Package 'rehh'

November 18, 2016

Maintainer Mathieu Gautier <mathieu.gautier@inra.fr>

Author Mathieu Gautier, Alexander Klassmann and Renaud Vitalis

Version 2.0.2

License GPL (>= 2)

Title Searching for Footprints of Selection using Haplotype Homozygosity Based Tests

Description Functions for the detection of footprints of selection on dense SNP data using Extended Homozygosity Haplotype (EHH) based tests. The package includes computation of EHH, iHS (within population) and Rsb or XP-EHH (across pairs of populations) statistics. Various plotting functions are also included to facilitate visualization and interpretation of the results.

Depends R (>= 2.10), rehh.data, gplots, methods

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-11-18 12:43:14

R topics documented:

h-package	2
ircation.diagram	3
2_ehh	4
c_ehhs	5
a2haplohh	8
ribplot	0
lohh-class	1
lohh_cgu_bta12	2
2rsb	2
2xpehh	3
2ihs 14	4

rehh-package

ihsplot	
make.example.files	
rsbplot	
scan_hh	
xpehhplot	
	22

Index

rehh-package	Searching for footprints of selection using Haplotype Homozygosity
	based tests

Description

Functions for the detection of footprints of selection on dense SNP data using Extended Homozygosity Haplotype (EHH) based tests. The package includes computation of EHH, iHS (within population) and Rsb and XP-EHH (across pairs of populations) statistics. Various plotting functions are also included to facilitate visualization and interpretation of the results.

Details

Package:	rehh
Version:	2.0.2
License:	GPL(>=2)
Depends:	gplots, methods

Index:

bifurcation.diagram	plot of an haplotype bifurcation
	diagram
calc_ehh	EHH and iHH computations at a
	given core SNP
calc_ehhs	EHHS and iES computations at a
	given core SNP
data2haplohh	Converting data into an object
	of class haplohh
distribplot	Distribution of standardized
	iHS, Rsb or XP-EHH values
haplohh_cgu_bta12	Example of an 'haplohh' object
ies2rsb	Compute Rsb (standardized ratio of
	iES from two populations)
ies2xpehh	Compute XP-EHH (standardized ratio of
	iES from two populations)
ihh2ihs	Compute iHS (standardized iHH)
ihsplot	Plot iHS over a genome
<pre>make.example.files</pre>	Generate example input files

rsbplot	Plot Rsb over a genome
xpehhplot	Plot XP-EHH over a genome
scan_hh	Computing EHH based statistics over
	a whole chromosome

References

Gautier M., Klassmann A., and Vitalis R. (2016). rehh: An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. *Molecular Ecology Resources*, accepted

Gautier M. and Vitalis R. (2012). rehh: An R package to detect footprints of selection in genomewide SNP data from haplotype structure. *Bioinformatics*, **28**(8), 1176–1177.

Gautier M. and Naves M. (2011). Footprints of selection in the ancestral admixture of a New World Cattle breed. *Molecular Ecology*, (20), 3128–3143.

bifurcation.diagram plot of an haplotype bifurcation diagram

Description

Haplotype Bifurcation diagram visualizes the breakdown of LD at increasing distances from the core allele at the selected focal SNPs.

Usage

```
bifurcation.diagram(haplohh,mrk_foc,all_foc=1,nmrk_l=10,nmrk_r=10,
limhapcount=10,refsize=0.1,linecol="blue",
main_leg=NA,xlab_leg="Position")
```

Arguments

haplohh	An object of class haplohh (see data2haplohh).
mrk_foc	Integer representing the number of the focal marker
all_foc	either 1 or 2 depending on the chosen core allele (resp. ancestral or derived)
nmrk_1	Number of markers to be considered upstream of the focal SNP
nmrk_r	Number of markers to be considered downstream of the focal SNP
limhapcount	Minimal number of haplotypes containing the core allele at the focal SNP
refsize	Controls the relative width of the diagram lines on the plot
linecol	Color of the lines on the diagram
main_leg	Main legend of the diagram. By default, the name of the SNP together with the allele considered
xlab_leg	Legend on the xaxis of the diagram

Details

Haplotype Bifurcation diagram visualizes the breakdown of LD at increasing distances from the core allele at the selected focal SNPs. The root (focal SNP) of each diagram is the core allele, identified by a vertical dashed line. The diagram is bi-directional, portraying both centromere-proximal and centromere-distal LD. Moving in one direction, each marker is an opportunity for a node; the diagram either divides or not based on whether both or only one allele is present. Thus the breakdown of LD on the core haplotype background is portrayed at progressively longer distances. The thickness of the lines corresponds to the number of samples with the indicated long- distance haplotype.

