 17
EmissionFactors . 18
EmissionFactorsList . 19
Emissions . 20
EmissionsArray . 22
EmissionsList . 23
emis_cold . 25
emis_det . 26
emis_evap . 27
emis_grid . 30
emis_merge . 31
emis_paved . 32
emis_post . 33
emis_wear . 35
emis_wrf . 36
Evaporative . 37
fe2015 . 38
fkm . 39
GriddedEmissionsArray . 40
hot_soak . 41
inventory . 42
make_grid . 44
my_age . 44
net . 45
netspeed . 46
pc_cold . 47
pc_profile . 47
profiles . 48
running_losses . 49
speciate . 50
Speed . 52
temp_fact . 53
Vehicles . 53
vein . 54
vkm . 55

Index 57

adt 3

adt Average daily traffic (ADT) from hourly traffic data.

Description

This function calculates ADT based on hourly traffic data. The input traffic data is usually for
morning rush hours.

Usage

adt(pc, lcv, hgv, bus, mc, p_pc, p_lcv, p_hgv, p_bus, p_mc, expanded = FALSE)

Arguments

pc numeric vector for passenger cars

lcv numeric vector for light commercial vehicles

hgv numeric vector for heavy good vehicles or trucks

bus numeric vector for bus

mc numeric vector for motorcycles

p_pc data-frame profile for passenger cars

p_lcv data-frame profile for light commercial vehicles

p_hgv data-frame profile for heavy good vehicles or trucks

p_bus data-frame profile for bus

p_mc data-frame profile for motorcycles

expanded boolean argument for returning numeric vector or "Vehicles"

Value

numeric vector of total volume of traffic per link, or data-frames of expanded traffic

Examples

{
data(net)
data(pc_profile)
p1 <- pc_profile[, 1]
adt1 <- adt(pc = net$ldv*0.75,

lcv = net$ldv*0.1,
hgv = net$hdv,
bus = 0,
mc = net$ldv*0.15,
p_pc = p1,
p_lcv = p1,
p_hgv = p1,
p_bus = p1,

4 age_hdv

p_mc = p1)
head(adt1)
plot(adt1)
adt2 <- adt(pc = net$ldv*0.75,

lcv = net$ldv*0.1,
hgv = net$hdv,
bus = net$hdv,
mc = net$ldv*0.15,
p_pc = p1,
p_lcv = p1,
p_hgv = p1,
p_bus = p1*0, # when zero, must be the same size
p_mc = p1,
TRUE)

head(adt2)
plot(adt2) # Class Vehicles
}

age_hdv Returns amount of vehicles at each age

Description

Returns amount of vehicles at each age

Usage

age_hdv(x, name, a = 0.2, b = 17, agemin = 1, agemax = 50, k = 1,
bystreet = F, message = TRUE)

Arguments

x numerical vector of vehicles with length equal to lines features of raod network

name of vehicle assigned to columns of dataframe

a parameter of survival equation

b parameter of survival equation

agemin age of newest vehicles for that category

agemax age of oldest vehicles for that category

k multiplication factor

bystreet when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with length equal
to x

message message with average age and total numer of vehicles

Value

dataframe of age distrubution of vehicles

age_ldv 5

Examples

{
lt <- Vehicles(rnorm(100, 300, 10))
LT_B5 <- age_hdv(x = lt,name = "LT_B5")
plot(LT_B5)

}

age_ldv Returns amount of vehicles at each age

Description

Returns amount of vehicles at each age

Usage

age_ldv(x, name, a = 1.698, b = -0.2, agemin = 1, agemax = 50, k = 1,
bystreet = F, message = TRUE)

Arguments

x numerical vector of vehicles

name word of vehicle assigned to columns of dataframe

a parameter of survival equation

b parameter of survival equation

agemin age of newest vehicles for that category

agemax age of oldest vehicles for that category

k multiplication factor

bystreet when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with length equal
to x

message message with average age and total numer of vehicles

Value

dataframe of age distrubution of vehicles

Examples

{
pc <- rnorm(100, 300, 10)
PC_E25_1400 <- age_ldv(x = pc, name = "PC_E25_1400")
plot(PC_E25_1400)
}

6 age_moto

age_moto Returns amount of vehicles at each age

Description

Returns amount of vehicles at each age

Usage

age_moto(x, name, a = 0.2, b = 17, agemin = 1, agemax = 50, k = 1,
bystreet = F, message = TRUE)

Arguments

x numerical vector of vehicles

name of vehicle assigned to columns of dataframe

a parameter of survival equation

b parameter of survival equation

agemin age of newest vehicles for that category

agemax age of oldest vehicles for that category

k multiplication factor

bystreet when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with length equal
to x

message message with average age and total numer of vehicles

Value

dataframe of age distrubution of vehicles

Examples

{
mc <- rnorm(100, 300, 10)
MOTO_E25_500 <- age_moto(x = mc, name = "M_E25_500")
plot(MOTO_E25_500)
}

ef_evap 7

ef_evap Evaporative emission factor

Description

A lookup table with tier 2 evaporative emission factors from EMEP/EEA emisison guidelines

Usage

ef_evap(ef, v, cc, dt, ca, k = 1, show = FALSE)

Arguments

ef Name of evaporative emission factor as *eshotc*: mean hot-soak with carbu-
rator, *eswarmc*: mean cold and warm-soak with carburator, eshotfi: mean
hot-soak with fuel injection, *erhotc*: mean hot running losses with carbura-
tor, *erwarmc* mean cold and warm running losses, *erhotfi* mean hot running
losses with fuel injection

v Type of vehicles, "PC", "Motorcycles", "Motorcycles_2S" and "Moped"

cc Size of engine in cc. PC "<=1400", "1400_2000" and "2000" Motorcycles_2S:
"<=50". Motorcyces: ">50", "<250", "250_750" and ">750"

dt Average daily temperature variation: "-5_10", "0_15", "10_25" and "20_35"

ca Size of canister: "no" meaning no canister, "small", "medium" and "large"

k multiplication factor

show when TRUE shows row of table with respective emission factor.

Value

emission factors in g/trip or g/proced. The object has class (g) but it order to know it is g/trip or
g/proceed the argument show must by T

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

Examples

Not run:
Do not run
ef_evap(ef = "erhotc",v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
show = TRUE)

End(Not run)

8 ef_hdv_scaled

ef_hdv_scaled Scaling constant with speed emission factors of Heavy Duty Vehicles

Description

This function creates a list of scaled functions of emission factors. A scaled emission factor which
at a speed of the dricing cycle (SDC) gives a desired value. This function needs a dataframe with
local emission factors with a columns with the name "Euro_HDV" indicating the Euro equivalence
standard, assuming that there are available local emission factors for several consecutive years.

Usage

ef_hdv_scaled(df, dfcol, SDC = 34.12, v, t, g, eu, gr = 0, l = 0.5, p)

Arguments

df Dataframe with local emission factor

dfcol Column of the dataframe with the local emission factors eg df$dfcol

SDC Speed of the driving cycle

v Category vehicle: "Coach", "Trucks" or "Ubus"

t Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"

g Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5",
">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28",
">28 & <=32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 &
<=50" or ">50 & <=60"

eu Euro emission standard: "PRE", "I", "II", "III", "IV" and "V"

gr Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06

l Load of the vehicle: 0.0, 0.5 or 1.0

p Pollutant: "CO", "FC", "NOx" or "HC"

Value

A list of scaled emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle

Examples

{
Do not run
data(fe2015)
co1 <- fe2015[fe2015$Pollutant=="CO",]
FE_LT_7_5_D_CO <- ef_hdv_scaled(co1, co1$LT, v = "Trucks", t = "RT",

ef_hdv_speed 9

g = "<=7.5", eu = co1$Euro_HDV, gr = 0, l = 0.5, p = "CO")
length(FE_LT_7_5_D_CO)
}

ef_hdv_speed Emissions factors for Heavy Duty Vehicles based on average speed

Description

This function returns speed dependent emission factors. The emission factors comes from the guide-
lines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-
eea-air-pollutant-emission-inventory-guidebook

Usage

ef_hdv_speed(v, t, g, eu, gr = 0, l = 0.5, p, k = 1,
show.equation = TRUE)

Arguments

v Category vehicle: "Coach", "Trucks" or "Ubus"

t Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"

g Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5",
">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28",
">28 & <=32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 &
<=50" or ">50 & <=60"

eu Euro emission standard: "PRE", "I", "II", "III", "IV" and "V"

gr Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06

l Load of the vehicle: 0.0, 0.5 or 1.0

p Pollutant: "CO", "FC", "NOx" or "HC"

k Multiplication factor

show.equation Option to see or not the equation parameters

Value

an emission factor function which depends of the average speed V g/km

Examples

{
V <- 0:130
ef1 <- ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
l = 0.5, p = "HC")
plot(1:130, ef1(1:130), pch = 16, type = "b")
euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("II", 5),

rep("I", 5), rep("PRE", 15))

10 ef_ldv_cold

lef <- lapply(1:30, function(i) {
ef_hdv_speed(v = "Trucks", t = "RT", g = ">32", gr = 0,
eu = euro[i], l = 0.5, p = "NOx",
show.equation = FALSE)(25) })
efs <- EmissionFactors(unlist(lef)) #returns 'units'
plot(efs, xlab = "age")
lines(efs, type = "l")
}

ef_ldv_cold Cold-Start Emissions factors for Light Duty Vehicles

Description

This function returns speed functions which depends on ambient temperature average speed. The
emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook
http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook

Usage

ef_ldv_cold(v = "LDV", ta, cc, f, eu, p, k = 1, show.equation = FALSE)

Arguments

v Category vehicle: "LDV"

ta Ambient temperature. Monthly men can be used

cc Size of engine in cc: "<=1400", "1400_2000" or ">2000"

f Type of fuel: "G", "D" or "LPG"

eu Euro standard: "PRE", "I", "II", "III", "IV", "V", "VI" or "VIc"

p Pollutant: "CO", "FC", "NOx", "HC" or "PM"

k Multiplication factor

show.equation Option to see or not the equation parameters

Value

an emission factor function which depends of the average speed V and ambient temperature. g/km

Examples

{
V <- 0:150
ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "I", p = "CO")
ef1(10)
}

ef_ldv_cold_list 11

ef_ldv_cold_list List of cold start emission factors of Light Duty Vehicles

Description

This function creates a list of functions of cold start emission factors considering different euro
emission standard to the elements of the list.

