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createData

createData

Simulate test data

Description

This function creates synthetic dataset with various problems such as overdispersion, zero-inflation,

etc.
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Usage

createData(sampleSize = 10, intercept = 0, fixedEffects = 1,
quadraticFixedEffects = NULL, numGroups = 1@, randomEffectVariance = 1,
overdispersion = @, family = poisson(), scale = 1, cor = 0,
roundPoissonVariance = NULL, pZeroInflation = @, binomialTrials =1,
temporalAutocorrelation = @, spatialAutocorrelation = 0,
factorResponse = F, replicates = 1)

Arguments
sampleSize sample size of the dataset
intercept intercept (linear scale)

fixedEffects vector of fixed effects (linear scale)
quadraticFixedEffects
vector of quadratic fixed effects (linear scale)
numGroups number of groups for the random effect
randomeffectVariance
variance of the random effect (intercept)
overdispersion if this is a numeric value, it will be used as the sd of a random normal variate

that is added to the linear predictor. Alternatively, a random function can be
provided that takes as input the linear predictor.

family family

scale scale if the distribution has a scale (e.g. sd for the Gaussian)
cor correlation between predictors

roundPoissonVariance

if set, this creates a uniform noise on the possion response. The aim of this is to
create heteroscedasticity

pZeroInflation probability to set any data point to zero

binomialTrials Number of trials for the binomial. Only active if family == binomial

temporalAutocorrelation
strength of temporal Autocorrelation

spatialAutocorrelation
strength of spatial Autocorrelation

factorResponse should the response be transformed to a factor (inteded to be used for 0/1 data)

replicates number of datasets to create

Examples

testData = createData(sampleSize = 500, intercept = 2, fixedEffects = c(1),
overdispersion = @, family = poisson(), quadraticFixedEffects = c(-3),
randomEffectVariance = 0)

par(mfrow = c(1,2))
plot(testData$Environment1, testData$observedResponse)
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hist(testData$observedResponse)

# with zero-inflation

testData = createData(sampleSize = 500, intercept = 2, fixedEffects = c(1),
overdispersion = @, family = poisson(), quadraticFixedEffects = c(-3),
randomEffectVariance = @, pZeroInflation = 0.6)

par(mfrow = c(1,2))

plot(testData$Environmentl, testData$observedResponse)

hist(testData$observedResponse)

# binomial with multiple trials

testData = createData(sampleSize = 40, intercept = 2, fixedEffects = c(1),

overdispersion = @, family = binomial(), quadraticFixedEffects = c(-3),

randomEffectVariance = @, binomialTrials = 20)

plot(observedResponsel / observedResponse@ ~ Environment1, data = testData, ylab = "Proportion 1")

# spatial / temporal correlation

testData = createData(sampleSize = 100, family = poisson(), spatialAutocorrelation = 3,
temporalAutocorrelation = 3)

plot(log(observedResponse) ~ time, data = testData)
plot(log(observedResponse) ~ x, data = testData)

createDHARMa Convert simulated residuals or posterior predictive simulations to a
DHARMa object

Description

Convert simulated residuals or posterior predictive simulations to a DHARMa object

Usage

createDHARMa(scaledResiduals = NULL, simulatedResponse = NULL,
observedResponse = NULL, fittedPredictedResponse = NULL,
integerResponse = F)

Arguments

scaledResiduals
optional scaled residuals from a simulation, e.g. Bayesian p-values. If those are
not provided, simulated and true observations have to be provided.
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simulatedResponse
matrix of observations simulated from the fitted model - row index for observa-
tions and colum index for simulations

observedResponse
true observations

fittedPredictedResponse
fitted predicted response. Optional, but will be neccessary for some plots. If
scaled residuals are Bayesian p-values, using the median posterior prediction as
fittedPredictedResponse is recommended.

integerResponse
if T, noise will be added at to the residuals to maintain a uniform expectations for
integer responses (such as Poisson or Binomial). Unlike in simulateResiduals,
the nature of the data is not automatically detected, so this MUST be set by the
user appropriately

Details

The use of this function is to convert simulated residuals (e.g. from a point estimate, or Bayesian
p-values) to a DHARMa object, to make use of the plotting / test functions in DHARMa

Note

Either scaled residuals or (simulatedResponse AND observed response) have to be provided

Examples

## Not run:

# This example shows how to check the residuals for a
# Bayesian fit of a process-based vegetation model, using
# THe BayesianTools package

library(BayesianTools)

# Create input data for the model
PAR <- VSEMcreatePAR(1:1000)
plotTimeSeries(observed = PAR)

# load reference parameter definition (upper, lower prior)

refPars <- VSEMgetDefaults()

# this adds one additional parameter for the likelihood standard deviation (see below)
refPars[12,] <- c(2, 0.1, 4)

rownames (refPars)[12] <- "error-sd”

# create some simulated test data

# generally recommended to start with simulated data before moving to real data
referenceData <- VSEM(refPars$best[1:11], PAR) # model predictions with reference parameters
referenceDatal,1] = 1000 * referenceDatal,1]

# this adds the error - needs to conform to the error definition in the likelihood

obs <- referenceData + rnorm(length(referenceData), sd = refPars$best[12])
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parSel = c(1:6, 12) # parameters to calibrate