Value

The function returns a plot.

References

Sabeti, P.C. and Reich, D.E. and Higgins, J.M. and Levine, H.Z.P and Richter, D.J. and Schaffner, S.F. and Gabriel, S.B. and Platko, J.V. and Patterson, N.J. and McDonald, G.J. and Ackerman, H.C. and Campbell, S.J. and Altshuler, D. and Cooper, R. and Kwiatkowski, D. and Ward, R. and Lander, E.S. (2002). Detecting recent positive selection in the human genome from haplotype structure. *Nature*, **419**, 832–837.

Examples

```
#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
#plotting bifurcation diagram for both ancestral and derived allele
#from the focal SNP at position 456
#which display a strong signal of selection
layout(matrix(1:2,2,1))
#ancestral allele
bifurcation.diagram(haplohh_cgu_bta12,mrk_foc=456,all_foc=1,
nmrk_l=20,nmrk_r=20)
#derived allele
bifurcation.diagram(haplohh_cgu_bta12,mrk_foc=456,all_foc=2,
nmrk_l=20,nmrk_r=20)
##
dev.off()
```

calc_ehh

EHH and iHH computations at a given core SNP

Description

Compute Extended Haplotype Homozygosity (EHH) and integrated EHH (iHH) for a given focal SNPs.

calc_ehh

Usage

```
calc_ehh(haplohh, mrk, limhaplo = 2, limehh = 0.05, maxgap=NA, plotehh = TRUE,
    lty = 1, lwd = 1.5, col = c("blue", "red"), xlab = "Position",
    ylab = expression(Extended ~ haplotype ~ homozygosity ~ (italic(EHH))),
    cex.lab = 1.25, main = NA, cex.main = 1.5)
```

Arguments

haplohh	An object of class haplohh (see data2haplohh).
mrk	Integer representing the number of the focal marker
limhaplo	Minimal number of haplotypes to continue computing EHH away from the core SNP. Useless, if no missing data. However, when some data are missing, hap- lotypes with missing data are removed from the computation. Hence as we compute EHH further from the core SNP, less haplotypes are expected
limehh	Limit below which EHH stops to be evaluated
maxgap	Maximum allowed gap in bp between two SNPs below which EHH stops to be evaluated (default=NA, i.e., no limitation)
plotehh	If TRUE, EHH estimates for both the ancestral and derived allele are plotted for each position
lty	Line type for the ancestral and derived allele iHH (respectively) curves
lwd	Line width for the ancestral and derived allele iHH (respectively) curves
col	Color for the ancestral and derived allele iHH (respectively) curves
xlab	Legend for the x-axis
ylab	Legend for the y-axis
cex.lab	Size of the axis legend
main	Main legend of the EHHS plot
cex.main	Size of the main legend

Details

EHH are computed at each position upstream and downstream the focal SNP for both the derived and ancestral allele. This allows in turn the computation of the integrated EHH relative to map distances (iHH).

Value

The returned value is a list containing the following components:

ehh	A matrix of two rows and nsnps columns containing EHH estimates at each chromosome position relative to the focal SNP for the ancestral (first row) and derived (second row) alleles.
nhaplo_eval	A matrix of two rows and nsnps columns containing the number of evaluated haplotypes at each chromosome position relative to the focal SNP for the ancestral (first row) and derived (second row) alleles.
ihh	A vector of two elements corresponding respectively to the iHH (integrated EHH) for the ancestral and derived allele.

References

Gautier, M. and Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. *Molecular Ecology*, **20**, 3128–3143.