Usage

ef_ldv_cold_list(df, v = "LDV", ta, cc, f, eu, p)

Arguments

df Dataframe with local emission factor

v Category vehicle: "LDV"

ta ambient temperature. Montly average van be used

cc Size of engine in cc: <=1400", "1400_2000" and ">2000"

f Type of fuel: "G" or "D"

eu character vector of euro standards: "PRE", "I", "II", "III", "IV", "V", "VI" or
"VIc".

p Pollutant: "CO", "FC", "NOx", "HC" or "PM"

Value

A list of cold start emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle

Examples

{
Do not run
df <- data.frame(age1 = c(1,1), age2 = c(2,2))
eu = c("I", "PRE")
l <- ef_ldv_cold(t = 17, cc = "<=1400", f = "G",
eu = "I", p = "CO")
l_cold <- ef_ldv_cold_list(df, t = 17, cc = "<=1400", f = "G",
eu = eu, p = "CO")
length(l_cold)
}

12 ef_ldv_scaled

ef_ldv_scaled Scaling constant with speed emission factors of Light Duty Vehicles

Description

This function creates a list of scaled functions of emission factors. A scaled emission factor which
at a speed of the driving cycle (SDC) gives a desired value.

Usage

ef_ldv_scaled(df, dfcol, SDC = 34.12, v, t = "4S", cc, f, eu, p)

Arguments

df Dataframe with local emission factor

dfcol Column of the dataframe with the local emission factors eg df$dfcol

SDC Speed of the driving cycle

v Category vehicle: "PC", "LCV", "Motorcycle" or "Moped

t Sub-category of of vehicle: PC: "ECE_1501", "ECE_1502", "ECE_1503", "ECE_1504"
, "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S" or "4S".
LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"

cc Size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000", "<=800",
"<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750", ">=750".
Moped: "<=50". LCV : "<3.5" for gross weight.

f Type of fuel: "G", "D", "LPG" or "FH" (Full Hybrid: starts by electric motor)

eu Euro standard: "PRE", "I", "II", "III", "III+DPF", "IV", "V", "VI", "VIc"

p Pollutant: "CO", "FC", "NOx", "HC" or "PM"

Details

This function calls "ef_ldv_speed" and calculate the specific k value, dividing the local emission
factor by the respective speed emissions factor at the speed representative of the local emission
factor, e.g. If the local emission factors were tested with the FTP-75 test procedure, SDC = 34.12
km/h.

Value

A list of scaled emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle.
Thanks to Glauber Camponogara by the help.

ef_ldv_speed 13

See Also

ef_ldv_seed

Examples

{
Do not run
data(fe2015)
co1 <- fe2015[fe2015$Pollutant=="CO",]
lef <- ef_ldv_scaled(co1, co1$PC_G, v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = co1$Euro_LDV, p = "CO")
length(lef)
lef[[1]](40) # First element of the lit of speed functions at 40 km/h
lef[[36]](50) # 36th element of the lit of speed functions at 50 km/h
}

ef_ldv_speed Emissions factors for Light Duty Vehicles and Motorcycles

Description

ef_ldv_speed returns speed dependent emission factors. The emission factors comes from the
guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-
eea-air-pollutant-emission-inventory-guidebook

Usage

ef_ldv_speed(v, t = "4S", cc, f, eu, p, k = 1, show.equation = TRUE)

Arguments

v Character; category vehicle: "PC", "LCV", "Motorcycle" or "Moped

t Character; sub-category of of vehicle: PC: "ECE_1501", "ECE_1502", "ECE_1503",
"ECE_1504" , "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S"
or "4S". LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"

cc Character; size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000",
"<=800", "<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750",
">=750". Moped: "<=50". LCV : "<3.5" for gross weight.

f Character; type of fuel: "G", "D", "LPG" or "FH" (Full Hybrid: starts by electric
motor)

eu Character; euro standard: "PRE", "I", "II", "III", "III+DPF", "IV", "V", "VI" or
"VIc"

p Character; pollutant: "CO", "FC", "NOx", "HC" or "PM"

k Numeric; multiplication factor

show.equation Logical; option to see or not the equation parameters

14 ef_ldv_speed

Details

The argument of this functions have several options which results in different combinations that
returns emission factors. If a combination of any option is wrong it will return an empty value.
Therefore, it is important ti know the combinations.

Value

An emission factor function which depends of the average speed V g/km

Note

t = "ALL" and cc == "ALL" works for several pollutants because emission fators are the same.
Some exceptions are with NOx and FC because size of engine.

Examples

{
Do not run
Passenger Cars PC
Emission factor function
V <- 0:150
ef1 <- ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "CO")
efs <- EmissionFactors(ef1(1:150))
plot(Speed(1:150), efs, xlab = "speed[km/h]")

List of Copert emission factors for 40 years fleet of Passenger Cars.
Assuming a euro distribution of euro V, IV, III, II, and I of
5 years each and the rest 15 as PRE euro:
euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("II", 5),

rep("I", 5), rep("PRE", 15))
speed <- 25
lef <- lapply(1:40, function(i) {
ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",

eu = euro[i], p = "CO", show.equation = FALSE)(25) })
to check the emission factor with a plot
efs <- EmissionFactors(unlist(lef)) #returns 'units'
plot(efs, xlab = "age")
lines(efs, type = "l")

Light Commercial Vehicles
V <- 0:150
ef1 <- ef_ldv_speed(v = "LCV",t = "4S", cc = "<3.5", f = "G", eu = "PRE",
p = "CO")
efs <- EmissionFactors(ef1(1:150))
plot(Speed(1:150), efs, xlab = "speed[km/h]")
lef <- lapply(1:40, function(i) {
ef_ldv_speed(v = "LCV", t = "4S", cc = "<3.5", f = "G",

eu = euro[i], p = "CO", show.equation = FALSE)(25) })
to check the emission factor with a plot
efs <- EmissionFactors(unlist(lef)) #returns 'units'
plot(efs, xlab = "age")

ef_nitro 15

lines(efs, type = "l")

Motorcycles
V <- 0:150
ef1 <- ef_ldv_speed(v = "Motorcycle",t = "4S", cc = "<=250", f = "G",
eu = "PRE", p = "CO")
efs <- EmissionFactors(ef1(1:150))
plot(Speed(1:150), efs, xlab = "speed[km/h]")
euro for motorcycles
eurom <- c(rep("III", 5), rep("II", 5), rep("I", 5), rep("PRE", 25))
lef <- lapply(1:30, function(i) {
ef_ldv_speed(v = "Motorcycle", t = "4S", cc = "<=250", f = "G",
eu = eurom[i], p = "CO",
show.equation = FALSE)(25) })
efs <- EmissionFactors(unlist(lef)) #returns 'units'
plot(efs, xlab = "age")
lines(efs, type = "l")
}

ef_nitro Emissions factors of N2O and NH3

Description

ef_nitro returns emission factors as a functions of accumulated mileage. The emission factors
comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-
eea-air-pollutant-emission-inventory-guidebook

Usage

ef_nitro(v, t, cc, f, eu, p, S, k = 1, show.equation = TRUE)

Arguments

v Category vehicle: "PC", "LCV", "LDV", "Motorcycle", "Trucks", "HDV", "HDV-
A", "BUS" or "Coach".

t Type: "Cold", "Hot", "<50", ">=50", ">3.5", "7.5_12", "12_18", "28_34", ">34"
and "ALL".

cc "Urban", "Rural", "Highway" and "ALL".

f Type of fuel: "G", "D" or "LPG"

eu Euro standard: "PRE", "I", "II", "III", "IV", "V", "VI", "VIc", "2S", 4S" and
"ALL"

p Pollutant: "N2O", "NH3"

S Sulphur (ppm). Number.

k Multiplication factor

show.equation Option to see or not the equation parameters

16 ef_wear

Value

an emission factor function which depends on the accumulated mileage

Examples

{
Do not run
efe10 <- ef_nitro(v = "PC", t = "Hot", cc = "Urban", f = "G",
eu = "III", p = "NH3", S = 10,
show.equation = FALSE)
efe50 <- ef_nitro(v = "PC", t = "Hot", cc = "Urban", f = "G",
eu = "III", p = "NH3", S = 50,
show.equation = TRUE)
efe10(10)
efe50(10)
}

ef_wear Emissions factors from tyre, break and road surface wear

Description

ef_wear estimates wear emissions. The sources are tyres, breaks and road surface.