# here is the likelihood
likelihood <- function(par, sum = TRUE){
# set parameters that are not calibrated on default values
x = refPars$best
x[parSel] = par
predicted <- VSEM(x[1:11], PAR) # replace here VSEM with your model
predicted[,1] = 1000 * predicted[,1] # this is just rescaling
diff <- c(predicted[,1:4] - obs[,1:4]) # difference betweeno observed and predicted
# univariate normal likelihood. Note that there is a parameter involved here that is fit
11Values <- dnorm(diff, sd = x[12], log = TRUE)
if (sum == FALSE) return(llValues)
else return(sum(llValues))
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# optional, you can also directly provide lower, upper in the createBayesianSetup, see help
prior <- createUniformPrior(lower = refPars$lower[parSel],
upper = refPars$upper[parSel], best = refPars$best[parSel])

bayesianSetup <- createBayesianSetup(likelihood, prior, names = rownames(refPars)[parSel])

# settings for the sampler, iterations should be increased for real applicatoin
settings <- list(iterations = 10000, nrChains = 2)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)

plot(out)
summary (out)
gelmanDiagnostics(out) # should be below 1.05 for all parameters to demonstrate convergence

# Posterior predictive simulations

# Create a function to create posterior predictive simulations
createPredictions <- function(par){
# set the parameters that are not calibrated on default values
x = refPars$best
x[parSel] = par
predicted <- VSEM(x[1:11], PAR) * 1000
out = rnorm(length(predicted), mean = predicted, sd = par[7])
return(out)

posteriorSample = getSample(out, numSamples = 1000)
posteriorPredictiveSims = apply(posteriorSample, 1, createPredictions)

dim(posteriorPredictiveSims)

library(DHARMa)

x = createDHARMa(t(posteriorPredictiveSims))
plot(x)

## End(Not run)
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DHARMa DHARMa - Residual Diagnostics for HierArchical (Multi-level /
Mixed) Regression Models

Description

The "’DHARMa’ package uses a simulation-based approach to create readily interpretable scaled
(quantile) residuals for fitted generalized linear mixed models. Currently supported are generalized
linear mixed models from ’Ime4’ (classes 'lmerMod’, ’glmerMod’) and *glmmTMB’, generalized
additive models ("gam’ from 'mgcv’), ’glm’ (including 'negbin’ from "MASS’, but excluding quasi-
distributions) and ’Im’ model classes. Alternatively, externally created simulations, e.g. posterior
predictive simulations from Bayesian software such as ’JAGS’, "STAN’, or 'BUGS’ can be pro-
cessed as well. The resulting residuals are standardized to values between 0 and 1 and can be
interpreted as intuitively as residuals from a linear regression. The package also provides a number
of plot and test functions for typical model misspecification problems, such as over/underdispersion,
zero-inflation, and residual spatial and temporal autocorrelation.

Details

See index / vignette for details

See Also

simulateResiduals

Examples

vignette("DHARMa", package="DHARMa")

fitted.gam This function overwrites the standard fitted function for GAM

Description

This function overwrites the standard fitted function for GAM

Usage
## S3 method for class 'gam'
fitted(object, ...)
Arguments
object fitted model

arguments to be passed on to stats::fitted
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Note

See explanation at

getRandomState Record and restore a random state

Description

The aim of this function is to record, manipualate and restor a random state

Usage
getRandomState(seed = NULL)

Arguments
seed seed argument to set.seed(). NULL = no seed, but random state will be restored.
F = random state will not be restored
Details

This function is intended for two (not mutually exclusive tasks)
a) record the current random state

b) change the current random state in a way that the previous state can be restored

Value
a list with various infos about the random state that after function execution, as well as a function
to restore the previous state before the function execution

Author(s)

Florian Hartig

Examples

# testing the function in standard settings

set.seed(13)

runif (1)

x = getRandomState(123)
runif(1)
x$restoreCurrent()
runif(1)

# values outside set /restore are identical to

set.seed(13)
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runif(2)
# if no seed is set, this will also be restored
rm(.Random. seed)

x = getRandomState(123)
runif(1)
x$restoreCurrent()
exists(”.Random.seed")

# with false

rm(.Random. seed)

x = getRandomState(seed = FALSE)
exists(”.Random.seed")

runif(1)

x$restoreCurrent()
exists(”.Random.seed")

plot.DHARMa DHARMa standard residual plots

Description

This function creates standard plots for the simulated residuals

Usage
## S3 method for class 'DHARMa‘’
plot(x, rank = TRUE, ...)
Arguments
X an object with simualted residuals created by simulateResiduals
rank if T (default), the values of pred will be rank transformed. This will usually make
patterns easier to spot visually, especially if the distribution of the predictor is
skewed.

further options for plotResiduals. Consider in particular parameters quantreg,
rank and asFactor. xlab, ylab and main cannot be changed when using plotSim-
ulatedResiduals, but can be changed when using plotResiduals.

Details

The function creates two plots. To the left, a qq-uniform plot to detect deviations from overall uni-
formity of the residuals (calling plotQQunif), and to the right, a plot of residuals against predicted
values (calling plotResiduals). For a correctly specified model, we would expect
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a) a straight 1-1 line in the uniform qg-plot -> evidence for an overal uniform (flat) distribution of
the residuals

b) uniformity of residuals in the vertical direction in the res against predictor plot
Deviations of this can be interpreted as for a liner regression. See the vignette for detailed examples.