Sabeti, P.C. et al. (2002). Detecting recent positive selection in the human genome from haplotype structure. *Nature*, **419**, 832–837.

Sabeti, P.C. et al. (2007). Genome-wide detection and characterization of positive selection in human populations. *Nature*, **449**, 913–918.

Tang, K. and Thornton, K.R. and Stoneking, M. (2007). A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome. *Plos Biology*, **7**, e171.

Voight, B.F. and Kudaravalli, S. and Wen, X. and Pritchard, J.K. (2006). A map of recent positive selection in the human genome. *Plos Biology*, **4**, e72.

See Also

calc_ehhs,data2haplohh,scan_hh

Examples

```
#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
```

```
#computing EHH statisitics for the focal SNP at position 456
# which displays a strong signal of selection
res.ehh<-calc_ehh(haplohh_cgu_bta12,mrk=456)</pre>
```

calc_ehhs

EHHS and iES computations at a given core SNP

Description

Compute site Extended Haplotype Homozygosity (EHHS) and integrated EHH (iES) for a given focal SNPs.

Usage

```
calc_ehhs(haplohh, mrk, limhaplo = 2, limehhs = 0.05, maxgap=NA, plotehhs = TRUE,
    lty = 1, lwd = 1.5, col = c("blue", "red"), xlab = "Position",
    ylab = expression(Site ~ specific ~ italic(EHH) ~ (italic(EHHS))),
    cex.lab = 1.25, main = NA, cex.main = 1.5)
```

calc_ehhs

Arguments

haplohh	An object of class haplohh (see data2haplohh).
mrk	Integer representing the number of the focal marker
limhaplo	Minimal number of haplotypes to continue computing EHHS away from the core SNP. Useless, if no missing data. However, when some data are missing, haplotypes with missing data are removed from the computation. Hence as we compute EHH further from the core SNP, less haplotypes are expected
limehhs	Limit below which EHHS stops to be evaluated
maxgap	Maximum allowed gap in bp between two SNPs below which EHHS stops to be evaluated (default=NA, i.e., no limitation)
plotehhs	If TRUE, EHHS estimates are plotted for each position
lty	Line type for the EHHS_Sabeti_et_al_2007 and EHHS_Tang_et_al_2007 (respectively) curves
lwd	Line width for the EHHS_Sabeti_et_al_2007 and EHHS_Tang_et_al_2007 (respectively) curves
col	Color for the EHHS_Sabeti_et_al_2007 and EHHS_Tang_et_al_2007 (respectively) curves
xlab	Legend for the x-axis
ylab	Legend for the y-axis
cex.lab	Size of the axis legend
main	Main legend of the EHHS plot
cex.main	Size of the main legend

Details

EHHS are computed at each position upstream and downstream the focal SNP. This allows in turn the computation of the integrated EHHS relative to map distances (iES).

Value

The returned value is a list containing the following components:

EHHS_Tang_et_al	_2007
	A vector of nsnps columns containing EHHS estimates at each chromosome po-
	sition relative to the focal SNP computed as described in the Tang et al. (2007).
EHHS_Sabeti_et_	al_2007
	A vector of nsnps columns containing EHHS estimates at each chromosome position relative to the focal SNP computed as described in the Sabeti et al. (2007).
nhaplo_eval	A matrix of two rows and nsnps columns containing the number of evaluated haplotypes at each chromosome position relative to the focal SNP for the ancestral (first row) and derived (second row) alleles.
IES_Sabeti_et_a	1_2007
	Integrated EHHS (computed using the estimator by Sabeti et al. (2007)) over
	the chromosome.

IES_Tang_et_al_2007

Integrated EHHS (computed using the estimator by Tang et al. (2007)) over the chromosome.

References

Gautier, M. and Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. *Molecular Ecology*, **20**, 3128–3143.

Sabeti, P.C. et al. (2007). Genome-wide detection and characterization of positive selection in human populations. *Nature*, **449**, 913–918.

Tang, K. and Thornton, K.R. and Stoneking, M. (2007). A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome. *Plos Biology*, **7**, e171.

