Clean Biological Occurrence Records
Clean using the following use cases (checkmarks indicate fxns exist - not necessarily complete):
taxize
(one method so far)A note about examples: We think that using a piping workflow with %>%
makes code easier to build up, and easier to understand. However, in some examples we provide examples without the pipe to demonstrate traditional usage.
Stable CRAN version
install.packages("scrubr")
Development version
devtools::install_github("ropenscilabs/scrubr")
library("scrubr")
data("sampledata1")
Remove impossible coordinates (using sample data included in the pkg)
# coord_impossible(dframe(sample_data_1)) # w/o pipe
dframe(sample_data_1) %>% coord_impossible()
#> <scrubr dframe>
#> Size: 1500 X 5
#> Lat/Lon vars: latitude/longitude
#>
#> name longitude latitude date key
#> (chr) (dbl) (dbl) (time) (int)
#> 1 Ursus americanus -79.68283 38.36662 2015-01-14 16:36:45 1065590124
#> 2 Ursus americanus -82.42028 35.73304 2015-01-13 00:25:39 1065588899
#> 3 Ursus americanus -99.09625 23.66893 2015-02-20 23:00:00 1098894889
#> 4 Ursus americanus -72.77432 43.94883 2015-02-13 16:16:41 1065611122
#> 5 Ursus americanus -72.34617 43.86464 2015-03-01 20:20:45 1088908315
#> 6 Ursus americanus -108.53674 32.65219 2015-03-29 17:06:54 1088932238
#> 7 Ursus americanus -108.53691 32.65237 2015-03-29 17:12:50 1088932273
#> 8 Ursus americanus -123.82900 40.13240 2015-03-28 23:00:00 1132403409
#> 9 Ursus americanus -78.25027 36.93018 2015-03-20 21:11:24 1088923534
#> 10 Ursus americanus -76.78671 35.53079 2015-04-05 23:00:00 1088954559
#> .. ... ... ... ... ...
Remove incomplete coordinates
# coord_incomplete(dframe(sample_data_1)) # w/o pipe
dframe(sample_data_1) %>% coord_incomplete()
#> <scrubr dframe>
#> Size: 1306 X 5
#> Lat/Lon vars: latitude/longitude
#>
#> name longitude latitude date key
#> (chr) (dbl) (dbl) (time) (int)
#> 1 Ursus americanus -79.68283 38.36662 2015-01-14 16:36:45 1065590124
#> 2 Ursus americanus -82.42028 35.73304 2015-01-13 00:25:39 1065588899
#> 3 Ursus americanus -99.09625 23.66893 2015-02-20 23:00:00 1098894889
#> 4 Ursus americanus -72.77432 43.94883 2015-02-13 16:16:41 1065611122
#> 5 Ursus americanus -72.34617 43.86464 2015-03-01 20:20:45 1088908315
#> 6 Ursus americanus -108.53674 32.65219 2015-03-29 17:06:54 1088932238
#> 7 Ursus americanus -108.53691 32.65237 2015-03-29 17:12:50 1088932273
#> 8 Ursus americanus -123.82900 40.13240 2015-03-28 23:00:00 1132403409
#> 9 Ursus americanus -78.25027 36.93018 2015-03-20 21:11:24 1088923534
#> 10 Ursus americanus -76.78671 35.53079 2015-04-05 23:00:00 1088954559
#> .. ... ... ... ... ...
Remove unlikely coordinates (e.g., those at 0,0)
# coord_unlikely(dframe(sample_data_1)) # w/o pipe
dframe(sample_data_1) %>% coord_unlikely()
#> <scrubr dframe>
#> Size: 1488 X 5
#> Lat/Lon vars: latitude/longitude
#>
#> name longitude latitude date key
#> (chr) (dbl) (dbl) (time) (int)
#> 1 Ursus americanus -79.68283 38.36662 2015-01-14 16:36:45 1065590124
#> 2 Ursus americanus -82.42028 35.73304 2015-01-13 00:25:39 1065588899
#> 3 Ursus americanus -99.09625 23.66893 2015-02-20 23:00:00 1098894889
#> 4 Ursus americanus -72.77432 43.94883 2015-02-13 16:16:41 1065611122
#> 5 Ursus americanus -72.34617 43.86464 2015-03-01 20:20:45 1088908315
#> 6 Ursus americanus -108.53674 32.65219 2015-03-29 17:06:54 1088932238
#> 7 Ursus americanus -108.53691 32.65237 2015-03-29 17:12:50 1088932273
#> 8 Ursus americanus -123.82900 40.13240 2015-03-28 23:00:00 1132403409
#> 9 Ursus americanus -78.25027 36.93018 2015-03-20 21:11:24 1088923534
#> 10 Ursus americanus -76.78671 35.53079 2015-04-05 23:00:00 1088954559
#> .. ... ... ... ... ...