To provide a visual aid in detecting deviations from uniformity in y-direction, the plot of the residu-
als against the predited values also performs an (optional) quantile regression, which provides 0.25,
0.5 and 0.75 quantile lines across the plots. These lines should be straight, horizontal, and at y-
values of 0.25, 0.5 and 0.75. Note, however, that some deviations from this are to be expected by
chance, even for a perfect model, especially if the sample size is small. See further comments on
this plot, and options, in plotResiduals

The quantile regression can take some time to calculate, especially for larger datasets. For that
reason, quantreg = F can be set to produce a smooth spline instead. This is default for n > 2000.
See Also

plotResiduals, plotQQunif

Examples

testData = createData(sampleSize = 200, family = poisson(),
randomEffectVariance = @, numGroups = 5)
fittedModel <- glm(observedResponse ~ Environmentl,
family = "poisson”, data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)
#H##HAE# main plotting function ##H##HHHHEHHEHE

# for all functions, quantreg = T will be more
# informative, but slower

plot(simulationOutput, quantreg = FALSE)

HIHHEHEAEEEA qq plot  #HHEEEHEEHEHEHEHEHEHEHE
plotQQunif(simulationOutput = simulationOutput)
HHHHAEHEHAEE residual plots  #HHEHHEHEEHAHHE

# rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)

# residual vs predictors, using explicit values for pred, residual
plotResiduals(pred = testData$Environmentl,
residuals = simulationOutput$scaledResiduals, quantreg = FALSE)

# if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(pred = testData$group, residuals = simulationOutput$scaledResiduals,

quantreg = FALSE, asFactor = TRUE)

# All these options can also be provided to the main plotting function
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plot(simulationOutput, quantreg = FALSE, rank = FALSE)

# If you want to plot summaries per group, use
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, asFactor = TRUE) # we see one residual point per RE

plotConventionalResiduals
Conventional residual plot

Description

Convenience function to draw conventional residual plots

Usage

plotConventionalResiduals(fittedModel)

Arguments

fittedModel a fitted model object

plotQQunif Quantile-quantile plot for a uniform distribution

Description

The function produces a uniform quantile-quantile plot from a DHARMa output

Usage

plotQQunif(simulationOQutput, testUniformity = T)

Arguments

simulationQutput
a DHARMa simulation output (class DHARMa)

testUniformity if T, the function testUniformity will be called and the result will be added to
the plot
Details

the function calls qqunif from the R package gap to create a quantile-quantile plot for a uniform
distribution.
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See Also

plotSimulatedResiduals, plotResiduals

Examples

testData = createData(sampleSize = 200, family = poisson(),
randomEffectVariance = @, numGroups = 5)
fittedModel <- glm(observedResponse ~ Environmentl,
family = "poisson”, data = testData)
simulationQutput <- simulateResiduals(fittedModel = fittedModel)

HHHEH# main plotting function #HHHEHHHHHIH

# for all functions, quantreg = T will be more
# informative, but slower

plot(simulationOutput, quantreg = FALSE)

HHHEHHEAEA qq plot  #HEEHHEEEHHEHEHEHEHEHE
plotQQunif(simulationOutput = simulationOutput)
HHHEHEAEEEA residual plots  ##HHEHEHEHEHHEH

# rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)

# residual vs predictors, using explicit values for pred, residual
plotResiduals(pred = testData$Environmentl,
residuals = simulationOutput$scaledResiduals, quantreg = FALSE)

# if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(pred = testData$group, residuals = simulationOutput$scaledResiduals,
quantreg = FALSE, asFactor = TRUE)

# All these options can also be provided to the main plotting function
plot(simulationQutput, quantreg = FALSE, rank = FALSE)

# If you want to plot summaries per group, use
simulationOutput = recalculateResiduals(simulationQutput, group = testData$group)
plot(simulationOutput, asFactor = TRUE) # we see one residual point per RE

plotResiduals Generic residual plot with either spline or quantile regression

Description

The function creates a generic residual plot with either spline or quantile regression
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Usage
plotResiduals(pred, residuals = NULL, quantreg = NULL, rank = FALSE,
asFactor = FALSE, ...)
Arguments
pred either the predictor variable against which the residuals should be plotted, or a
DHARMa object
residuals residuals values. Leave empty if pred is a DHARMa object
quantreg whether to perform a quantile regression on 0.25, 0.5, 0.75 on the residuals. If

F, a spline will be created instead. Default NULL chooses T for nObs < 2000,
and F otherwise.

rank if T, the values of pred will be rank transformed. This will usually make patterns
easier to spot visually, especially if the distribution of the predictor is skewed.
If pred is a factor, this has no effect.

asFactor should the predictor variable converted into a factor

additional arguments to plot

Details

For a correctly specified model, we would expect uniformity in y direction when plotting against
any predictor.

To provide a visual aid in detecting deviations from uniformity in y-direction, the plot of the residu-
als against the predited values also performs an (optional) quantile regression, which provides 0.25,
0.5 and 0.75 quantile lines across the plots. These lines should be straight, horizontal, and at y-
values of 0.25, 0.5 and 0.75. Note, however, that some deviations from this are to be expected by
chance, even for a perfect model, especially if the sample size is small.

The quantile regression can take some time to calculate, especially for larger datasets. For that
reason, quantreg = F can be set to produce a smooth spline instead.