See Also

calc_ehh,data2haplohh,scan_hh

Examples

```
#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
#computing EHH statistics for the focal SNP at position 456
#which displays a strong signal of selection
res.ehhs<-calc_ehhs(haplohh_cgu_bta12,mrk=456)</pre>
```

data2haplohh Conver	ting data i	nto an obje	ect of cla	ıss hapl	lohh	ļ
---------------------	-------------	-------------	------------	----------	------	---

Description

Converts input file data into an object of class haplohh.

Usage

```
data2haplohh(hap_file,map_file,min_maf=0,min_perc_geno.hap=100,
min_perc_geno.snp=100,chr.name=NA,popsel=NA,recode.allele=FALSE,
haplotype.in.columns=FALSE)
```

Arguments

hap_file	Path to the file containing haplotype data (see details section below for informa- tion about input file format)
map_file	Path to the file containing map information (see details section below for infor- mation about input file format
min_maf	Threshold on Minor Allele Frequency (SNPs displaying a MAF lower than min_maf are discarded)

<pre>min_perc_geno.</pre>	hap	
	Threshold on percentage of missing data for haplotypes (Haplotypes with less than min_perc_geno.hap percent SNPs genotyped are discarded). By default, min_perc_geno.hap=100, hence only fully genotyped haplotypes are retained	
<pre>min_perc_geno.</pre>	snp	
	Threshold on percentage of missing data for SNPs (SNPs genotyped on less than min_perc_geno.snp percent haplotypes are discarded). By default, min_perc_geno.snp=100, hence only fully genotyped SNPs are retained	
chr.name	Name of the chromosome considered (relevant if several chromosomes are represented in the map file)	
popsel	Code of the population considered in the fastPHASE output haplotype file (relevant if hap_file is a fastPHASE output and haplotypes originate from different population)	
recode.allele	If TRUE, allele in the haplotypes are recoded according to the map file infor- mation. If FALSE a rough verification is performed to check only 0 (code for missing data), 1 (code for ancestral allele) or 2 (code for derived allele) are present in the haplotype file	
haplotype.in.columns		
	If TRUE, phased input haplotypes are assumed to be in columns (as produced by the SHAPEIT2 program (O'Connell et al., 2014).	

Details

Three haplotype input formats are supported: i) a standard format with haplotype in row and snps in column (with no header and a haplotype id); ii) a (transposed) format similar to the one produced by the phasing program SHAPEIT2 program (O'Connell et al., 2014) in which haplotypes are in columns and snps in rows (with no header and no snp id); and iii) output files from fastPHASE program (Sheet and Stephens, 2006). If the input haplotypes are not in transposed format (i.e., haplotype.in.columns is FALSE, as by default), the function automatically checks if the file is in fastPHASE output format. In this latter case, if haplotypes originate from several different population were phased simultaneously (-u fastPHASE option was used), the function ask interactively which population should be considered (a list of population number are proposed) unless specified with the popsel argument. Map file contains SNPs information in five columns SNP names, chromosome, position, ancestral and derived allele. SNPs must be in the same order as in the haplotype for the chromosome considered. If several chromosomes are represented in the map file, one can provide the name of the chromosome of interest (corresponding to the haplotype under study) with chr.name argument. Haplotype are recoded (if recode.allele option is activated) according to the ancestral and derived allele definition available in the map file (fourth and fifth columns) as :0=missing data, 1=ancestral allele, 2=derived allele. If such a coding is detected, no recoding is performed. Note that Rsb statistics does not consider ancestral and derived allele status information. Finally, the arguments min_perc_geno.hap, min_perc_geno.snp and min_maf are evaluated in this order.

Value

The returned value is an object of class haplohh

References

Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. *Am J Hum Genet*, **78**, 629-644.

O'Connell J, Gurdasani D, Delaneau O, et al (2014) A general approach for haplotype phasing across the full spectrum of relatedness. *PLoS Genet*, **10**, e1004234.

