Exact and approximation algorithms for variable-subset selection in ordinary linear regression models. Either compute all submodels with the lowest residual sum of squares, or determine the single-best submodel according to a pre-determined statistical criterion. Hofmann, Gatu, Kontoghiorghes, Colubi, Zeileis (2018, submitted).
Version: | 0.3 |
Depends: | R (≥ 3.4.0) |
Imports: | stats, graphics, utils |
Published: | 2018-05-01 |
Author: | Marc Hofmann [aut, cre],
Cristian Gatu [aut],
Erricos J. Kontoghiorghes [aut],
Ana Colubi [aut],
Achim Zeileis |
Maintainer: | Marc Hofmann <marc.hofmann at gmail.com> |
License: | GPL (≥ 3) |
URL: | https://github.com/marc-hofmann/lmSubsets |
NeedsCompilation: | yes |
SystemRequirements: | C++11 |
Citation: | lmSubsets citation info |
CRAN checks: | lmSubsets results |
Reference manual: | lmSubsets.pdf |
Package source: | lmSubsets_0.3.tar.gz |
Windows binaries: | r-devel: lmSubsets_0.3.zip, r-release: lmSubsets_0.3.zip, r-oldrel: lmSubsets_0.3.zip |
OS X binaries: | r-release: lmSubsets_0.3.tgz, r-oldrel: lmSubsets_0.3.tgz |
Old sources: | lmSubsets archive |
Please use the canonical form https://CRAN.R-project.org/package=lmSubsets to link to this page.