Usage

ef_wear(wear, type, pol = "TSP", speed, load = 0.5, axle = 2)

Arguments

wear Character; type of wear: "tyre", "break" and "road"

type Character; type of vehicle: "2W", "PC", "LCV", ’HDV"

pol Character; pollutant: "TSP", "PM10", "PM2.5", "PM1" and "PM0.1"

speed List of speeds

load Load of the HDV

axle Number of axle of the HDV

Value

emission factors grams/km

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA,
EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency,
Copenhagen, 2016

emis 17

Examples

Not run:
Do not run

End(Not run)

emis Estimation of hourly emissions

Description

emis estimates vehicular emissions as the product of the vehicles on a road, length of the road,
emission factor avaliated at the respective speed. E = V EH ∗ LENGTH ∗ EF (speed)

Usage

emis(veh, lkm, ef, speed = 34, agemax = if (!inherits(x = veh, what =
"list")) { ncol(veh) } else { ncol(veh[[1]]) }, profile, hour = 24,
day = 7, array = T)

Arguments

veh "Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link

lkm Length of each link

ef List of functions of emission factors

speed Speed data-frame with number of columns as hours

agemax Age of oldest vehicles for that category

profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week

hour Number of considered hours in estimation

day Number of considered days in estimation

array When FALSE produces a dataframe of the estimation. When TRUE expects a
profile as a dataframe producing an array with dimensions (streets x columns x
hours x days)

Value

emission estimation g/h

18 EmissionFactors

Examples

Not run:
Do not run
data(net)
data(pc_profile)
data(profiles)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "4S", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
length(lef) != ncol(pc1)
#emis change length of 'ef' to match ncol of 'veh'
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed,

profile = profiles$PC_JUNE_2014)
class(E_CO)
lpc <- list(pc1, pc1)
E_COv2 <- emis(veh = lpc,lkm = net$lkm, ef = lef, speed = speed,

hour = 2, day = 1)
Entering wrong results
pc1[, ncol(pc1) + 1] <- pc1$PC_1
dim(pc1)
length(lef)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed,

profile = profiles$PC_JUNE_2014)
E_COv2 <- emis(veh = lpc,lkm = net$lkm, ef = lef, speed = speed,

hour = 2, day = 1)

End(Not run)

EmissionFactors Construction function for class "EmissionFactors"

Description

EmissionFactors returns a tranformed object with class "EmissionFactors" and units g/km.

EmissionFactorsList 19

Usage

EmissionFactors(x, ...)

S3 method for class 'EmissionFactors'
print(x, ...)

S3 method for class 'EmissionFactors'
summary(object, ...)

S3 method for class 'EmissionFactors'
plot(x, ...)

Arguments

x Object with class "data.frame", "matrix" or "numeric"

... ignored

object Object with class "EmissionFactors"

Value

Objects of class "EmissionFactors" or "units"

Examples

{
data(fe2015)
names(fe2015)
class(fe2015)
df <- fe2015[fe2015$Pollutant=="CO", c(ncol(fe2015)-1,ncol(fe2015))]
ef1 <- EmissionFactors(df)
class(ef1)
summary(ef1)
plot(ef1)
print(ef1)
}

EmissionFactorsList Construction function for class "EmissionFactorsList"

Description

EmissionFactorsList returns a tranformed object with class"EmissionsFactorsList".

20 Emissions

Usage

EmissionFactorsList(x, ...)

S3 method for class 'EmissionFactorsList'
print(x, ..., default = FALSE)

S3 method for class 'EmissionFactorsList'
summary(object, ...)

S3 method for class 'EmissionFactorsList'
plot(x, ...)

Arguments

x Object with class "list"

... ignored

default Logical value. When TRUE prints default list, when FALSE prints messages
with description of list

object Object with class "EmissionFactorsList"

Value

Objects of class "EmissionFactorsList"

Examples

{
data(fe2015)
names(fe2015)
class(fe2015)
df <- fe2015[fe2015$Pollutant=="CO", c(ncol(fe2015)-1,ncol(fe2015))]
ef1 <- EmissionFactorsList(df)
class(ef1)
length(ef1)
length(ef1[[1]])
summary(ef1)
ef1
}

Emissions Construction function for class "Emissions"

Description

Emissions returns a tranformed object with class "Emissions". The type of objects supported are
of classes "matrix", "data.frame" and "numeric". If the class of the object is "matrix" this function
returns a dataframe.

Emissions 21

Usage

Emissions(x, ...)

S3 method for class 'Emissions'
print(x, ...)

S3 method for class 'Emissions'
summary(object, ...)

S3 method for class 'Emissions'
plot(x, ...)

Arguments

x Object with class "data.frame", "matrix" or "numeric"

... ignored

object object with class "Emissions"

Value

Objects of class "Emissions" or "units"

Examples

Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1,
isList = T)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",

f = "G", p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, hour = 24, day = 7, array = T)
dim(E_CO) # streets x vehicle categories x hours x days
class(E_CO[, , 1, 1])

22 EmissionsArray

df <- Emissions(E_CO[, , 1, 1]) # Firt hour x First day
class(df)
summary(df)
head(df)
plot(df)

End(Not run)

EmissionsArray Construction function for class "EmissionsArray"

Description

EmissionsArray returns a tranformed object with class "EmissionsArray" with 4 dimensios.

Usage

EmissionsArray(x, ...)

S3 method for class 'EmissionsArray'
print(x, ...)

S3 method for class 'EmissionsArray'
summary(object, ...)

S3 method for class 'EmissionsArray'
plot(x, ...)

Arguments

x Object with class "data.frame", "matrix" or "numeric"

... ignored

object object with class "EmissionsArray’

Value

Objects of class "EmissionsArray"

Note

Future version of this function will return an Array of 3 dimensions.

EmissionsList 23

Examples

Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1,
isList = T)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, hour = 24, day = 7, array = T)
class(E_CO)
summary(E_CO)
E_CO
plot(E_CO)
lpc <- list(pc1, pc1)
E_COv2 <- emis(veh = lpc,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, hour = 2, day = 1)

End(Not run)

EmissionsList Construction function for class "EmissionsList"

Description

EmissionsList returns a tranformed object with class "EmissionsList".

Usage

EmissionsList(x, ...)

S3 method for class 'EmissionsList'
print(x, ...)

24 EmissionsList

S3 method for class 'EmissionsList'
summary(object, ...)

S3 method for class 'EmissionsList'
plot(x, ...)

Arguments

x object with class "EmissionList"

... ignored

object object with class "EmissionList"

Value

Objects of class "EmissionsList" and numeric elements as "units"

Examples

Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1,
isList = T)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, hour = 24, day = 7, array = F)
class(E_CO)

End(Not run)

emis_cold 25

emis_cold Estimation of cold start emissions hourly for the of the week

Description

emis_cold emissions are estimated as the product of the vehicles on a road, length of the road,
emission factor avaliated at the respective speed.The estimation considers beta parameter, the frac-
tion of mileage driven

Usage

emis_cold(veh, lkm, ef, efcold, beta, speed = 34, agemax = if (!inherits(x =
veh, what = "list")) { ncol(veh) } else { ncol(veh[[1]]) }, profile,
hour = 24, day = 7, array = TRUE)

Arguments

veh "Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link

lkm Length of each link

ef List of functions of emission factors of vehicular categories

efcold List of functions of cold start emission factors of vehicular categories

beta Datraframe with the hourly cold-start distribution to each day of the period.
Number of rows are hours and columns are days

speed Speed data-frame with number of columns as hours

agemax Age of oldest vehicles for that category

profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week

hour Number of considered hours in estimation

day Number of considered days in estimation

array When FALSE produces a dataframe of the estimation. When TRUE expects a
profile as a dataframe producing an array with dimensions (streets x columns x
hours x days)

Value

EmissionsArray g/h

Note

Actually dcold is not necessary, it would be enough to multiply an existing cold-start distribution
with the daily profile, but it was added because it is important to clarify both, the data and the
concepts

26 emis_det

Examples

Not run:
Do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
data(pc_cold)
pcf <- as.data.frame(cbind(pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,
pc_cold))
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
Mohtly average temperature 18 Celcius degrees
lefec <- ef_ldv_cold_list(df = co1, ta = 18, cc = "<=1400", f = "G",

eu = co1$Euro_LDV, p = "CO")
lefec <- c(lefec,lefec[length(lefec)], lefec[length(lefec)],

lefec[length(lefec)], lefec[length(lefec)],
lefec[length(lefec)])

length(lefec) == ncol(pc1)
#emis change length of 'ef' to match ncol of 'veh'
class(lefec)
PC_CO_COLD <- emis_cold(veh = pc1, lkm = net$lkm, ef = lef, efcold = lefec,
beta = pcf, speed = speed, profile = pc_profile)
class(PC_CO_COLD)
plot(PC_CO_COLD)
lpc <- list(pc1, pc1)
PC_CO_COLDv2 <- emis_cold(veh = pc1, lkm = net$lkm, ef = lef, efcold = lefec,
beta = pcf, speed = speed, profile = pc_profile, hour = 2,
day = 1)
class(PC_CO_COLDv2)
plot(PC_CO_COLDv2)

End(Not run)

emis_det Determine deterioration factors for urban conditions

emis_evap 27

Description

emis_det returns deterioration factors. The emission factors comes from the guidelines for develop-
ing emission factors of the EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-
eea-air-pollutant-emission-inventory-guidebook This function subset an internal database of emis-
sion factors with each argument

Usage

emis_det(po, cc, eu, km)

Arguments

po Pollutant

cc Size of engine in cc

eu Euro standard: "PRE", "I", "II", "III", "III", "IV", "V", "VI"

km mileage in km

Value

It returns a numeric vector without "units"

Examples

Not run:
Do not run

End(Not run)

emis_evap Estimation of evaporative emissions

Description

emis_evap performs the estimation of evaporative emissions from EMEP/EEA emisison guidelines
with Tier 2.