See Also

calc_ehh,calc_ehhs,scan_hh,make.example.files

Examples

```
#Copy example files in the current working directory.
make.example.files()
#using the fastPHASE output haplotype example file
hap<-data2haplohh(hap_file="bta12_hapguess_switch.out",map_file="map.inp",
min_maf=0.05,popsel=7,chr.name=12,recode.allele=TRUE)
#using the standard output haplotype example file
hap<-data2haplohh(hap_file="bta12_cgu.hap",map_file="map.inp",
min_maf=0.05,chr.name=12,recode.allele=TRUE)
```

distribplot

Distribution of standardized iHS or Rsb values

Description

Plot the observed distribution of standardized iHS or Rsb values together with the expected standard Gaussian distribution

Usage

```
distribplot(data,lty = 1,lwd = 1.5,col = c("blue","red"),
main = "Genome-wide distribution",xlab = "",cex.main = 1.5,cex.lab = 1.25,qqplot = TRUE)
```

Arguments

data	A vector of iHS, Rsb or XPEHH values.
col	A vector describing color of the Observed and expected Gaussian distribution
main	Character string for the plot legend
xlab	Character string for the X-axis legend
cex.lab	Size of axis legends
cex.main	Size of the main legend
lty	Line Type
lwd	Line Width
qqplot	If TRUE a qq-plot is drawn

haplohh-class

Value

The function returns a plot.

See Also

scan_hh,ihh2ihs,ies2rsb,ihsplot,rsbplot,ies2xpehh,xpehhplot

Examples

```
data(wgscan.cgu)
## results from a genome scan (44,057 SNPs) see ?wgscan.eut for details
val.ihs<-ihh2ihs(wgscan.cgu)$iHS[,3]
##standardize
distribplot(val.ihs,main="iHS (CGU population)")
dev.off()</pre>
```

haplohh-class Class "haplohh"

Description

An object of class haplohh contains all relevant haplotype information (see below).

Objects from the Class

Objects can be created by calls of the form new("haplohh", ...).

Slots

haplo Object of class "matrix": haplotypes with alleles coded as 0 (missing data), 1 (ancestral allele) or 2 (derived allele)

position Object of class "numeric":position of the SNPs in the chromosome

snp.name Object of class "character":names of the SNP

chr.name Object of class "character":name of the chromosome SNPs are mapping to

nhap Object of class "numeric":number of haplotypes

nsnp Object of class "numeric":number of SNPs in the haplotypes

See Also

data2haplohh

Examples

showClass("haplohh")

haplohh_cgu_bta12 Example of an haplohh object

Description

The object contains haplotype data for 140 cattle individuals (280 haplotypes) belonging to the Creole breed from Guadeloupe (CGU) and 1424 SNPs (mapping to chromosome BTA12).

Usage

```
data(haplohh_cgu_bta12)
```

References

Gautier, M. and Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. *Molecular Ecology*, **20**, 3128–3143.

See Also

data2haplohh

ies2rsb

Compute Rsb (standardized ratio of iES from two populations)

Description

Compute Rsb (standardized ratio of iES from two populations).

Usage

ies2rsb(hh_pop1, hh_pop2, popname1=NA, popname2=NA, method="bilateral")

Arguments

hh_pop1	A matrix with nsnps rows and six columns (Chromosome name, position of the SNP, Frequency of the ancestral allele, iHH for the ancestral allele, iHH for the derived allele and iES) obtained after performing a scan on the first population.
hh_pop2	A matrix with nsnps rows and six columns (Chromosome name, position of the SNP, Frequency of the ancestral allele, iHH for the ancestral allele, iHH for the derived allele and iES) obtained after performing a scan on the second population.
popname1	Name of the first population compared (character string).
popname2	Name of the second population compared (character string).
method	Either "bilateral" or "unilateral". If bilateral (resp. unilateral), pvalue (assuming Rsb follows a standard Gaussian distribution under neutrality) corresponds to a bilateral (resp. unilateral) tests

ies2xpehh

Details

Ratio of iES (population 1 over population 2) computed and standardized as described in Tang et al. (2007)

Value

The returned value is a matrix with nsnps rows and four columns (Chromosome name, position of the SNP, Rsb and Pvalue)

References

Gautier, M. and Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. *Molecular Ecology*, **20**, 3128–3143.

Tang, K. and Thornton, K.R. and Stoneking, M. (2007). A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome. *Plos Biology*, **7**, e171.