Note

if pred is a factor, a boxplot will be plotted instead of a scatter plot. The distribution for each factor
level should be uniformly distributed, so the box should go from 0.25 to 0.75, with the median
line at 0.5. Again, chance deviations from this will increases when the sample size is smaller.
You can run null simulations to test if the deviations you see exceed what you would expect from
random variation. If you want to create box plots for categorical predictors (e.g. because you only
have a small number of unique numberic predictor values), you can convert your predictor with
as.factor(pred)

See Also

plotSimulatedResiduals, plotQQunif
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Examples

testData = createData(sampleSize = 200, family = poisson(),
randomEffectVariance = @, numGroups = 5)
fittedModel <- glm(observedResponse ~ Environmentl,
family = "poisson”, data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

HHHEHEH# main plotting function #HHHEHHHEHI

# for all functions, quantreg = T will be more
# informative, but slower

plot(simulationOutput, quantreg = FALSE)

HHHHEHHAAEEAE qq plot  #HEEHEHEHHHEHEHEHEHEHE
plotQQunif(simulationOutput = simulationOutput)
A residual plots  ##HEHEHHHEHEHE

# rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)

# residual vs predictors, using explicit values for pred, residual
plotResiduals(pred = testData$Environmentl,
residuals = simulationOutput$scaledResiduals, quantreg = FALSE)

# if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(pred = testData$group, residuals = simulationOutput$scaledResiduals,
quantreg = FALSE, asFactor = TRUE)

# All these options can also be provided to the main plotting function
plot(simulationQutput, quantreg = FALSE, rank = FALSE)

# If you want to plot summaries per group, use
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, asFactor = TRUE) # we see one residual point per RE

plotSimulatedResiduals
DHARMa standard residual plots

Description

DEPRECATED, use plot() instead
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Usage
plotSimulatedResiduals(simulationOutput, ...)
Arguments
simulationOutput
an object with simualted residuals created by simulateResiduals
further options for plotResiduals. Consider in particular parameters quantreg,
rank and asFactor. xlab, ylab and main cannot be changed when using plotSim-
ulatedResiduals, but can be changed when using plotResiduals.
Note

THis function is deprecated. Use plot.DHARMa

See Also

plotResiduals, plotQQunif

print.DHARMa Print simulated residuals

Description

Print simulated residuals

Usage
## S3 method for class 'DHARMa’
print(x, ...)
Arguments
X an object with simulated residuals created by simulateResiduals

optional arguments for compatibility with the generic function, no function im-
plemented
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recalculateResiduals  Recalculate residuals with grouping

Description

The purpose of this function is to recalculate scaled residuals per group, based on the simulations
done by simulateResiduals

Usage

recalculateResiduals(simulationOutput, group = NULL, aggregateBy = sum)

Arguments
simulationOutput
an object with simualted residuals created by simulateResiduals
group group of each data point

aggregateBy function for the aggregation. Default is sum. This should only be changed if
you know what you are doing. Note in particular that the expected residual
distribution might not be flat any more if you choose general functions, such as
sd etc.

Value

an object of class DHARMa, similar to what is returned by simulateResiduals, but with addi-
tional outputs for the new grouped calculations. Note that the relevant outputs are 2x in the object,
the first is the grouped calculations (which is returned by $name access), and later another time, un-
der identical name, the original output. Moreover, there is a function ’aggregateByGroup’, which
can be used to aggregate predictor variables in the same way as the variables calculated here

Examples

library(1lme4)

testData = createData(sampleSize = 200, overdispersion = 0.5, family = poisson())
fittedModel <- glmer(observedResponse ~ Environment1l + (1|group),

family = "poisson”, data = testData,

control=glmerControl (optCtrl=1ist(maxfun=20000) ))

simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# plot residuals, quantreg = T is better but costs more time
plot(simulationOutput, quantreg = FALSE)

# the calculated residuals can be accessed via
residuals(simulationOutput)
simulationOutput$scaledResiduals
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# calculating summaries per group
simulationQOutput = recalculateResiduals(simulationQutput, group = testData$group)
plot(simulationOutput, quantreg = FALSE)

# create simulations with refitting, n=5 is very low, set higher when using this
simulationOutput <- simulateResiduals(fittedModel = fittedModel,

n =10, refit = TRUE)
plot(simulationOutput, quantreg = FALSE)

# grouping per random effect group works as above
simulationQutput = recalculateResiduals(simulationQutput, group = testData$group)
plot(simulationQutput, quantreg = FALSE)

refit.glmmTMB Refit a Model with a Different Response

Description

Refit a Model with a Different Response

Usage
## S3 method for class 'glmmTMB'
refit(object, newresp, ...)
Arguments
object a fitted model
newresp a new response

further arguments, no effect implemented for this S3 class

Examples

testData = createData(sampleSize = 200, family = poisson())

# examples of refit with different model classes
library(1me4)

library(mgcv)

library(glmmTMB)

fittedModel <- 1Im(observedResponse ~ Environmentl , data = testData)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- glm(observedResponse ~ Environment1 , data = testData, family = "poisson”)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])
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refit.Im

fittedModel <- mgcv::gam(observedResponse ~ s(Environmentl1) , data = testData, family = "poisson”)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- 1me4::1lmer(observedResponse ~ Environmentl + (1|group) , data = testData)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- 1me4::glmer (observedResponse ~ Environment1 + (1]|group) , data = testData,
family = "poisson”)

newResponse = simulate(fittedModel)

refit(fittedModel, newResponse[,1])

fittedModel <- glmmTMB: :glmmTMB(observedResponse ~ Environment1 + (1|group) , data = testData)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

refit.1lm Refit a Model with a Different Response

Description

Refit a Model with a Different Response

Usage

## S3 method for class 'lm'

refit(object, newresp, ...)
Arguments

object a fitted model

newresp a new response

further arguments, no effect implemented for this S3 class

Examples

testData = createData(sampleSize = 200, family = poisson())