Usage

emis_evap(veh, name, size, fuel, aged, nd4, nd3, nd2, nd1, hs_nd4, hs_nd3,
hs_nd2, hs_nd1, rl_nd4, rl_nd3, rl_nd2, rl_nd1, d_nd4, d_nd3, d_nd2, d_nd1)

28 emis_evap

Arguments

veh Total number of vehicles by age of use. If is a lsit of ’Vehicles’ data-frames, it
will sum the columns of the eight element of the list representing the 8th hour.
It was chosen this hour because it is morning rush hour but the user can adapt
the data to this function

name Character of type of vehicle

size Character of size of vehicle

fuel Character of fuel of vehicle

aged Age distribution vector. E.g.: 1:40

nd4 Number of days with temperature between 20 and 35 celcius degrees

nd3 Number of days with temperature between 10 and 25 celcius degrees

nd2 Number of days with temperature between 0 and 15 celcius degrees

nd1 Number of days with temperature between -5 and 10 celcius degrees

hs_nd4 average daily hot-soak evaporative emissions for days with temperature between
20 and 35 celcius degrees

hs_nd3 average daily hot-soak evaporative emissions for days with temperature between
10 and 25 celcius degrees

hs_nd2 average daily hot-soak evaporative emissions for days with temperature between
0 and 15 celcius degrees

hs_nd1 average daily hot-soak evaporative emissions for days with temperature between
-5 and 10 celcius degrees

rl_nd4 average daily running losses evaporative emissions for days with temperature
between 20 and 35 celcius degrees

rl_nd3 average daily running losses evaporative emissions for days with temperature
between 10 and 25 celcius degrees

rl_nd2 average daily running losses evaporative emissions for days with temperature
between 0 and 15 celcius degrees

rl_nd1 average daily running losses evaporative emissions for days with temperature
between -5 and 10 celcius degrees

d_nd4 average daily diurnal evaporative emissions for days with temperature between
20 and 35 celcius degrees

d_nd3 average daily diurnal evaporative emissions for days with temperature between
10 and 25 celcius degrees

d_nd2 average daily diurnal evaporative emissions for days with temperature between
0 and 15 celcius degrees

d_nd1 average daily diurnal evaporative emissions for days with temperature between
-5 and 10 celcius degrees

Value

dataframe of emission estimation in grams/days

emis_evap 29

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

Examples

{
data(net)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
ef1 <- ef_evap(ef = "erhotc",v = "PC", cc = "<=1400", dt = "0_15", ca = "no")
dfe <- emis_evap(veh = pc1,

name = "PC",
size = "<=1400",
fuel = "G",
aged = 1:ncol(pc1),
nd4 = 10,
nd3 = 4,
nd2 = 2,
nd1 = 1,
hs_nd4 = ef1*1:ncol(pc1),
hs_nd3 = ef1*1:ncol(pc1),
hs_nd2 = ef1*1:ncol(pc1),
hs_nd1 = ef1*1:ncol(pc1),
d_nd4 = ef1*1:ncol(pc1),
d_nd3 = ef1*1:ncol(pc1),
d_nd2 = ef1*1:ncol(pc1),
d_nd1 = ef1*1:ncol(pc1),
rl_nd4 = ef1*1:ncol(pc1),
rl_nd3 = ef1*1:ncol(pc1),
rl_nd2 = ef1*1:ncol(pc1),
rl_nd1 = ef1*1:ncol(pc1))

lpc <- list(pc1, pc1, pc1, pc1,
pc1, pc1, pc1, pc1)

dfe <- emis_evap(veh = lpc,
name = "PC",
size = "<=1400",
fuel = "G",
aged = 1:ncol(pc1),
nd4 = 10,
nd3 = 4,
nd2 = 2,
nd1 = 1,
hs_nd4 = ef1*1:ncol(pc1),
hs_nd3 = ef1*1:ncol(pc1),
hs_nd2 = ef1*1:ncol(pc1),
hs_nd1 = ef1*1:ncol(pc1),
d_nd4 = ef1*1:ncol(pc1),

30 emis_grid

d_nd3 = ef1*1:ncol(pc1),
d_nd2 = ef1*1:ncol(pc1),
d_nd1 = ef1*1:ncol(pc1),
rl_nd4 = ef1*1:ncol(pc1),
rl_nd3 = ef1*1:ncol(pc1),
rl_nd2 = ef1*1:ncol(pc1),
rl_nd1 = ef1*1:ncol(pc1))

}

emis_grid Allocate emissions into a grid

Description

emis_grid allocates emissions proportionally to each grid cell. The process is performed by inter-
section between geometries and the grid. It means that requires "sr" according with your location
for the projection. It is assumed that spobj is a spatial*DataFrame or an "sf" with the pollutants in
data. This function return an object class "sf".

Usage

emis_grid(spobj, g, sr, type = "lines")

Arguments

spobj A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
"sf".

g A grid with class "SpatialPolygonsDataFrame" or "sf".

sr Spatial reference e.g: 31983. It is required if spobj and g are not projected.
Please, see http://spatialreference.org/.

type type of geometry: "lines" or "points".

Note

When spobj is a ’Spatial’ object (class of sp), they are converted into ’sf’. Also, The aggregation of
data ise done with data.table functions.

Examples

Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

emis_merge 31

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "4S", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, hour = 24, day = 7, array = TRUE)
arguments required: arra, pollutant ad by
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets_wide")
net@data <- cbind(net@data, E_CO_STREETS)
head(net@data)
g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees

net@data <- net@data[,- c(1:9)]
names(net)
E_CO_g <- emis_grid(spobj = net, g = g, sr= 31983)
head(E_CO_g) #class sf
E_CO_g$V138 <- as.numeric(E_CO_g$V138)
E_CO_g <- as(E_CO_g, "Spatial")
spplot(E_CO_g, "V138", scales=list(draw=T),cuts=8,
colorkey = list(space = "bottom", height = 1),
col.regions = rev(bpy.colors(9)),
sp.layout = list("sp.lines", net, pch = 16, cex = 2, col = "black"))

End(Not run)

emis_merge Merge several emissions files returning data-frames or ’sf’ of lines

Description

emis_merge reads rds files and returns a data-frame or an object of ’spatial feature’ of streets,
merging several files.

Usage

emis_merge(pol = "CO", what = "STREETS.rds", streets = T, net,
path = "emi", crs)

Arguments

pol Character. Pollutant.

32 emis_paved

what Character. Word to search the emissions names, "STREETS", "DF" or whatever
name. It is important to include the extension .’rds’

streets Logical. If true, emis_merge will read the street emissions created with emis_post
by "streets_wide", returning an object with class ’sf’. If false, it will read the
emissions data-frame and rbind them.

net ’Spatial feature’ or ’SpatialLinesDataFrame’ with the streets. It is expected #’
that the number of rows is equal to the number of rows of street emissions. If #’
not, the function will stop.

path Character. Path where emissions are located

crs coordinate reference system in numeric format from http://spatialreference.org/
to transform/project spatial data using sf::st_transform

Value

’Spatial feature’ of lines or a dataframe of emissions

Examples

Not run:
Do not run

End(Not run)

emis_paved Estimation of resuspension emissions from paved roads

Description

emis_paved estimates vehicular emissions from paved roads. The vehicular emissions are esti-
mated as the product of the vehicles on a road, length of the road, emission factor from AP42 13.2.1
Paved roads. It is assumed dry hours and anual aggregation should consider moisture factor. It
depends on Average Daily Traffic (ADT)

Usage

emis_paved(veh, lkm, k, sL1, sL2, sL3, sL4, W)

Arguments

veh Numeric vector with length of elements equals to number of streets It is an array
with dimenssions number of streets x hours of day x days of week

lkm Length of each link

k K_PM30 = 3.23, K_PM15 = 0.77, K_PM10 = 0.62 and K_PM2.5 = 0.15

sL1 Silt loading (g/m2) for roads with ADT <= 500

sL2 Silt loading (g/m2) for roads with ADT > 500 and <= 5000

emis_post 33

sL3 Silt loading (g/m2) for roads with ADT > 5000 and <= 1000

sL4 Silt loading (g/m2) for roads with ADT > 10000

W array of dimensions of veh. It consists in the hourly averaged weight of traffic
fleet in each road

Value

emission estimation g/h

References

EPA, 2016. Emission factor documentation for AP-42. Section 13.2.1, Paved Roads. https://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0201.pdf

Examples

{
Do not run
veh <- array(pnorm(q=c(1:100), mean=500, sd = 100),

c(100,24,7))
W <- veh*1e+05
lkm <- rnorm(n = 100, mean = 10, sd = 1)
sL1 <- 0.6
emi <- emis_paved(veh = veh, lkm = lkm, k = 0.65,

sL1 = sL1, sL2 = sL1/4, sL3 = sL1/16, sL4 = sL1/32,
W = W)

class(emi)
head(emi)
}

emis_post Post emissions

Description

emis_post simplify emissions estimated as total per type category of vehicle or by street. It reads
EmissionsArray. It can return an dataframe with hourly emissions at each street, or a data base with
emissions by vehicular category, hour, including size, fuel and other characteristics.

