Fast Robust Moments -- Pick Three!
Fast, numerically robust, higher order moments in R, computed via Rcpp, mostly as an exercise to learn Rcpp. Supports computation on vectors and matrices, and Monoidal append (and unappend) of moments. Computations are via the Welford-Terriberry algorithm, as described by Bennett et al.
-- Steven E. Pav, shabbychef@gmail.com
This package can be installed via drat, or from github:
# via drat:
if (require(drat)) {
drat:::add("shabbychef")
install.packages("fromo")
}
# get snapshot from github (may be buggy)
if (require(devtools)) {
install_github("shabbychef/fromo")
}
Here is a speed comparison of the basic moment computation:
require(fromo)
require(moments)
require(microbenchmark)
x <- rnorm(1000)
dumbk <- function(x) {
c(kurtosis(x) - 3, skewness(x), sd(x), mean(x),
length(x))
}
microbenchmark(kurt5(x), skew4(x), sd3(x), dumbk(x),
dumbk(x), kurtosis(x), skewness(x), sd(x), mean(x))
## Unit: microseconds
## expr min lq mean median uq max neval
## kurt5(x) 144.9 146.7 150.9 148.2 150.2 183 100
## skew4(x) 83.9 85.7 88.7 86.9 88.0 158 100
## sd3(x) 10.6 11.6 12.7 12.1 12.9 28 100
## dumbk(x) 201.6 211.2 222.4 214.1 222.6 954 200
## kurtosis(x) 87.0 91.6 94.1 93.0 94.7 129 100
## skewness(x) 89.5 92.2 94.5 93.6 94.9 115 100
## sd(x) 15.4 18.6 20.9 19.7 20.7 39 100
## mean(x) 3.7 4.6 5.2 4.9 5.3 13 100
x <- rnorm(1e+07, mean = 1e+12)
microbenchmark(kurt5(x), skew4(x), sd3(x), dumbk(x),
kurtosis(x), skewness(x), sd(x), mean(x), times = 10L)
## Unit: milliseconds
## expr min lq mean median uq max neval
## kurt5(x) 1460 1474 1491 1487 1504 1540 10
## skew4(x) 832 839 851 850 867 874 10
## sd3(x) 86 86 88 87 91 93 10
## dumbk(x) 1736 1745 1777 1764 1815 1839 10
## kurtosis(x) 852 857 896 899 921 979 10
## skewness(x) 818 837 858 860 874 901 10
## sd(x) 51 51 52 51 54 56 10
## mean(x) 17 17 18 18 18 18 10
Store your moments in an object, and you can cat them together. (Eventually there will be an unjoin
method.) These should satisfy 'monoidal homomorphism', meaning that concatenation and taking moments commute with each other. This is a small step of the way towards fast machine learning methods (along the lines of Mike Izbicki's Hlearn library.)
Some demo code:
set.seed(12345)
x1 <- runif(100)
x2 <- rnorm(100, mean = 1)
max_ord <- 6L
obj1 <- as.centsums(x1, max_ord)
# display:
show(obj1)
## class: centsums
## raw moments: 100 0.0051 0.09 -0.00092 0.014 -0.00043 0.0027
## central moments: 0 0.09 -0.0023 0.014 -0.00079 0.0027
## std moments: 0 1 -0.086 1.8 -0.33 3.8
# join them together
obj1 <- as.centsums(x1, max_ord)
obj2 <- as.centsums(x2, max_ord)
obj3 <- as.centsums(c(x1, x2), max_ord)
alt3 <- c(obj1, obj2)