# examples of refit with different model classes

library(1me4)
library(mgcv)

library(glmmTMB)

fittedModel <- 1Im(observedResponse ~ Environmentl , data = testData)

newResponse =

simulate(fittedModel)

refit(fittedModel, newResponse[,1])

fittedModel <- glm(observedResponse ~ Environment1 , data = testData, family = "poisson”)
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newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- mgcv::gam(observedResponse ~ s(Environmentl1) , data = testData, family = "poisson”)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- 1me4::1lmer(observedResponse ~ Environmentl + (1|group) , data = testData)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- 1me4::glmer (observedResponse ~ Environment1 + (1]|group) , data = testData,
family = "poisson™)

newResponse = simulate(fittedModel)

refit(fittedModel, newResponse[,1])

fittedModel <- glmmTMB: :glmmTMB(observedResponse ~ Environment1 + (1|group) , data = testData)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

residuals.DHARMa Return residuals of a DHARMa simulation

Description

Return residuals of a DHARMa simulation

Usage
## S3 method for class 'DHARMa’
residuals(object, ...)
Arguments
object an object with simulated residuals created by simulateResiduals

optional arguments for compatibility with the generic function, no function im-
plemented
Details

the function accesses the slot $scaledResiduals in a fitted DHARMa object

Examples
library(1me4)
testData = createData(sampleSize = 200, overdispersion = 0.5, family = poisson())

fittedModel <- glmer(observedResponse ~ Environment1 + (1|group),
family = "poisson”, data = testData,
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control=glmerControl (optCtrl=1ist(maxfun=20000) ))
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# plot residuals, quantreg = T is better but costs more time
plot(simulationQutput, quantreg = FALSE)

# the calculated residuals can be accessed via
residuals(simulationOutput)
simulationOutput$scaledResiduals

# calculating summaries per group
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, quantreg = FALSE)

# create simulations with refitting, n=5 is very low, set higher when using this
simulationOutput <- simulateResiduals(fittedModel = fittedModel,

n = 10, refit = TRUE)
plot(simulationOutput, quantreg = FALSE)

# grouping per random effect group works as above
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, quantreg = FALSE)

runBenchmarks Benchmark calculations

Description

This function runs statistical benchmarks, including Power / Type I error simulations for an arbitrary
test with a control parameter

Usage
runBenchmarks(calculateStatistics, controlValues = NULL, nRep = 10,
alpha = 0.05, parallel = F, ...)
Arguments
calculateStatistics

the statistics to be benchmarked. Should return one value, or a vector of values.
If controlValues are given, must accept a paramteter control

controlValues a vector with a control parameter (e.g. to vary the strength of a problem the test
should be specific to)

nRep number of replicates per level of the control Values

alpha significance level
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parallel whether to use parallel computations. Possible values are F, T (sets the cores
automatically to number of available cores -1), or an integer number for the
number of cores that should be used for the cluster

additional parameters to calculateStatistics

Note

The benchmark function in DHARMa are intended for development purposes, and for users that
want to test / confirm the properties of functions in DHARMa. If you are running an applied data
analysis, they are probably of little use.

simulateResiduals Create simulated residuals

Description

The function creates scaled residuals by simulating from the fitted model

Usage
simulateResiduals(fittedModel, n = 250, refit = F, integerResponse = NULL,
plot = F, seed = 123, ...)
Arguments
fittedModel fitted model object. Supported are generalized linear mixed models from ’Ime4’

(classes "ImerMod’, ’glmerMod’), generalized additive models (’gam’ from 'mgcv’,
excluding extended families from *'mgcv’), ’glm’ (including 'negbin’ from "MASS’,
but excluding quasi-distributions) and *Im’ model classes.

n integer number > 1, number of simulations to run. If possible, set to at least
250, better 1000. Smaller number > 50 can be chose if runtime is prohbitie, but
discretization artefacts can occur at some point.

refit if F, new data will be simulated and scaled residuals will be created by compar-
ing observed data with new data. If T, the model will be refit on the simulated
data (parametric bootstrap), and scaled residuals will be created by comparing
observed with refitted residuals.

integerResponse
if T, noise will be added at to the residuals to maintain a uniform expectations
for integer responses (such as Poisson or Binomial). Usually, the model will
automatically detect the appropriate setting, so there is no need to adjust this
setting.

plot if T, plotSimulatedResiduals will be directly run after the simulations have
terminated
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seed the random seed. The default setting, recommended for any type of data anal-
ysis, is to reset the random number generator each time the function is run,
meaning that you will always get the same result when running the same code.
NULL = no new seed is set, but previous random state will be restored after
simulation. F = no seed is set, and random state will not be restored. The latter
two options are only recommended for simulation experiments. See vignette for
details.

parameters to pass to the simulate function of the model object. An important
use of this is to specify whether simulations should be conditional on the current
random effect estimates. See details.

Details

There are a number of important considerations when simulating from a more complex (hierarchi-
cal) model:

Re-simulating random effects / hierarchical structure: the first is that in a hierarchical model,
several layers of stochasticity are aligned on top of each other. Specifically, in a GLMM, we have
a lower level stochastic process (random effect), whose result enters into a higher level (e.g. Pois-
son distribution). For other hierarchical models such as state-space models, similar considerations
apply. When simulating, we have to decide if we want to re-simulate all stochastic levels, or only a
subset of those. For example, in a GLMM, it is common to only simulate the last stochastic level
(e.g. Poisson) conditional on the fitted random effects.

For controlling how many levels should be re-simulated, the simulateResidual function allows to
pass on parameters to the simulate function of the fitted model object. Please refer to the help of
the different simulate functions (e.g. ?simulate.merMod) for details. For merMod (Ime4) model
objects, the relevant parameters are parameters are use.u, and re.form

If the model is correctly specified, the simulated residuals should be flat regardles how many hier-
archical levels we re-simulate. The most thorough procedure would therefore be to test all possible
options. If testing only one option, I would recommend to re-simulate all levels, because this es-
entially tests the model structure as a whole. This is the default setting in the DHARMa package.
A potential drawback is that re-simulating the lower-level random effects creates more variability,
which may reduce power for detecing problems in the upper-level stochatic processes.