Usage

emis_post(arra, veh, size, fuel, pollutant, by = "veh")

Arguments

arra Array of emissions 4d: streets x category of vehicles x hours x days or 3d: streets
x category of vehicles x hours

veh Type of vehicle

size Size or weight

34 emis_post

fuel Fuel

pollutant Pollutant

by Type of output, "veh" for total vehicular category , "streets_narrow" or "streets_wide".
"streets_wide" returns a dataframe with rows as number of streets and columns
the hours as days*hours considered, e.g. 168 columns as the hours of a whole
week and "streets_wide repeats the row number of streets by hour and day of
the week

Note

This function depends on EmissionsArray objests which currently has 4 dimensions. However, a
future version of VEIN will produce EmissionsArray with 3 dimensiones and his function also will
change. This change will be made in order to not produce inconsistencies with previous versions,
therefore, if the user count with an EmissionsArry with 4 dimension, it will be able to use this
function.

Examples

Not run:
Do not run
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile)
arguments required: arra, pollutant ad by
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets_wide")
summary(E_CO_STREETS)
arguments required: arra, veh, size, fuel, pollutant ad by
E_CO_DF <- emis_post(arra = E_CO, veh = "PC", size = "<1400", fuel = "G",
pollutant = "CO", by = "veh")
head(E_CO_DF)
recreating 24 profile
lpc <-list(pc1*0.2, pc1*0.1, pc1*0.1, pc1*0.2, pc1*0.5, pc1*0.8,

emis_wear 35

pc1, pc1*1.1, pc1,
pc1*0.8, pc1*0.5, pc1*0.5,
pc1*0.5, pc1*0.5, pc1*0.5, pc1*0.8,
pc1, pc1*1.1, pc1,
pc1*0.8, pc1*0.5, pc1*0.3, pc1*0.2, pc1*0.1)

E_COv2 <- emis(veh = lpc, lkm = net$lkm, ef = lef, speed = speed[, 1:24],
agemax = 41, hour = 24, day = 1)

plot(E_COv2)
E_CO_DFv2 <- emis_post(arra = E_COv2, veh = "PC", size = "<1400", fuel = "G",
pollutant = "CO", by = "veh")
head(E_CO_DFv2)

End(Not run)

emis_wear Emission estimation from tyre, break and road surface wear

Description

emis_wear estimates wear emissions. The sources are tyres, breaks and road surface.

Usage

emis_wear(veh, lkm, ef, agemax = ncol(veh), profile, hour = 1, day = 1)

Arguments

veh Object of class "Vehicles"

lkm Length of the road

ef list of emission factor functions class "EmissionFactorsList", length equals to
hours.

agemax Age of oldest vehicles for that category

profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week

hour Number of considered hours in estimation

day Number of considered days in estimation

Value

emission estimation g/h

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA,
EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency,
Copenhagen, 2016

36 emis_wrf

Examples

Not run:
Do not run

End(Not run)

emis_wrf Generates emissions dataframe to generate WRF-Chem inputs

Description

emis_wrf returns a dataframes with columns lat, long, id, pollutants, local time and GMT time. This
dataframe has the proper format to be used with WRF assimilation system: "Another Asimilation
System 4 WRF (AAS4WRF)" as published by Vera-Vala et al (2016)

Usage

emis_wrf(sdf, nr = 1, dmyhm, tz, crs = "+init=epsg:4326", islist)

Arguments

sdf Grid emissions, which can be a SpatialPolygonsDataFrame, or a list of Spa-
tialPolygonsDataFrame. The user must enter a list with 36 SpatialPolygons-
DataFrame with emissions for the mechanism CBMZ. When there are no emis-
sions available, the SpatialPolygonsDataFrame must contain 0.

nr Number of repetitions of the emissions period

dmyhm String indicating Day Month Year Hour and Minute in the format "d-m-Y H:M"
e.g.: "01-05-2014 00:00" It represents the time of the first hour of emissions in
Local Time

tz Time zone as required in for function as.POSIXct

crs Coordinate reference system, e.g: "+init=epsg:4326". Used to transform the
coordinates of the output

islist logical value to indicate if sdf is a list or not

Value

data-frame of gridded emissions g/h

Note

The reference of the emissions assimilation system is Vara-Vela, A., Andrade, M. F., Kumar, P.,
Ynoue, R. Y., and Munoz, A. G.: Impact of vehicular emissions on the formation of fine parti-
cles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model, Atmos.
Chem. Phys., 16, 777-797, doi:10.5194/acp-16-777-2016, 2016. A good website with timezones is
http://www.timezoneconverter.com/cgi-bin/tzc The crs is the same as used by sp package It returns a
dataframe with id„ long, lat, pollutants, time_lt, time_utc and day-UTC-hour (dutch) The pollutants

Evaporative 37

for the CBMZ are: e_so2, e_no, e_ald, e_hcho, e_ora2, e_nh3 e_hc3, e_hc5, e_hc8, e_eth, e_co,
e_ol2, e_olt, e_oli, e_tol, e_xyl, e_ket e_csl, e_iso, e_no2, e_ch3oh, e_c2h5oh, e_pm25i, e_pm25j,
e_so4i, e_so4j e_no3i, e_no3j, e_orgi, e_orgj, e_eci, e_ecj, e_so4c, e_no3c, e_orgc, e_ecc

See Also

emis_post emis

Examples

Not run:
Do not run

End(Not run)

Evaporative Construction function for class "Evaporative"

Description

Evaporative returns a tranformed object with class "Evaporative" and units g/day. This class rep-
resents the daily emissions presented by Mellios G and Ntziachristos (2016) Gasoline evaporation,
Tier 2. Eventually it will be incorporated the techniques of Tier 3.

Usage

Evaporative(x, ...)

S3 method for class 'Evaporative'
print(x, ...)

S3 method for class 'Evaporative'
summary(object, ...)

S3 method for class 'Evaporative'
plot(x, ...)

Arguments

x Object with class "numeric"

... ignored

object Object with class "Evaporative"

Value

Objects of class "Evaporative" or "units"

38 fe2015

Examples

{
ef1 <- ef_evap(ef = "erhotc",v = "PC", cc = "<=1400", dt = "0_15", ca = "no")
ef1
}

fe2015 Emission factors from Environmental Agency of Sao Paulo CETESB

Description

A dataset containing emission factors from CETESB and its equivalency with EURO

Usage

data(fe2015)

Format

A data frame with 288 rows and 12 variables:

Age Age of use

Year Year of emission factor

Pollutant Pollutants included: "CH4", "CO", "CO2", "HC", "N2O", "NMHC", "NOx", and "PM"

Proconve_LDV Proconve emission standard: "PP", "L1", "L2", "L3", "L4", "L5", "L6"

t_Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "II", "III","IV", "V"

Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "II", "III","IV", "V"

Proconve_HDV Proconve emission standard: "PP", "P1", "P2", "P3", "P4", "P5", "P7"

Euro_HDV Euro emission standard equivalence: "PRE", "I", "II", "III", "V"

Promot Promot emission standard: "PP", "M1", "M2", "M3"

Euro_moto Euro emission standard equivalence: "PRE", "I", "II", "III"

PC_G CETESB emission standard for Passenger Cars with Gasoline (g/km)

LT CETESB emission standard for Light Trucks with Diesel (g/km)

Source

http://veicular.cetesb.sp.gov.br/relatorios-e-publicacoes/

http://veicular.cetesb.sp.gov.br/relatorios-e-publicacoes/

fkm 39

fkm List of functions of mileage in km fro Brazilian fleet

Description

Functions from CETESB: Antonio de Castro Bruni and Marcelo Pereira Bales. 2013. Curvas de
intensidade de uso por tipo de veiculo automotor da frota da cidade de Sao Paulo This functions
depends on the age of use of the vehicle

Usage

data(fkm)

Format

A data frame with 288 rows and 12 variables:

KM_PC_E25 Mileage in km of Passenger Cars using Gasoline with 25% Ethanol

KM_PC_E100 Mileage in km of Passenger Cars using Ethanol 100%

KM_PC_FLEX Mileage in km of Passenger Cars using Flex engines

KM_LCV_E25 Mileage in km of Light Commercial Vehicles using Gasoline with 25% Ethanol

KM_LCV_FLEX Mileage in km of Light Commercial Vehicles using Flex

KM_PC_B5 Mileage in km of Passenger Cars using Diesel with 5% biodiesel

KM_TRUCKS_B5 Mileage in km of Trucks using Diesel with 5% biodiesel

KM_BUS_B5 Mileage in km of Bus using Diesel with 5% biodiesel

KM_LCV_B5 Mileage in km of Light Commercial Vehicles using Diesel with 5% biodiesel

KM_SBUS_B5 Mileage in km of Small Bus using Diesel with 5% biodiesel

KM_ATRUCKS_B5 Mileage in km of Articulated Trucks using Diesel with 5% biodiesel

KM_MOTO_E25 Mileage in km of Motorcycles using Gasoline with 25% Ethanol

KM_LDV_GNV Mileage in km of Light Duty Vehicles using Natural Gas

Source

http://veicular.cetesb.sp.gov.br/relatorios-e-publicacoes/

http://veicular.cetesb.sp.gov.br/relatorios-e-publicacoes/

40 GriddedEmissionsArray

GriddedEmissionsArray Construction function for class "GriddedEmissionsArray"

Description

GriddedEmissionsArray returns a tranformed object with class "EmissionsArray" with 4 dimen-
sios.

Usage

GriddedEmissionsArray(x, ..., cols, rows, times = ncol(x), rotate = FALSE)

S3 method for class 'GriddedEmissionsArray'
print(x, ...)

S3 method for class 'GriddedEmissionsArray'
summary(object, ...)

S3 method for class 'GriddedEmissionsArray'
plot(x, ..., times = 1)

Arguments

x Object with class "SpatialPolygonDataFrame", "sf" "data.frame" or "matrix"

... ignored

cols Number of columns

rows Number of rows

times Number of times

rotate Logical to rotate TRUE or not FALSE the array

object object with class "EmissionsArray’

Value

Objects of class "GriddedEmissionsArray"

Examples

Not run:
data(net)
data(pc_profile)
data(fe2015)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,

133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

hot_soak 41

veh <- data.frame(PC_G = PC_G)
pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)
cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
co1 <- fe2015[fe2015$Pollutant=="CO",] #24 obs!!!
cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "4S", cc = "<=1400",

f = "G",p = "CO", eu=co1$Euro_LDV)
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, hour = 24, day = 7, array = T)
class(E_CO)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets_wide")
net@data <- cbind(net@data, E_CO_STREETS)
head(net@data)
g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees
net@data <- net@data[,- c(1:9)]
names(net)
E_CO_g <- emis_grid(spobj = net, g = g, sr= 31983)
head(E_CO_g) #class sf
library(mapview)
mapview(E_CO_g, zcol= "V1", legend = T, col.regions = cptcity::cptcity(1))
gr <- GriddedEmissionsArray(E_CO_g, rows = 19, cols = 23, times = 168, T)
plot(gr)

For some cptcity color gradients:
devtools::install_github("ibarraespinosa/cptcity")
plot(gr, col = cptcity::cptcity(1))

End(Not run)

hot_soak Estimation of average running hot-soak evaporative emissions

Description

hot_soak estimates of evaporative emissions from EMEP/EEA emisison guidelines

Usage

hot_soak(x, carb, p, eshotc, eswarmc, eshotfi)

Arguments

x Mean number of trips per vehicle per day

carb fraction of gasoline vehicles with carburator or fuel return system

42 inventory

p Fraction of trips finished with hot engine

eshotc average daily hot-soak evaporative factor for vehicles with carburator or fuel
return system

eswarmc average daily cold-warm-soak evaporative factor for vehicles with carburator or
fuel return system

eshotfi average daily hot-soak evaporative factor for vehicles with fuel injection and
returnless fuel systems

Value

numeric vector of emission estimation in grams

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

Examples

{
Do not run
ev <- hot_soak(x = 1:10, carb = 0, p = 1, eshot = 1, eswarmc =1,
eshotfi = 1)
}

inventory Inventory function.

Description

inventory produces an structure of directories and scripts in order to run vein. It is required to
know the vehicular composition of the fleet.

Usage

inventory(name, vehcomp = c(PC = 1, LCV = 1, HGV = 1, BUS = 1, MC = 1),
scripts = TRUE, show.dir = FALSE, show.scripts = FALSE, clear = TRUE)

Arguments

name one word indicating the name of the main directory for running vein

vehcomp Vehicular composition of the fleet. It is required a named numerical vector with
the names "PC", "LCV", "HGV", "BUS" and "MC". In the case that tthere are
no vehiles for one category of the composition, the name should be included
with the number zero, for example PC = 0. The maximum number allowed is
99 per category.

scripts Boolean value for aggregate or no scripts.

inventory 43

show.dir Boolean alue for printing the created directories.

show.scripts Boolean value for printing the created scripts.

clear Boolean value for removing recursively the directory and create another one.

Value

Structure of directories and scripts for automating compilation of vehicular emissions inventory.
The structure can be used with other type of sources of emissions. The structure of the directories
is: daily, ef, emi, est, images, network and veh. This structure is a suggestion and the user can use
another.

daily: it is for storing the profiles saved as .csv files

ef: it is for storing the emission factors data-frame, similar to data(fe2015) but including one column
for each of the categories of the vehicular composition. For intance, if PC = 5, there should be 5
columns with emission factors in this file. If LCV = 5, another 5 columns should be present, and so
on.

emi: Directory for saving the estimates. It is suggested to use .rds extension instead of .rda.

est: Directory with subdirectories matching the vehicular composition for storing the scripts named
input.R.

images: Directory for saving images.

network: Directory for saving the road network with the required attributes. This file will includes
the vehicular flow per street to be used by age* functions.

veh: Directory for storing the distribution by age of use of each category of the vehicular com-
position. Those are data-frames with number of columns with the age distribution and number of
rows as the number of streets. The class of these objects is "Vehicles". Future versions of vein will
generate Vehicles objects with the explicit spatial component.

The name of the scripts and directories are based on the vehicular composition, however, there is
included a file named main.R which is just an R script to estimate all the emissions. It is important
to note that the user must add the emission factors for other pollutants. Also, this function creates
the scripts input.R where the user must specify the inputs for the estimation of emissions of each
category. Also, there is a file called traffic.R to generates objects of class "Vehicles". The user can
rename these scripts.

Examples

{
inventory(name = file.path(tempdir(), "YourCity"), show.dir = TRUE,

show.scripts = TRUE)
}

44 my_age

make_grid Creates rectangular grid for emission allocation

Description

make_grid creates a SpatialGridDataFrame. The spatial reference is taken from the spatial object.

Usage

make_grid(spobj, width, height, polygon, crs, ...)

Arguments

spobj A spatial object of class sp or sf.

width Width of grid cell. It is recommended to use projected values.

height Height of grid cell. Deprecated!

polygon Deprecated! make_grid returns only sf grid of polygons.

crs coordinate reference system in numeric format from http://spatialreference.org/
to transform/project spatial data using sf::st_transform

... ignored

Value

A grid of polygons class ’sf’

Examples

{
data(net)
grid <- make_grid(net, width = 0.5/102.47) #500 mts
plot(grid, axes = TRUE) #class sf
}

my_age Returns amount of vehicles at each age

Description

my_age returns amount of vehicles at each age using a numeric vector.

Usage

my_age(x, y, name, k = 1, message = TRUE)

net 45

Arguments

x numerical vector of vehicles.
y Age dustribution of vehicles.
name of vehicle assigned to columns of dataframe.
k multiplication factor.
message message with average age and total numer of vehicles.

Value

dataframe of age distrubution of vehicles.