# it commutes!
stopifnot(max(abs(sums(obj3) - sums(alt3))) < 1e-07)
# unjoin them, with this one weird operator:
alt2 <- obj3 %-% obj1
alt1 <- obj3 %-% obj2
stopifnot(max(abs(sums(obj2) - sums(alt2))) < 1e-07)
stopifnot(max(abs(sums(obj1) - sums(alt1))) < 1e-07)
We also have 'raw' join and unjoin methods, not nicely wrapped:
set.seed(123)
x1 <- rnorm(1000, mean = 1)
x2 <- rnorm(1000, mean = 1)
max_ord <- 6L
rs1 <- cent_sums(x1, max_ord)
rs2 <- cent_sums(x2, max_ord)
rs3 <- cent_sums(c(x1, x2), max_ord)
rs3alt <- join_cent_sums(rs1, rs2)
stopifnot(max(abs(rs3 - rs3alt)) < 1e-07)
rs1alt <- unjoin_cent_sums(rs3, rs2)
rs2alt <- unjoin_cent_sums(rs3, rs1)
stopifnot(max(abs(rs1 - rs1alt)) < 1e-07)
stopifnot(max(abs(rs2 - rs2alt)) < 1e-07)
There is also code for computing co-sums and co-moments, though as of this writing only up to order 2. Some demo code for the monoidal stuff here::
set.seed(54321)
x1 <- matrix(rnorm(100 * 4), ncol = 4)
x2 <- matrix(rnorm(100 * 4), ncol = 4)
max_ord <- 2L
obj1 <- as.centcosums(x1, max_ord, na.omit = TRUE)
# display:
show(obj1)
## An object of class "centcosums"
## Slot "cosums":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 100.0000 -0.093 0.045 -0.0046 0.046
## [2,] -0.0934 111.012 4.941 -16.4822 6.660
## [3,] 0.0450 4.941 71.230 0.8505 5.501
## [4,] -0.0046 -16.482 0.850 117.3456 13.738
## [5,] 0.0463 6.660 5.501 13.7379 100.781
##
## Slot "order":
## [1] 2
# join them together
obj1 <- as.centcosums(x1, max_ord)
obj2 <- as.centcosums(x2, max_ord)
obj3 <- as.centcosums(rbind(x1, x2), max_ord)
alt3 <- c(obj1, obj2)
# it commutes!
stopifnot(max(abs(cosums(obj3) - cosums(alt3))) < 1e-07)
# unjoin them, with this one weird operator:
alt2 <- obj3 %-% obj1
alt1 <- obj3 %-% obj2
stopifnot(max(abs(cosums(obj2) - cosums(alt2))) < 1e-07)
stopifnot(max(abs(cosums(obj1) - cosums(alt1))) < 1e-07)
Since an online algorithm is used, we can compute cumulative running moments. Moreover, we can remove observations, and thus compute moments over a fixed length lookback window. The code checks for negative even moments caused by roundoff, and restarts the computation to correct; periodic recomputation can be forced by an input parameter.
A demonstration:
require(fromo)
require(moments)
require(microbenchmark)
set.seed(1234)
x <- rnorm(20)
k5 <- running_kurt5(x, window = 10L)
colnames(k5) <- c("excess_kurtosis", "skew", "stdev",
"mean", "nobs")
k5
## excess_kurtosis skew stdev mean nobs
## [1,] NaN NaN NaN -1.207 1
## [2,] NaN NaN 1.05 -0.465 2
## [3,] NaN -0.34 1.16 0.052 3
## [4,] -1.520 -0.13 1.53 -0.548 4
## [5,] -1.254 -0.50 1.39 -0.352 5
## [6,] -0.860 -0.79 1.30 -0.209 6
## [7,] -0.714 -0.70 1.19 -0.261 7
## [8,] -0.525 -0.64 1.11 -0.297 8
## [9,] -0.331 -0.58 1.04 -0.327 9
## [10,] -0.331 -0.42 1.00 -0.383 10
## [11,] 0.262 -0.65 0.95 -0.310 10
## [12,] 0.017 -0.30 0.95 -0.438 10
## [13,] 0.699 -0.61 0.79 -0.624 10
## [14,] -0.939 0.69 0.53 -0.383 10
## [15,] -0.296 0.99 0.64 -0.330 10
## [16,] 1.078 1.33 0.57 -0.391 10
## [17,] 1.069 1.32 0.57 -0.385 10
## [18,] 0.868 1.29 0.60 -0.421 10
## [19,] 0.799 1.31 0.61 -0.449 10
## [20,] 1.193 1.50 1.07 -0.118 10
# trust but verify
alt5 <- sapply(seq_along(x), function(iii) {
rowi <- max(1, iii - 10 + 1)
kurtosis(x[rowi:iii]) - 3
}, simplify = TRUE)
cbind(alt5, k5[, 1])
## alt5
## [1,] NaN NaN
## [2,] -2.000 NaN
## [3,] -1.500 NaN
## [4,] -1.520 -1.520
## [5,] -1.254 -1.254
## [6,] -0.860 -0.860
## [7,] -0.714 -0.714
## [8,] -0.525 -0.525
## [9,] -0.331 -0.331
## [10,] -0.331 -0.331
## [11,] 0.262 0.262
## [12,] 0.017 0.017
## [13,] 0.699 0.699
## [14,] -0.939 -0.939
## [15,] -0.296 -0.296
## [16,] 1.078 1.078
## [17,] 1.069 1.069
## [18,] 0.868 0.868
## [19,] 0.799 0.799
## [20,] 1.193 1.193
Through template magic, the same code was modified to perform running centering, scaling, z-scoring and so on:
require(fromo)
require(moments)
require(microbenchmark)
set.seed(1234)
x <- rnorm(20)
xz <- running_zscored(x, window = 10L)
# trust but verify
altz <- sapply(seq_along(x), function(iii) {
rowi <- max(1, iii - 10 + 1)
(x[iii] - mean(x[rowi:iii]))/sd(x[rowi:iii])
}, simplify = TRUE)
cbind(xz, altz)
## altz
## [1,] NaN NA
## [2,] 0.71 0.71
## [3,] 0.89 0.89
## [4,] -1.18 -1.18
## [5,] 0.56 0.56
## [6,] 0.55 0.55
## [7,] -0.26 -0.26
## [8,] -0.23 -0.23
## [9,] -0.23 -0.23
## [10,] -0.51 -0.51
## [11,] -0.17 -0.17
## [12,] -0.59 -0.59
## [13,] -0.19 -0.19
## [14,] 0.84 0.84
## [15,] 2.02 2.02
## [16,] 0.49 0.49
## [17,] -0.22 -0.22
## [18,] -0.82 -0.82
## [19,] -0.64 -0.64
## [20,] 2.37 2.37
A list of the available functions:
running_centered
: from the current value, subtract the mean over the trailing window.running_scaled
: divide the current value by the standard deviation over the trailing window.running_zscored
: from the current value, subtract the mean then divide by the standard deviation over the trailing window.running_sharpe
: divide the mean by the standard deviation over the trailing window. There is a boolean flag to also compute and return the Mertens' form of the standard error of the Sharpe ratio over the trailing window in the second column.running_tstat
: compute the t-stat over the trailing window.running_cumulants
: computes cumulants over the trailing window.running_apx_quantiles
: computes approximate quantiles over the trailing window based on the cumulants and the Cornish-Fisher approximation.running_apx_median
: uses running_apx_quantiles
to give the approximate median over the trailing window.The functions running_centered
, running_scaled
and running_zscored
take an optional lookahead
parameter that allows you to peek ahead (or behind if negative) to the computed moments for comparing against the current value. These are not supported for running_sharpe
or running_tstat
because they do not have an idea of the 'current value'.
Here is an example of using the lookahead to z-score some data, compared to a purely time-safe lookback. Around a timestamp of 1000, you can see the difference in outcomes from the two methods:
set.seed(1235)
z <- rnorm(1500, mean = 0, sd = 0.09)
x <- exp(cumsum(z)) - 1
xz_look <- running_zscored(x, window = 301, lookahead = 150)
xz_safe <- running_zscored(x, window = 301, lookahead = 0)
df <- data.frame(timestamp = seq_along(x), raw = x,
lookahead = xz_look, lookback = xz_safe)
library(tidyr)
gdf <- gather(df, key = "smoothing", value = "x", -timestamp)
library(ggplot2)
ph <- ggplot(gdf, aes(x = timestamp, y = x, group = smoothing,
colour = smoothing)) + geom_line()
print(ph)
We make every attempt to balance numerical robustness, computational efficiency and memory usage. As a bit of strawman-bashing, here we microbenchmark the running Z-score computation against the naive algorithm:
require(fromo)
require(moments)
require(microbenchmark)
set.seed(4422)
x <- rnorm(10000)
dumb_zscore <- function(x, window) {
altz <- sapply(seq_along(x), function(iii) {
rowi <- max(1, iii - window + 1)
xrang <- x[rowi:iii]
(x[iii] - mean(xrang))/sd(xrang)
}, simplify = TRUE)
}
val1 <- running_zscored(x, 250)
val2 <- dumb_zscore(x, 250)
stopifnot(max(abs(val1 - val2), na.rm = TRUE) <= 1e-14)
microbenchmark(running_zscored(x, 250), dumb_zscore(x,
250))
## Unit: microseconds
## expr min lq mean median uq max neval
## running_zscored(x, 250) 807 818 861 839 861 1297 100
## dumb_zscore(x, 250) 228331 243028 257125 253182 257454 371401 100