Integer responses: a second complication is the treatment of inter responses. Imaging we have ob-
served a 0, and we predict 30% zeros - what is the quantile that we should display for the residual?
To deal with this problem and maintain a unifor response, the option integerResponse adds a uni-
form noise from -0.5 to 0.5 on the simulated and observed response. Note that this works because
the expected distribution of this is flat - you can see this via hist(ecdf(runif(10000))(runif(10000)))

Refitting or not: a third issue is how residuals are calculated. simulateResiduals has two options
that are controlled by the refit parameter:

1. if refit = F (default), new data is simulated from the fitted model, and residuals are calculated by
comparing the observed data to the new data

2. if refit = T, a parametric bootstrap is performed, meaning that the model is refit on the new data,
and residuals are created by comparing observed residuals against refitted residuals

The second option is much slower, and only important for running tests that rely on comparing
observed to simulated residuals, e.g. the testOverdispersion function
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Residuals per group: In many situations, it can be useful to look at residuals per group, e.g. to see
how much the model over / underpredicts per plot, year or subject. To do this, use recalculateResiduals,
together with a grouping variable (see also help)

Value

An S3 class of type "DHARMa", essentially a list with various elements. Implemented S3 functions
include plot, print and residuals.DHARMa. Residuals returns the calculated scaled residuals, which
can also be accessed via $scaledResiduals. The returned object additionally contains an element
’scaledResidualsNormal’, which contains the scaled residuals transformed to a normal distribution
(for stability reasons not recommended)

Note

See testResiduals for an overview of residual tests, plot.DHARMa for an overview of available
plots.

See Also

testResiduals, plot.DHARMa, print.DHARMa, residuals.DHARMa, recalculateResiduals

Examples

library(1lme4)

testData = createData(sampleSize = 200, overdispersion = 0.5, family = poisson())
fittedModel <- glmer(observedResponse ~ Environment1 + (1|group),

family = "poisson”, data = testData,

control=glmerControl (optCtrl=1ist(maxfun=20000) ))

simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# plot residuals, quantreg = T is better but costs more time
plot(simulationOutput, quantreg = FALSE)

# the calculated residuals can be accessed via
residuals(simulationOutput)
simulationOutput$scaledResiduals

# calculating summaries per group
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationQutput, quantreg = FALSE)

# create simulations with refitting, n=5 is very low, set higher when using this
simulationOutput <- simulateResiduals(fittedModel = fittedModel,

n =10, refit = TRUE)
plot(simulationOutput, quantreg = FALSE)

# grouping per random effect group works as above
simulationOutput = recalculateResiduals(simulationQutput, group = testData$group)
plot(simulationQutput, quantreg = FALSE)
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testDispersion DHARMa dispersion tests

Description

This function performs a simulation-based test for over/underdispersion

Usage
testDispersion(simulationQutput, alternative = c(”"two.sided”, "greater”,
"less"), plot =T, ...)
Arguments
simulationOutput
a DHARMa object with simulated residuals created with simulateResiduals
alternative a character string specifying whether the test should test if observations are
"greater”, "less" or "two.sided" compared to the simulated null hypothesis. Greate
corresponds to overdispersion.
plot whether to plot output
arguments to pass on to testGeneric
Details

The function implements two tests, depending on whether it is applied on a simulation with refit =
F, orrefit=T.

If refit = F (not recommended), the function tests if the IQR of the scaled residuals deviate from
the null hypothesis of a uniform distribution. Simulations show that this option is not properly cal-
ibrated and much less powerful than the parametric alternative testOverdispersionParametric
and even the simple testUniformity, and therefore it’s use is not recommended. A warning will
be returned if the function is called.

If refit = T, the function compares the approximate deviance (via squared pearson residuals) with
the same quantity from the models refitted with simulated data. It is much slower than the para-
metric alternative testOverdispersionParametric, but simulations show that it is slightly more
powerful than the latter, and more powerful than any other non-parametric test in DHARMa, and it
doesn’t make any parametric assumptions. However, given the computational cost, I would suggest
that most users will be satisfied with the parametric overdispersion test.

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testZeroInflation, testGeneric, testTemporalAutocorrelation,
testSpatialAutocorrelation
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Examples
# creating test data
testData = createData(sampleSize = 200, overdispersion = 0.5, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environmentl , family = "poisson”, data = testData)
simulationQutput <- simulateResiduals(fittedModel = fittedModel)
plot(simulationOutput, quantreg = FALSE)
###### Distribution tests #if##H#
testUniformity(simulationOutput)
###### Dispersion tests ####H###
testDispersion(simulationOutput, alternative = "less”) # underdispersion
#i#HHHH Both together#iHHt#t
testResiduals(simulationOutput)

#H####H# Special tests ###HHHHHIHH

# testing zero inflation
testZerolInflation(simulationOutput)

# testing generic summaries

countOnes <- function(x) sum(x == 1) # testing for number of 1s
testGeneric(simulationOutput, summary = countOnes) # 1-inflation
testGeneric(simulationOutput, summary = countOnes, alternative = "less") # 1-deficit

means <- function(x) mean(x) # testing if mean prediction fits
testGeneric(simulationQOutput, summary = means)

spread <- function(x) sd(x) # testing if mean sd fits
testGeneric(simulationOutput, summary = spread)

#iHHH Refited ##HHHHHHHHHHI
# if model is refitted, a different test will be called

simulationQutput <- simulateResiduals(fittedModel = fittedModel, refit = TRUE, seed = 12)
testDispersion(simulationOutput)

##H#HHH#H Test per group ##HH#HHHHHHHHHH

simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
testDispersion(simulationOutput)
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testGeneric Generic simulation test of a summary statistic

Description

This function tests if a user-defined summary differs when applied to simulated / observed data.