Examples

{
Do not run
pc <- rnorm(100, 300, 10)
dpc <- c(rnorm(10, 99, 1), NA, NA, NA)
PC_E25_1400 <- my_age(x = pc, y = dpc, name = "PC_E25_1400")
plot(PC_E25_1400)
}

net Road network of the west part of Sao Paulo city

Description

This dataset is a SpatialLineDataFrame of sp package with roads from a traffic simulations made
by CET Sao Paulo, Brazil

Usage

data(net)

Format

A data frame with 1796 rows and 1 variables:

ldv Light Duty Vehicles (1/h)
hdv Heavy Duty Vehicles (1/h)
lkm Length of the link (km)
ps Peak Speed (km/h)
ffs Free Flow Speed (km/h)
tstreet Type of street
lanes Number of lanes per link
capacity Capacity of vehicles in each link (1/h)
tmin Time for travelling each link (min)

46 netspeed

Source

http://www.cetsp.com.br/

netspeed Calculate speeds of traffic network

Description

netspeed Creates a dataframe of speeds fir diferent hours and each link based on morning rush
traffic data

Usage

netspeed(q = 1, ps, ffs, cap, lkm, alpha = 0.15, beta = 4,
scheme = FALSE, distance = "km", time = "h", isList)

Arguments

q Data-frame of traffic flow to each hour (veh/h)

ps Peak speed (km/h)

ffs Free flow speed (km/h)

cap Capacity of link (veh/h)

lkm Distance of link (km)

alpha Parameter of BPR curves

beta Parameter of BPR curves

scheme Logical to create a Speed data-frame with 24 hours and a default profile. It needs
ffs and ps:

00:00-06:00 ffs
06:00-07:00 average between ffs and ps
07:00-10:00 ps
10:00-17:00 average between ffs and ps
17:00-20:00 ps
20:00-22:00 average between ffs and ps
22:00-00:00 ffs

distance Character specifying the units for distance. Default is "km"
time Character specifying the units for time Default is "h".
isList Deprecated

Value

dataframe speeds with units.

http://www.cetsp.com.br/

pc_cold 47

Examples

{
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
df <- netspeed(pc_week, netps, netffs, net$capacity, net$lkm)
class(df)
plot(df) #plot of the average speed at each hour, +- sd
df <- netspeed(ps = net$ps, ffs = net$ffs, scheme = TRUE)
class(df)
plot(df) #plot of the average speed at each hour, +- sd
}

pc_cold Profile of Vehicle start patterns

Description

This dataset is a dataframe with percetage of hourly starts with a lapse of 6 hours with engine turned
off. Data source is: Lents J., Davis N., Nikkila N., Osses M. 2004. Sao Paulo vehicle activity study.
ISSRC. www.issrc.org

Usage

data(pc_cold)

Format

A data frame with 24 rows and 1 variables:

V1 24 hours profile vehicle starts for Monday

pc_profile Profile of traffic data 24 hours 7 n days of the week

Description

This dataset is a dataframe with traffic activity normalized monday 08:00-09:00. This data is nor-
malized at 08:00-09:00. It comes from data of toll stations near Sao Paulo City. The source is
ARTESP (www.artesp.com.br)

Usage

data(pc_profile)

48 profiles

Format

A data frame with 24 rows and 7 variables:

V1 24 hours profile for Monday

V2 24 hours profile for Tuesday

V3 24 hours profile for Wednesday

V4 24 hours profile for Thursday

V5 24 hours profile for Friday

V6 24 hours profile for Saturday

V7 24 hours profile for Sunday

profiles Profile of traffic data 24 hours 7 n days of the week

Description

This dataset is n a list of data-frames with traffic activity normalized monday 08:00-09:00. It comes
from data of toll stations near Sao Paulo City. The source is ARTESP (www.artesp.com.br) for
months January and June and years 2012, 2013 and 2014. The type of vehicles covered are PC,
MC, MC and HGV.

Usage

data(pc_profile)

Format

A list of data-frames with 24 rows and 7 variables:

PC_JUNE_2012 168 hours

PC_JUNE_2013 168 hours

PC_JUNE_2014 168 hours

LCV_JUNE_2012 168 hours

LCV_JUNE_2013 168 hours

LCV_JUNE_2014 168 hours

MC_JUNE_2012 168 hours

MC_JUNE_2013 168 hours

MC_JUNE_2014 168 hours

HGV_JUNE_2012 168 hours

HGV_JUNE_2013 168 hours

HGV_JUNE_2014 168 hours

PC_JANUARY_2012 168 hours

running_losses 49

PC_JANUARY_2013 168 hours

PC_JANUARY_2014 168 hours

LCV_JANUARY_2012 168 hours

LCV_JANUARY_2013 168 hours

LCV_JANUARY_2014 168 hours

MC_JANUARY_2012 168 hours

MC_JANUARY_2014 168 hours

HGV_JANUARY_2012 168 hours

HGV_JANUARY_2013 168 hours

HGV_JANUARY_2014 168 hours

running_losses Estimation of average running losses evaporative emissions

Description

running_losses estimates evaporative emissions from EMEP/EEA emisison guidelines

Usage

running_losses(x, carb, p, erhotc, erwarmc, erhotfi)

Arguments

x Mean number of trips per vehicle per day

carb fraction of gasoline vehicles with carburator or fuel return system

p Fraction of trips finished with hot engine

erhotc average daily running losses evaporative factor for vehicles with carburator or
fuel return system

erwarmc average daily cold and warm running losses evaporative factor for vehicles with
carburator or fuel return system

erhotfi average daily hot running losses evaporative factor for vehicles with fuel injec-
tion and returnless fuel systems

Value

numeric vector of emission estimation in grams

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

50 speciate

Examples

{
Do not run
ev <- running_losses(x = 1:10, carb = 0, p = 1, erhot = 1, erwarmc =1,
erhotfi = 1)
summary(ev)
}

speciate Speciation of emissions

Description

speciate separates emissions in different compounds. It covers black carbon and organic matter
from particulate matter. Soon it will be added more speciations

Usage

speciate(x, spec = "bcom", veh, fuel, eu, show = FALSE, list = FALSE)

Arguments

x Emissions estimation

spec speciation: The speciations are: "bcom", tyre", "break", "road", "iag", "nox"
and "nmhc". ’iag’ now includes a speciation for use of industrial and building
paintings. "bcom" stands for black carbon and organic matter.

veh Type of vehicle: When spec is "bcom" or "nox" veh can be "PC", "LCV", HDV"
or "Motorcycle". When spec is "iag" veh can take two values depending: when
the speciation is for vehicles veh accepts "veh", eu "Evaporative", "Liquid" or
"Exhaust" and fuel "G", "E" or "D", when the speciation is for painting, veh is
"paint" fuel or eu can be "industrial" or "building" when spec is "nmhc", veh
can be "LDV" with fuel "G" or "D" and eu "PRE", "I", "II", "III", "IV", "V", or
"VI". when spec is "nmhc", veh can be "HDV" with fuel "D" and eu "PRE", "I",
"II", "III", "IV", "V", or "VI". when spec is "nmhc" and fuel is "LPG", veh and
eu must be "ALL"

fuel Fuel. When spec is "bcom" fuel can be "G" or "D". When spec is "iag" fuel can
be "G", "E" or "D". When spec is "nox" fuel can be "G", "D", "LPG", "E85" or
"CNG". Not required for "tyre", "break" or "road". When spec is "nmhc" fuel
can be G, D or LPG.

eu Euro emission standard: "PRE", "ECE_1501", "ECE_1502", "ECE_1503", "I",
"II", "III", "IV", "V", "III-CDFP","IV-CDFP","V-CDFP", "III-ADFP", "IV-ADFP","V-
ADFP" and "OPEN_LOOP". When spec is "iag" accept the values "Exhaust"
"Evaporative" and "Liquid". When spec is "nox" eu can be "PRE", "I", "II",
"III", "IV", "V", "VI", "VIc", "III-DPF" or "III+CRT". Not required for "tyre",
"break" or "road"

show when TRUE shows row of table with respective speciation

speciate 51

list when TRUE returns a list with number of elements of the list as the number
species of pollutants

Value

dataframe of speciation in grams or mols

Note

when spec = "iag", veh is only "VEH", STANDARD is "Evaporative", "Liquid" or "Exhaust", FUEL
is "G" for gasoline (blended with 25% ethanol), "E" for Ethanol and "D" for diesel (blended with
5% of biodiesel). When spec = "bcom", veh can be "PC", "LCV", "Motorcycle" or "HDV" VEH",
STANDARD is "Evaporative", "Liquid" or "Exhaust", FUEL is "G" for gasoline (blended with 25%
ethanol), "E" for Ethanol and "D" for diesel (blended with 5% of biodiesel).

References

"bcom": Ntziachristos and Zamaras. 2016. Passneger cars, light commercial trucks, heavy-duty
vehicles including buses and motor cycles. In: EEA, EMEP. EEA air pollutant emission inventory
guidebook-2009. European Environment Agency, Copenhagen, 2016

"tyre", "break" and "road": Ntziachristos and Boulter 2016. Automobile tyre and break wear and
road abrasion. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European
Environment Agency, Copenhagen, 2016

"iag": Ibarra-Espinosa S. Air pollution modeling in Sao Paulo using bottom-up vehicular emissions
inventories. 2017. PhD thesis. Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Uni-
versidade de Sao Paulo, Sao Paulo, page 88. Speciate EPA: https://cfpub.epa.gov/speciate/. : K.
Sexton, H. Westberg, "Ambient hydrocarbon and ozone measurements downwind of a large auto-
motive painting plant" Environ. Sci. Tchnol. 14:329 (1980).P.A. Scheff, R.A. Schauer, James J.,
Kleeman, Mike J., Cass, Glen R., Characterization and Control of Organic Compounds Emitted
from Air Pollution Sources, Final Report, Contract 93-329, prepared for California Air Resources
Board Research Division, Sacramento, CA, April 1998. 2004 NPRI National Databases as of April
25, 2006, http://www.ec.gc.ca/pdb/npri/npri_dat_rep_e.cfm. Memorandum Proposed procedures
for preparing composite speciation profiles using Environment Canada s National Pollutant Release
Inventory (NPRI) for stationary sources, prepared by Ying Hsu and Randy Strait of E.H. Pechan
Associates, Inc. for David Niemi, Marc Deslauriers, and Lisa Graham of Environment Canada,
September 26, 2006.