See Also

calc_ehhs,scan_hh,distribplot,rsbplot

Examples

```
data(wgscan.cgu) ; data(wgscan.eut)
## results from a genome scan (44,057 SNPs)
##see ?wgscan.eut and ?wgscan.cgu for details
res.rsb<-ies2rsb(wgscan.cgu,wgscan.eut,"CGU","EUT")</pre>
```

ies2xpe	h	h
---------	---	---

Compute xpEHH (standardized ratio of iES from two populations) as described in Sabeti et al. (2007)

Description

Compute xpEHH (standardized ratio of iES from two populations) as described in Sabeti et al. (2007).

Usage

```
ies2xpehh(hh_pop1,hh_pop2,popname1=NA,popname2=NA,method="bilateral")
```

Arguments

hh_pop1 A matrix with nsnps rows and six columns (Chromosome name, position of the SNP, Frequency of the ancestral allele, iHH for the ancestral allele, iHH for the derived allele and iES) obtained after performing a scan on the first population.

hh_pop2	A matrix with nsnps rows and six columns (Chromosome name, position of the SNP, Frequency of the ancestral allele, iHH for the ancestral allele, iHH for the derived allele and iES) obtained after performing a scan on the second population.
popname1	Name of the first population compared (character string).
popname2	Name of the second population compared (character string).
method	Either "bilateral" or "unilateral". If bilateral (resp. unilateral), pvalue (assuming Rsb follows a standard Gaussian distribution under neutrality) corresponds to a bilateral (resp. unilateral) tests

Details

Ratio of iES (population 1 over population 2) computed and standardized as described in Sabeti et al. (2007)

Value

The returned value is a matrix with nsnps rows and four columns (Chromosome name, position of the SNP, xpEHH and Pvalue)

References

Gautier, M. and Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. *Molecular Ecology*, **20**, 3128–3143.

Sabeti, P.C. et al. (2007). Genome-wide detection and characterization of positive selection in human populations. *Nature*, **449**, 913–918.

See Also

calc_ehhs,scan_hh,distribplot,rsbplot

Examples

```
data(wgscan.cgu) ; data(wgscan.eut)
## results from a genome scan (44,057 SNPs)
##see ?wgscan.eut and ?wgscan.cgu for details
xpehh<-ies2xpehh(wgscan.cgu,wgscan.eut,"CGU","EUT")</pre>
```

ihh2ihs

Compute iHS (standardized iHH)

Description

Compute iHS (standardized iHH).

Usage

ihh2ihs(res_ihh,freqbin=0.025,minmaf=0.05)

ihh2ihs

Arguments

res_ihh	A dataframe with nsnps rows and seven columns as obtained from the scan_hh function applied to the population of interest.
freqbin	Size of the bin to standardize log(iHH1/iHH2) according to the underlying De- rived Allele frequency. Allele frequency bins vary from minmaf to 1-minmaf per step of size freqbin. If freqbin is set to 0 (e.g. in the case of a large number of SNPs and few haplotypes), standardization is performed considering each observed frequency as a frequency class.
minmaf	SNPs with a MAF (Minor Allele Frequency) lower than minmaf are discarded from the analysis

Details

iHS (standardized iHH) are standardized as described in Voight et al. (2006)

Value

The returned value is a list containing two elements

res.ihs	a dataframe with nsnps rows and four columns (Chromosome name, position of the SNP, iHS and Pvalue in a $\log\!10$ scale)
summary.class	matrix with nclasses rows and three columns (Number of SNPs belonging to this class, position of the SNP, mean iHH in this class, standard deviation of iHH in this class)

References

Gautier, M. and Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. *Molecular Ecology*, **20**, 3128–3143.

Voight, B.F. and Kudaravalli, S. and Wen, X. and Pritchard, J.K. (2006). A map of recent positive selection in the human genome. *Plos Biology*, **4**, e72.

See Also

calc_ehh,scan_hh,distribplot,ihsplot

Examples

```
data(wgscan.cgu)
## results from a genome scan (44,057 SNPs)
##see ?wgscan.eut and ?wgscan.cgu for details
res.ihs<-ihh2ihs(wgscan.cgu)</pre>
```

ihsplot

Description

Plot iHS over a genome.