Usage

testGeneric(simulationQutput, summary, alternative = c("two.sided”, "greater”,
"less"), plot = T, methodName = "DHARMa generic simulation test")

Arguments
simulationOutput
a DHARMa object with simulated residuals created with simulateResiduals
summary a function that can be applied to simulated / observed data. See examples below
alternative a character string specifying whether the test should test if observations are
"greater”, "less" or "two.sided" compared to the simulated null hypothesis
plot whether to plot the simulated summary
methodName name of the test (will be used in plot)
Details

This function tests if a user-defined summary differs when applied to simulated / observed data.
the function can easily be remodeled to apply summaries on the residuals, by simply defining f =
function(x) summary (x - predictions), as done in testDispersion

Note

The function that you supply is applied on the data as it is represented in your fitted model, which
may not always correspond to how you think. This is important in particular when you use k/n
binomial data, and want to test for 1-inflation. As an example, if have k/20 observations, and you
provide your data via cbind (y, y-20), you have to test for 20-inflation (because this is how the data
is represented in the model). However, if you provide data via y/20, and weights = 20, you should
test for 1-inflation. In doubt, check how the data is internally represented in model.frame(model),
or via simulate(model)

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testDispersion, testZeroInflation, testTemporalAutocorrelation
testSpatialAutocorrelation
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Examples
# creating test data
testData = createData(sampleSize = 200, overdispersion = 0.5, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environmentl , family = "poisson”, data = testData)
simulationQutput <- simulateResiduals(fittedModel = fittedModel)
plot(simulationOutput, quantreg = FALSE)
###### Distribution tests #if##H#
testUniformity(simulationOutput)
###### Dispersion tests ####H###
testDispersion(simulationOutput, alternative = "less”) # underdispersion
#i#HHHH Both together#iHHt#t
testResiduals(simulationOutput)

#H####H# Special tests ###HHHHHIHH

# testing zero inflation
testZerolInflation(simulationOutput)

# testing generic summaries

countOnes <- function(x) sum(x == 1) # testing for number of 1s
testGeneric(simulationOutput, summary = countOnes) # 1-inflation
testGeneric(simulationOutput, summary = countOnes, alternative = "less") # 1-deficit

means <- function(x) mean(x) # testing if mean prediction fits
testGeneric(simulationQOutput, summary = means)

spread <- function(x) sd(x) # testing if mean sd fits
testGeneric(simulationOutput, summary = spread)

#iHHH Refited ##HHHHHHHHHHI
# if model is refitted, a different test will be called

simulationQutput <- simulateResiduals(fittedModel = fittedModel, refit = TRUE, seed = 12)
testDispersion(simulationOutput)

##H#HHH#H Test per group ##HH#HHHHHHHHHH

simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
testDispersion(simulationOutput)
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testOverdispersion Simulated overdisperstion tests

Description

Simulated overdisperstion tests

Usage

testOverdispersion(simulationOutput, ...)

Arguments

simulationOutput
a DHARMa object with simulated residuals created with simulateResiduals

additional arguments to testDispersion

Details

Deprecated, switch your code to using the testDispersion function

testOverdispersionParametric
Parametric overdisperstion tests

Description

Parametric overdisperstion tests

Usage

testOverdispersionParametric(...)

Arguments

arguments will be ignored, the parametric tests is no longer recommend

Details

Deprecated, switch your code to using the testDispersion function. The function will do nothing,
arguments will be ignored, the parametric tests is no longer recommend
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testPDistribution Plot distribution of p-values

Description

Plot distribution of p-values

Usage
testPDistribution(x, plot =T,
main = "p distribution \n expected is flat at 1", ...)
Arguments
X vector of p values
plot should the values be plottet
main title for the plot

additional arguments to hist

Author(s)

Florian Hartig

testResiduals DHARMa general residual test

Description

Calls both uniformity and dispersion test

Usage

testResiduals(simulationOutput)

Arguments
simulationOutput
a DHARMa object with simulated residuals created with simulateResiduals
Details

This function is a wrapper for the various test functions implemented in DHARMa. Currently, this
function calls the testUniformity and the testDispersion functions. All other tests (see below)
have to be called by hand.
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Author(s)

Florian Hartig

See Also

testUniformity, testDispersion, testZeroInflation, testGeneric, testTemporalAutocorrelation,
testSpatialAutocorrelation

testSimulatedResiduals
Residual tests

Description

Residual tests

Usage

testSimulatedResiduals(simulationOutput)

Arguments
simulationOutput
a DHARMa object with simulated residuals created with simulateResiduals
Details

Deprecated, switch your code to using the testResiduals function

Author(s)

Florian Hartig

testSpatialAutocorrelation
Test for spatial autocorrelation

Description

This function performs a standard test for spatial autocorrelation on the simulated residuals

Usage

testSpatialAutocorrelation(simulationOutput, x = NULL, y = NULL,
distMat = NULL, alternative = c(”"two.sided”, "greater”, "less"),
plot = T)
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Arguments
simulationOutput
a DHARMa object with simulated residuals created with simulateResiduals
X the x coordinate, in the same order as the data points. If not provided, random
values will be created
y the x coordinate, in the same order as the data points. If not provided, random
values will be created
distMat optional distance matrix. If not provided, a distance matrix will be calculated
based on x and y. See details for explanation
alternative a character string specifying whether the test should test if observations are
"greater”, "less" or "two.sided" compared to the simulated null hypothesis
plot whether to plot output
Details

The function performs Moran.I test from the package ape, based on the provided distance matrix of
the data points.