Examples

{
Do not run
pm <- rnorm(n = 100, mean = 400, sd = 2)
df <- speciate(pm, veh = "PC", fuel = "G", eu = "I")
}

52 Speed

Speed Construction function for class "Speed"

Description

Speed returns a tranformed object with class "Speed" and units km/h. This functions includes two
arguments, distance and time. Therefore, it is posibel to change the units of the speed to "m" to "s"
for example. This function returns a dataframe with units for speed. When this function is applied
to numeric vectors it add class "units".

Usage

Speed(x, ...)

S3 method for class 'Speed'
print(x, ...)

S3 method for class 'Speed'
summary(object, ...)

S3 method for class 'Speed'
plot(x, ...)

Arguments

x Object with class "data.frame", "matrix" or "numeric"
... ignored
object Object with class "Speed"

Value

Constructor for class "Speed" or "units"

See Also

units

Examples

{
data(net)
data(pc_profile)
speed <- Speed(net$ps)
class(speed)
plot(speed, type = "l")
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
df <- netspeed(pc_week, netps, netffs, net$capacity, net$lkm)
summary(df)
}

temp_fact 53

temp_fact Expansion of hourly traffic data

Description

temp_fact is a matrix multiplication between traffic and hourly expansion data-frames to obtain a
data-frame of traffic at each link to every hour

Usage

temp_fact(q, pro)

Arguments

q traffic data per each link

pro expansion factors data-frames

Value

data-frames of expanded traffic

Examples

{
Do not run
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
plot(pc_week)
}

Vehicles Construction function for class "Vehicles"

Description

Vehicles returns a tranformed object with class "Vehicles" and units 1/h. The type of objects
supported are of classes "matrix", "data.frame", "numeric" and "array". If the object is a matrix it
is converted to data.frame. If the object is "numeric" it is converted to class "units". The function
emis_paved needs veh to be an array, therefore in this case, veh must be an array in the total fleet
at each street and dimensions total fleet, hours and days

54 vein

Usage

Vehicles(x, ...)

S3 method for class 'Vehicles'
print(x, ...)

S3 method for class 'Vehicles'
summary(object, ...)

S3 method for class 'Vehicles'
plot(x, ..., message = TRUE)

Arguments

x Object with class "Vehicles"

... ignored

object Object with class "Vehicles"

message message with average age

Value

Objects of class "Vehicles" or "units"

Examples

{
lt <- rnorm(100, 300, 10)
class(lt)
vlt <- Vehicles(lt)
class(vlt)
plot(vlt)
LT_B5 <- age_hdv(x = lt,name = "LT_B5")
print(LT_B5)
summary(LT_B5)
plot(LT_B5)
}

vein vein: a package for elaborating vehicular emissions inventories

Description

This package provides functions to arrange traffic data, prepare emission factors, estimate emissions
and process emissions

vkm 55

Details

1) Inventory

It is recommended to start with the function inventory which produces a set of directories and
scripts to run vein.

2) Traffic data

The user must count with traffic data at each street at least for one hour. The format of the data must
be spatial, either "SpatialLinesDataFrame" or an object class of "sf". Then the user must use any ob
tje age functions: age_ldv, age_hdv, age_moto or my_age. The outputs of these functions can be
saved in directory ’veh’ with the extension .rds.

3) Emission factors

The user must chosse a type of emission factor: from Copert with the ef_ldv_speed or ef_hdv_speed,
from local sources as one constant emission factors by age of use of vehicles with EmissionFactorsList
or as a merge between both with ef_ldv_scaled or ef_hdv_scaled.

4) Estimating emissions

Once all information is obtained, the user can estimate the emissions with emis, emis_cold or
other.

5) Processing the emissions

The function for processing the emissions ins emis_post.

vkm Estimation of VKM

Description

vkm consists in the product of the number of vehicles and the distance driven by these vehicles in
km. This function reads hourly vehiles and then extrapolates the vehicles

Usage

vkm(veh, lkm, profile, hour = 24, day = 7, array = T)

Arguments

veh Numeric vector with number of vehicles per street

lkm Length of each link (km)

profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week

hour Number of considered hours in estimation

day Number of considered days in estimation

array When FALSE produces a dataframe of the estimation. When TRUE expects
a profile as a dataframe producing an array with dimensions (streets x hours x
days)

56 vkm

Value

emission estimation of vkm

Examples

{
Do not run
pc <- lkm <- abs(rnorm(10,1,1))*100
pro <- matrix(abs(rnorm(24*7,0.5,1)), ncol=7, nrow=24)
vkms <- vkm(veh = pc, lkm = lkm, profile = pro)
class(vkms)
dim(vkms)
}

Index

∗Topic cold
ef_ldv_cold, 10
ef_ldv_cold_list, 11

∗Topic datasets
fe2015, 38
fkm, 39
net, 45
pc_cold, 47
pc_profile, 47
profiles, 48

∗Topic deterioration
emis_det, 26

∗Topic emission
ef_hdv_scaled, 8
ef_hdv_speed, 9
ef_ldv_cold, 10
ef_ldv_cold_list, 11
ef_ldv_scaled, 12
ef_ldv_speed, 13
ef_nitro, 15
emis_det, 26

∗Topic factors
ef_hdv_scaled, 8
ef_hdv_speed, 9
ef_ldv_cold, 10
ef_ldv_cold_list, 11
ef_ldv_scaled, 12
ef_ldv_speed, 13
ef_nitro, 15
emis_det, 26

∗Topic speed
ef_hdv_scaled, 8
ef_hdv_speed, 9
ef_ldv_scaled, 12
ef_ldv_speed, 13
ef_nitro, 15

∗Topic start
ef_ldv_cold_list, 11

adt, 3

age_hdv, 4, 55
age_ldv, 5, 55
age_moto, 6, 55
as.POSIXct, 36

ef_evap, 7
ef_hdv_scaled, 8, 55
ef_hdv_speed, 9, 55
ef_ldv_cold, 10
ef_ldv_cold_list, 11
ef_ldv_scaled, 12, 55
ef_ldv_speed, 13, 13, 55
ef_nitro, 15, 15
ef_wear, 16, 16
emis, 17, 37, 55
emis_cold, 25, 55
emis_det, 26
emis_evap, 27
emis_grid, 30
emis_merge, 31, 31, 32
emis_paved, 32, 53
emis_post, 32, 33, 37, 55
emis_wear, 35
emis_wrf, 36
EmissionFactors, 18
EmissionFactorsList, 19, 55
Emissions, 20
EmissionsArray, 22
EmissionsList, 23
Evaporative, 37

fe2015, 38
fkm, 39

GriddedEmissionsArray, 40

hot_soak, 41

inventory, 42, 55

make_grid, 44, 44

57

58 INDEX

my_age, 44, 55

net, 45
netspeed, 46

pc_cold, 47
pc_profile, 47
plot.EmissionFactors (EmissionFactors),

18
plot.EmissionFactorsList

(EmissionFactorsList), 19
plot.Emissions (Emissions), 20
plot.EmissionsArray (EmissionsArray), 22
plot.EmissionsList (EmissionsList), 23
plot.Evaporative (Evaporative), 37
plot.GriddedEmissionsArray

(GriddedEmissionsArray), 40
plot.Speed (Speed), 52
plot.Vehicles (Vehicles), 53
print.EmissionFactors

(EmissionFactors), 18
print.EmissionFactorsList

(EmissionFactorsList), 19
print.Emissions (Emissions), 20
print.EmissionsArray (EmissionsArray),

22
print.EmissionsList (EmissionsList), 23
print.Evaporative (Evaporative), 37
print.GriddedEmissionsArray

(GriddedEmissionsArray), 40
print.Speed (Speed), 52
print.Vehicles (Vehicles), 53
profiles, 48

running_losses, 49

sp, 36
speciate, 50
Speed, 52
summary.EmissionFactors

(EmissionFactors), 18
summary.EmissionFactorsList

(EmissionFactorsList), 19
summary.Emissions (Emissions), 20
summary.EmissionsArray

(EmissionsArray), 22
summary.EmissionsList (EmissionsList),

23
summary.Evaporative (Evaporative), 37

summary.GriddedEmissionsArray
(GriddedEmissionsArray), 40

summary.Speed (Speed), 52
summary.Vehicles (Vehicles), 53

temp_fact, 53

units, 52

Vehicles, 53
vein, 54
vein-package (vein), 54
vkm, 55

	adt
	age_hdv
	age_ldv
	age_moto
	ef_evap
	ef_hdv_scaled
	ef_hdv_speed
	ef_ldv_cold
	ef_ldv_cold_list
	ef_ldv_scaled
	ef_ldv_speed
	ef_nitro
	ef_wear
	emis
	EmissionFactors
	EmissionFactorsList
	Emissions
	EmissionsArray
	EmissionsList
	emis_cold
	emis_det
	emis_evap
	emis_grid
	emis_merge
	emis_paved
	emis_post
	emis_wear
	emis_wrf
	Evaporative
	fe2015
	fkm
	GriddedEmissionsArray
	hot_soak
	inventory
	make_grid
	my_age
	net
	netspeed
	pc_cold
	pc_profile
	profiles
	running_losses
	speciate
	Speed
	temp_fact
	Vehicles
	vein
	vkm
	Index