Usage

```
ihsplot(ihsdata,plot.pval = TRUE,ylim.scan = 2,pch = 16,cex = 0.5,cex.lab = 1.25,
main = NA,cex.main = 1.5,cex.axis=1.)
```

Arguments

ihsdata	A list obtained with the ihh2ihs function.
plot.pval	Either TRUE or FALSE if Pvalue should not be plotted
ylim.scan	An horizontal line is added at the corresponding coordinate, for instance to represent a significance threshold
pch	Type of the points representing SNPs in the plot(s)
cex	Size of the points representing SNPs in the plot(s)
cex.lab	Size of axis legends
main	Main Legend of the plot
cex.main	Size of the main legend
cex.axis	Size of the axis annotations
cex cex.lab main cex.main cex.axis	Size of the points representing SNPs in the plot(s) Size of axis legends Main Legend of the plot Size of the main legend Size of the axis annotations

Value

The function returns a plot

References

Gautier, M. and Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. *Molecular Ecology*, **20**, 3128–3143.

Voight, B.F. and Kudaravalli, S. and Wen, X. and Pritchard, J.K. (2006). A map of recent positive selection in the human genome. *Plos Biology*, **4**, e72.

See Also

ihh2ihs

Examples

```
data(wgscan.cgu)
## results from a genome scan (44,057 SNPs)
##see ?wgscan.eut and ?wgscan.cgu for details
res.ihs<-ihh2ihs(wgscan.cgu)
ihsplot(res.ihs)</pre>
```

make.example.files Creating example input files

Description

This function allows to copy in the working directory three different example files: bta12_cgu.hap (an haplotype input file in standard format), bta12_hapguess_switch.out (an haplotype input file in fastphase output format) and map.inp (a SNP information input file). These files contains data for 280 haplotypes (originating from 140 individuals belonging to the Creole cattle breed from Guadeloupe) of 1,424 SNPs mapping to bovine chromosome 12 (BTA12) (see reference below).

Usage

make.example.files()

References

Gautier, M. and Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. *Molecular Ecology*, **20**, 3128–3143.

See Also

data2haplohh

Examples

make.example.files()

rsbplot

Plot Rsb over a genome

Description

Plot Rsb over a genome.

Usage

```
rsbplot(data,plot.pval = TRUE,ylim.scan = 2,pch = 16,cex = 0.5,cex.lab = 1.25,
main = NA,cex.main = 1.5,cex.axis=1.)
```

Arguments

data	A dataframe obtained using ies2rsb function.
plot.pval	Either TRUE or FALSE if Pvalue should not be plotted
ylim.scan	An horizontal line is added at the corresponding coordinate, for instance to represent a significance threshold
pch	Type of the points representing SNPs in the plot(s)
cex	Size of the points representing SNPs in the plot(s)
cex.lab	Size of axis legends
main	Main Legend of the plot
cex.main	Size of the main legend
cex.axis	Size of the axis annotations

Value

The function returns a plot

References

Gautier, M. and Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. *Molecular Ecology*, **20**, 3128–3143.

Tang, K. and Thornton, K.R. and Stoneking, M. (2007). A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome. *Plos Biology*, **7**, e171.

See Also

ies2rsb

Examples

```
data(wgscan.cgu) ; data(wgscan.eut)
## results from a genome scan (44,057 SNPs)
#see ?wgscan.eut and ?wgscan.cgu for details
res.rsb<-ies2rsb(wgscan.cgu,wgscan.eut,"CGU","EUT")
rsbplot(res.rsb)</pre>
```

scan_hh

Computing EHH based statistics over a whole chromosome

Description

Compute Extended Haplotype Homozygosity (EHH), site-specific EHH (EHHS), integrated EHH (iHH) and integrated EHHS (iES) for all SNPs of the chromosome (or linkage group).

scan_hh

Usage

scan_hh(haplohh,limhaplo=2,limehh=0.05,limehhs=0.05,maxgap=NA,threads=1)