Do all three
dframe(sample_data_1) %>%
coord_impossible() %>%
coord_incomplete() %>%
coord_unlikely()
#> <scrubr dframe>
#> Size: 1294 X 5
#> Lat/Lon vars: latitude/longitude
#>
#> name longitude latitude date key
#> (chr) (dbl) (dbl) (time) (int)
#> 1 Ursus americanus -79.68283 38.36662 2015-01-14 16:36:45 1065590124
#> 2 Ursus americanus -82.42028 35.73304 2015-01-13 00:25:39 1065588899
#> 3 Ursus americanus -99.09625 23.66893 2015-02-20 23:00:00 1098894889
#> 4 Ursus americanus -72.77432 43.94883 2015-02-13 16:16:41 1065611122
#> 5 Ursus americanus -72.34617 43.86464 2015-03-01 20:20:45 1088908315
#> 6 Ursus americanus -108.53674 32.65219 2015-03-29 17:06:54 1088932238
#> 7 Ursus americanus -108.53691 32.65237 2015-03-29 17:12:50 1088932273
#> 8 Ursus americanus -123.82900 40.13240 2015-03-28 23:00:00 1132403409
#> 9 Ursus americanus -78.25027 36.93018 2015-03-20 21:11:24 1088923534
#> 10 Ursus americanus -76.78671 35.53079 2015-04-05 23:00:00 1088954559
#> .. ... ... ... ... ...
Don't drop bad data
dframe(sample_data_1) %>% coord_incomplete(drop = TRUE) %>% NROW
#> [1] 1306
dframe(sample_data_1) %>% coord_incomplete(drop = FALSE) %>% NROW
#> [1] 1500
smalldf <- sample_data_1[1:20, ]
# create a duplicate record
smalldf <- rbind(smalldf, smalldf[10,])
row.names(smalldf) <- NULL
# make it slightly different
smalldf[21, "key"] <- 1088954555
NROW(smalldf)
#> [1] 21
dp <- dframe(smalldf) %>% dedup()
NROW(dp)
#> [1] 20
attr(dp, "dups")
#> <scrubr dframe>
#> Size: 1 X 5
#>
#>
#> name longitude latitude date key
#> (chr) (dbl) (dbl) (time) (dbl)
#> 1 Ursus americanus -76.78671 35.53079 2015-04-05 23:00:00 1088954555
Standardize/convert dates
df <- sample_data_1
# date_standardize(dframe(df), "%d%b%Y") # w/o pipe
dframe(df) %>% date_standardize("%d%b%Y")
#> <scrubr dframe>
#> Size: 1500 X 5
#>
#>
#> name longitude latitude date key
#> (chr) (dbl) (dbl) (chr) (int)
#> 1 Ursus americanus -79.68283 38.36662 14Jan2015 1065590124
#> 2 Ursus americanus -82.42028 35.73304 13Jan2015 1065588899
#> 3 Ursus americanus -99.09625 23.66893 20Feb2015 1098894889
#> 4 Ursus americanus -72.77432 43.94883 13Feb2015 1065611122
#> 5 Ursus americanus -72.34617 43.86464 01Mar2015 1088908315
#> 6 Ursus americanus -108.53674 32.65219 29Mar2015 1088932238
#> 7 Ursus americanus -108.53691 32.65237 29Mar2015 1088932273
#> 8 Ursus americanus -123.82900 40.13240 28Mar2015 1132403409
#> 9 Ursus americanus -78.25027 36.93018 20Mar2015 1088923534
#> 10 Ursus americanus -76.78671 35.53079 05Apr2015 1088954559
#> .. ... ... ... ... ...
Drop records without dates
NROW(df)
#> [1] 1500
NROW(dframe(df) %>% date_missing())
#> [1] 1498
Create date field from other fields
dframe(sample_data_2) %>% date_create(year, month, day)
#> <scrubr dframe>
#> Size: 1500 X 8
#>
#>
#> name longitude latitude key year month day
#> (chr) (dbl) (dbl) (int) (chr) (chr) (chr)
#> 1 Ursus americanus -79.68283 38.36662 1065590124 2015 01 14
#> 2 Ursus americanus -82.42028 35.73304 1065588899 2015 01 13
#> 3 Ursus americanus -99.09625 23.66893 1098894889 2015 02 20
#> 4 Ursus americanus -72.77432 43.94883 1065611122 2015 02 13
#> 5 Ursus americanus -72.34617 43.86464 1088908315 2015 03 01
#> 6 Ursus americanus -108.53674 32.65219 1088932238 2015 03 29
#> 7 Ursus americanus -108.53691 32.65237 1088932273 2015 03 29
#> 8 Ursus americanus -123.82900 40.13240 1132403409 2015 03 28
#> 9 Ursus americanus -78.25027 36.93018 1088923534 2015 03 20
#> 10 Ursus americanus -76.78671 35.53079 1088954559 2015 04 05
#> .. ... ... ... ... ... ... ...
#> Variables not shown: date (chr).
scrubr
in R doing citation(package = 'scrubr')