There are several ways to specify this distance. If a distance matrix (distMat) is provided, calcula-
tions will be based on this distance matrix, and X,y coordinates will only used for the plotting (if
provided) If distMat is not provided, the function will calculate the euclidian distances between x,y
coordinates, and test Moran.I based on these distances.

The sense of being able to run the test with x/y = NULL (random values) is to test the rate of false
positives under the current residual structure (random x/y corresponds to HO: no spatial autocorre-
lation), e.g. to check if the test has noninal error rates for particular residual structures.

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testDispersion, testZeroInflation, testGeneric, testTemporalAutocorrelatic

Examples

testData = createData(sampleSize = 40, family = gaussian())
fittedModel <- 1m(observedResponse ~ Environmentl, data = testData)
res = simulateResiduals(fittedModel)

# Standard use
testSpatialAutocorrelation(res, x = testData$x, y = testDatas$y)

# If x and y is not provided, random values will be created
testSpatialAutocorrelation(res)

# Alternatively, one can provide a distance matrix
dM = as.matrix(dist(cbind(testData$x, testData$y)))
testSpatialAutocorrelation(res, distMat = dM)
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testTemporalAutocorrelation
Test for temporal autocorrelation

Description

This function performs a standard test for temporal autocorrelation on the simulated residuals

Usage
testTemporalAutocorrelation(simulationOutput, time = NULL,
alternative = c("two.sided”, "greater"”, "less"), plot = T)
Arguments
simulationOutput

an object with simulated residuals created by simulateResiduals

time the time, in the same order as the data points. If set to "random", random values
will be created

alternative a character string specifying whether the test should test if observations are
"greater”, "less" or "two.sided" compared to the simulated null hypothesis
plot whether to plot output
Details

The function performs a Durbin-Watson test on the uniformly scaled residuals, and plots the resid-
uals against time. The DB test was originally be designed for normal residuals. In simulations, I
didn’t see a problem with this setting though. The alternative is to transform the uniform residuals
to normal residuals and perform the DB test on those.

Note

The sense of being able to run the test with time = NULL (random values) is to test the rate of
false positives under the current residual structure (random time corresponds to HO: no spatial
autocorrelation), e.g. to check if the test has noninal error rates for particular residual structures
(note that Durbin-Watson originally assumes normal residuals, error rates seem correct for uniform
residuals, but may not be correct if there are still other residual problems).

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testDispersion, testZeroInflation, testGeneric, testSpatialAutocorrelatior
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Examples

testData = createData(sampleSize = 40, family = gaussian())
fittedModel <- 1lm(observedResponse ~ Environmentl, data = testData)
res = simulateResiduals(fittedModel)

# Standard use
testTemporalAutocorrelation(res, time = testData$time)

# If no time is provided, random values will be created
testTemporalAutocorrelation(res)

testUniformity Test for overall uniformity

Description

This function tests the overall uniformity of the simulated residuals in a DHARMa object

Usage
testUniformity(simulationOutput, alternative = c(”"two.sided”, "less”,
"greater”), plot =T)
Arguments
simulationOutput
a DHARMa object with simulated residuals created with simulateResiduals
alternative a character string specifying whether the test should test if observations are
"greater”, "less" or "two.sided" compared to the simulated null hypothesis
plot if T, plots calls plotQQunif as well
Details

The function applies a KS test for uniformity on the simulated residuals

Author(s)

Florian Hartig

See Also

testResiduals, testDispersion, testZeroInflation, testGeneric, testTemporalAutocorrelation,
testSpatialAutocorrelation
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testZerolInflation Tests for zero-inflation

Description

This function compares the observed number of zeros with the zeros expected from simulations.

Usage

testZeroInflation(simulationOutput, ...)

Arguments

simulationOutput
a DHARMa object with simulated residuals created with simulateResiduals

further arguments to testGeneric

Details

shows the expected distribution of zeros against the observed

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testDispersion, testGeneric, testTemporalAutocorrelation,

testSpatialAutocorrelation
Examples
# creating test data
testData = createData(sampleSize = 200, overdispersion = 0.5, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environmentl , family = "poisson”, data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)
plot(simulationOutput, quantreg = FALSE)
#iH#HEHE Distribution tests #iHi##
testUniformity(simulationOutput)
###### Dispersion tests #iH#####

testDispersion(simulationOutput, alternative = "less") # underdispersion

#####H Both together##t##H#H#H#
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testResiduals(simulationQutput)
H#iHHEHE Special tests #itHHHHHHIH

# testing zero inflation
testZeroInflation(simulationOutput)

# testing generic summaries

countOnes <- function(x) sum(x == 1) # testing for number of 1s
testGeneric(simulationOutput, summary = countOnes) # 1-inflation
testGeneric(simulationQutput, summary = countOnes, alternative = "less") # 1-deficit

means <- function(x) mean(x) # testing if mean prediction fits
testGeneric(simulationQutput, summary = means)

spread <- function(x) sd(x) # testing if mean sd fits
testGeneric(simulationOutput, summary = spread)

#it### Refited
# if model is refitted, a different test will be called

simulationOutput <- simulateResiduals(fittedModel = fittedModel, refit = TRUE, seed = 12)
testDispersion(simulationOutput)

##HHH##H Test per group ##HHHHHHHHHHEH

simulationOutput = recalculateResiduals(simulationQutput, group = testData$group)
testDispersion(simulationOutput)
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