Arguments

haplohh	An object of class haplohh (see data2haplohh).
limhaplo	Minimal number of haplotypes to continue computing EHH away from the core SNP. Useless, if no missing data. However, when some data are missing, haplotypes with missing data are removed from the computation. Hence as we compute EHH further from the core SNP, less haplotypes are expected
limehh	Limit below which EHH stops to be evaluated
limehhs	Limit below which EHHS stops to be evaluated
maxgap	Maximum allowed gap in bp between two SNPs below which EHH and EHHS stop to be evaluated (default=NA, i.e., no limitation)
threads	Number of threads to parallelize compution

Details

Extended Haplotype Homozygosity (EHH), site-specific EHH (EHHS), integrated EHH (iHH) and integrated EHHS (iES) are computed for all SNPs of the chromosome (or linkage group). This function is several times faster as a procedure calling in turn calc_ehh and calc_ehhs for all the SNP. To perform a whole genome-scan this function needs to be called for each chromosome and results concatenated.

Value

The returned value is a dataframe with nsnps rows and seven columns (Chromosome name, position of the SNP, Frequency of the ancestral allele, iHH for the ancestral allele, iHH for the derived allele, iES using the estimator by Sabeti et al. (2007) estimator and iES using the estimator by Tang et al. (2007))

References

Gautier, M. and Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. *Molecular Ecology*, **20**, 3128–3143.

Sabeti, P.C. et al. (2002). Detecting recent positive selection in the human genome from haplotype structure. *Nature*, **419**, 832–837.

Sabeti, P.C. et al. (2007). Genome-wide detection and characterization of positive selection in human populations. *Nature*, **449**, 913–918.

Tang, K. and Thornton, K.R. and Stoneking, M. (2007). A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome. *Plos Biology*, **7**, e171.

Voight, B.F. and Kudaravalli, S. and Wen, X. and Pritchard, J.K. (2006). A map of recent positive selection in the human genome. *Plos Biology*, **4**, e72.

See Also

calc_ehh,calc_ehhs,data2haplohh,ihh2ihs,ies2rsb

Examples

```
#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
res.scan<-scan_hh(haplohh_cgu_bta12)</pre>
```

xpehhplot

Plot XPEHH over a genome

Description

Plot XPEHH over a genome.

Usage

```
xpehhplot(data,plot.pval = TRUE,ylim.scan = 2,pch = 16,cex = 0.5,cex.lab = 1.25,
main = NA,cex.main = 1.5,cex.axis=1.)
```

Arguments

data	A dataframe obtained using ies2xpehh function.
plot.pval	Either TRUE or FALSE if Pvalue should not be plotted
ylim.scan	An horizontal line is added at the corresponding coordinate, for instance to represent a significance threshold
pch	Type of the points representing SNPs in the plot(s)
cex	Size of the points representing SNPs in the plot(s)
cex.lab	Size of axis legends
main	Main Legend of the plot
cex.main	Size of the main legend
cex.axis	Size of the axis annotations

Value

The function returns a plot

References

Gautier, M. and Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. *Molecular Ecology*, **20**, 3128–3143.

Sabeti, P.C. et al. (2007). Genome-wide detection and characterization of positive selection in human populations. *Nature*, **449**, 913–918.

See Also

ies2xpehh

20

xpehhplot

Examples

```
data(wgscan.cgu) ; data(wgscan.eut)
## results from a genome scan (44,057 SNPs)
#see ?wgscan.eut and ?wgscan.cgu for details
res.xpehh<-ies2xpehh(wgscan.cgu,wgscan.eut,"CGU","EUT")
xpehhplot(res.xpehh)</pre>
```

Index

*Topic classes haplohh-class, 11 *Topic package rehh-package, 2 bifurcation.diagram, 3calc_ehh,4 calc_ehhs, 6 data2haplohh,8 distribplot, 10 haplohh-class, 11 haplohh_cgu_bta12, 12 ies2rsb, 12 ies2xpehh, 13 ihh2ihs, 14 ihsplot, 16 make.example.files, 17 rehh (rehh-package), 2 rehh-package, 2 rsbplot, 17 scan_hh, 18

xpehhplot, 20