SSDM: Stacked Species Distribution Modelling

Allows to map species richness and endemism based on stacked species distribution models (SSDM). Individuals SDMs can be created using a single or multiple algorithms (ensemble SDMs). For each species, an SDM can yield a habitat suitability map, a binary map, a between-algorithm variance map, and can assess variable importance, algorithm accuracy, and between- algorithm correlation. Methods to stack individual SDMs include summing individual probabilities and thresholding then summing. Thresholding can be based on a specific evaluation metric or by drawing repeatedly from a Bernoulli distribution. The SSDM package also provides a user-friendly interface.

Version: 0.2.4
Depends: R (≥ 3.2.2)
Imports: sp (≥ 1.2.0), raster (≥ 2.4.20), methods (≥ 3.2.2), SDMTools (≥ 1.1.221), mgcv (≥ 1.8.7), earth (≥ 4.4.3), rpart (≥ 4.1.10), gbm (≥ 2.1.1), randomForest (≥ 4.6.10), dismo (≥ 1.0.12), nnet (≥ 7.3.10), e1071 (≥ 1.6.7), shiny (≥ 0.12.2), shinydashboard (≥ 0.5.1), gplots (≥ 0.1.0), shinyFiles (≥ 0.6.0), spThin (≥ 0.1.0)
Suggests: testthat, knitr, rmarkdown, rgdal
Published: 2018-01-29
Author: Sylvain Schmitt, Robin Pouteau, Dimitri Justeau, Florian de Boissieu, Philippe Birnbaum
Maintainer: Sylvain Schmitt <sylvain.schmitt at>
License: GPL (≥ 3) | file LICENSE
NeedsCompilation: no
Citation: SSDM citation info
Materials: README NEWS
CRAN checks: SSDM results


Reference manual: SSDM.pdf
Vignettes: "GUI"
Package source: SSDM_0.2.4.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X binaries: r-release: SSDM_0.2.4.tgz, r-oldrel: SSDM_0.2.4.tgz
Old sources: SSDM archive


Please use the canonical form to link to this page.